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Abstract
Traditional 3D modeling in the AECO industry often emphasizes geometric data over
semantic details, leading to potential inconsistencies. This paper introduces an innova-
tive approach to enhancing Building Information Models using geometric intelligence.
The core idea of this geometric intelligence is that an object’s geometric features and se-
mantic properties are intrinsically linked. Our method uses artificial intelligence to an-
alyze 3D models, extracting implicit semantic insights from high-quality geometric data
through feature extraction and AI-based semantic classification. By creating a frame-
work incorporating this ’Geometric Intelligence,’ we reduce the dependency on man-
ually entered data and identify inconsistencies between geometric and semantic infor-
mation. This research highlights geometric data’s potential to enrich semantic content,
promoting safer and more sustainable building practices.

1.Introduction
The modern Architecture, Engineering, Construction, and Operation (AECO) industry
increasingly relies onmodel-based processes where geometric and semantic information
are critical. The implementation of Building InformationModeling (BIM) has heightened
the need for high-quality development in terms of Level of Geometry (LoG) and Level
of Information (LoI). While combining these elements in digital models is essential, it
presents significant challenges (Borrmann et al., 2018).
While geometric errors are typically visible and quickly corrected, defects in semantic
modeling often go unnoticed and unresolved. This discrepancy underscores the need
for better integration and management of semantic information in digital models. The
AECO industry faces significant challenges with data interoperability, particularly when
integrating geometric and semantic data. The lack of standardized practices for semantic
information often leads to inconsistencies and errors. Misalignment between geomet-
ric and semantic data can propagate errors throughout the project lifecycle, affecting
everything from design to construction and operation. This can increase costs and de-
lays and reduce efficiency (Dinis et al., 2022). Despite the critical role of semantics in
digital modeling, it remains elusive for many stakeholders in the construction indus-
try. The secure and quality-assured handling of semantic information has yet to become
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widespread, and the qualitative standards for this information have yet to be applied
across the board. In contrast, models’ geometry benefits from well-established practices
and expertise, often receiving preferential treatment. Adopting open semantic standards
has been crucial in addressing these issues, but the industry still struggles with fully in-
tegrating these standards into everyday practices (Zhang et al., 2020).
Integrating semantics is crucial for ensuring modern structures’ efficiency, safety, and
durability. Moreover, without holistic semantic consideration, the benefits of digital
models in planning, such as accurate model validation and quantity estimation, cannot
be fully realized, further compromising the project’s success.
This research’s primary question is whether the imbalance between geometry and se-
mantics can be leveraged to improve semantic information quality without adding more
data to the model. The goal is to explore whether insights can be derived solely from
geometry, which is typically more reliable and of higher quality than semantics. This
approach aims to enhance digital building models by reducing the dependence onmanu-
ally entered semantic data, prone to errors and inconsistencies. The main contributions
of this paper are:
• Proposing a novel method for extracting valuable semantic insights solely from geo-
metric features of single components and their context to neighboring components.

• Developing a comprehensive framework that leverages Geometric Intelligence by ap-
plying advanced artificial intelligence techniques to establish precise correlations be-
tween geometric features and semantic attributes, thereby significantly enhancing
digital building models’ semantic depth, accuracy, and reliability. This approach inte-
grates machine learning algorithms for feature extraction, classification, and semantic
enrichment, ensuring that the geometric data is effectively translated into meaningful,
context-aware information within the digital building environment.

• Demonstrating the potential of this approach to improve the accuracy and quality
of construction planning and execution by utilizing AI-driven correlations between
geometric and semantic features.

2.Background and Related Research
Semantic enrichment enhances data with additional information to make its meaning
and context more comprehensible (Bloch, 2022). Semantic enrichment in the context
of BIM involves integrating metadata, context information, and external knowledge
sources into the geometric data. There are numerous approaches to semantic enrich-
ment, each attempting to tackle the challenge in various ways (Jiang et al., 2023). Some
focus on ontology-based methods, leveraging structured knowledge representations,
while others use machine learning techniques to infer semantic information from ge-
ometric data. This diversity of methods highlights the richness of the field and the po-
tential for innovative solutions to improve the semantic quality of BIM models. Most
methods focus on enriching geometry obtained from existing structures (e.g., TLS, pho-
togrammetry) without a corresponding BIM model.
The recognition and classification of semantic objects based on geometry or images in
2D and 3D data is a significant aspect of these methods. Object classification involves
the recognition and grouping of objects for specific purposes, consisting of two main
steps: feature extraction and feature-based classification (Ullman, 2007). This approach
has been used in civil engineering to detect various elements such as construction equip-
ment, activities, and structural defects (Spencer Jr et al., 2019) – 3D object classification
benefits from additional spatial information. Wang and Cho (2014) proposed a method
for building component recognition and reconstruction from LIDAR data, and Sacks et
al. (2017) relied on similar data for classification and consecutive enrichment.
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In contrast, other approaches rely on manufactured models created during planning.
While suchmodels are often classified duringmodeling, an automated classificationmay
improve the results by eliminating errors. Wu and Zhang (2019) developed a sequential
algorithm to classify IFC-based BIM models while Li et al. (2023) focused on invariant
signatures of AEC objects. Koo et al. (2021), on the other hand, combined images, point
clouds, and geometric features of objects in a deep learning approach to classify wall
and door BIM elements. However, these approaches usually rely on meta-information
of the particular data schema (e.g., IFC) besides the pure geometric information.
Our approach addresses the limitations of these existing methods by focusing solely on
the raw geometric characteristics of models created during the digital planning process.
Unlike methods that depend on meta-information, which can introduce errors and in-
consistencies, we propose a neutral set of geometric features derived purely from the
components’ shapes within a model. We explicitly do not rely on external metadata,
which may be incomplete or inaccurate, ensuring that the classification process is based
on universally applicable geometric data. By leveraging engineering knowledge to con-
sider the shape characteristics of common building elements, our method enhances the
semantic richness of BIM models more reliably and flexibly. Ultimately, this will lead to
more precise and consistent semantic information.

3.Methodology
The geometric complexity of 3Dmodels may not appear immediately meaningful at first
glance, but it holds immense potential. The high attention paid to geometry during the
design process harbors a largely unexploited wealth of valuable insights. Just as humans
can classify components based exclusively on geometric features or infer the materials
used, this ability can also be harnessed for machine processing in the construction in-
dustry.
The core of this concept lies in identifying and analyzing simple geometric features tai-
lored explicitly for components typically found and used in the AECO industry. This
ability to infer semantic properties from geometric properties, such as shapes, patterns,
spatial relationships, dimensions, and proportions, can be referred to as Geometric In-
telligence. This suggests that each component within a building model possesses an
inherent understanding embedded within its geometric features. When extracted, these
features can be used as input for a neural network to provide valuable insights into the
component’s function, relationships to other components, and semantic information.
This approach takes advantage of the high quality of geometric data in digital building
models and aims to enhance their semantic richness. Unlike traditionalmethods that rely
on the human capacity to learn features from 2D images, Geometric Intelligence focuses
on a novel selection of three-dimensional properties of components derived from their
3D representation. By leveraging machine learning methods, we can identify correla-
tions between geometric features and semantic attributes, making it possible to deduce
properties such as the type of object or the likely materials used.
Applying AI and large datasets enables us to extract and utilize these correlations ef-
fectively. This methodology aims to improve the accuracy and quality of construction
planning and execution by applying these insights to individual building components.
Geometric Intelligence, through the in-depth understanding and analysis of shapes, pat-
terns, spatial relationships, and proportions, opens up significant opportunities in the
construction industry and provides a novel perspective in understanding and analyzing
building components at a deeper, more intrinsic level.
Figure 1 shows our proposed procedure in simplified form. The individual steps are
explained in detail in the following sections.
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Figure 1: Procedure for deriving semantic features from the geometric features

Our primary objective is identifying geometric features that can effectively predict a
selected semantic characteristic or property. The first step is to develop a catalog of geo-
metric characteristics that can be universally identified for components and construction
elements, regardless of their specific geometric representation or data format. These fea-
tures must be consistently derivable from any representation type, ensuring the broad
applicability of our methodology.
First, we focus on the component type corresponding to the entity in the IFC data
schema. This choice is informed by the understanding that classifying component types
is fundamental to understanding and utilizing digital building models. Besides, this deci-
sion is based on the premise that specific geometric characteristics, which humans typ-
ically use to differentiate between component types, can similarly be used by AI models
to distinguish semantic properties effectively.
Our approach is flexible and designed to be adaptable, allowing for future extensions
to other semantic properties, such as material type, load-bearing characteristics, or fire
resistance classification. We hypothesize that specific geometric features will effectively
distinguish component types.
We focus on informative, easily derivable, and meaningful aspects across different geo-
metric representations and data models to identify initial geometric features. This en-
sures that our approach remains independent of specific data formats and is broadly
applicable. The selected features include dimensions, shapes, spatial relationships, and
othermeasurable aspects that can provide valuable information about the semantic prop-
erties of components. The first set of geometric features we identified as meaningful can
be found in Table 1 with a description of which properties these features describe.
It is essential to emphasize that the geometric features’ development and identification
process is iterative and takes construction specific domain Knowledge into account. The
catalog of geometric features is not static; it needs to evolve and expand as we collect
more data and refine our methods. Initially, we focus on the most promising geomet-
ric features based on existing knowledge and preliminary analysis. As we gather more
data, we will continuously refine and expand the catalog, improving the accuracy and
reliability of the resulting AI models in predicting semantic properties.
The collected geometric features, sourced frommodels with accurately classified compo-
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nent types, are used to train AI models, enabling them to predict unknown components
based on their geometric features. This process begins by extracting the identified ge-
ometric features from existing models. These features serve as the input data for both
training and testing the AI models. The specific steps involved are as follows:
1. Feature Extraction: Extract geometric features from components within accurately

classified models. This ensures the training data is reliable and representative of the
component types.

2. Model Training and Testing: Use the extracted features to train AI models, en-
abling the AI to learn to predict a component’s class or purpose based on specific
shapes, dimensions, and other geometric properties. The training process involves
splitting the data into training, validation, and test sets. During training, 80% of the
data is used, with an additional 10% of this training data set aside for validation to
monitor the model’s performance and prevent overfitting. Subsequently, the trained
models use the 20% test set to evaluate their performance, assessing how well the AI
can predict component types from geometric features not encountered during train-
ing.

3. Validation: Apply the trained models to new, unfamiliar data to validate their ef-
fectiveness. This step involves evaluating the accuracy of the AI’s predictions and
ensuring they align with the actual properties and functions of the components.

4.Implementation
Our initial implementation focuses on IFC models due to their extensive, manufacturer-
neutral database. This database allows us to utilize classified elements from various
authoring tools as test data, providing a robust foundation for our model training and
testing processes. However, it is essential to emphasize that IFC is only one possible data
source. The geometric features we concentrate on can also be derived from other data
models and formats, e.g., OBJ, STL, and CityGML.
Our approach involves a Python-based demonstrator, building on the methodology pre-
viously outlined. The implementation leverages several tools and libraries to achieve our
objectives. We use public open-source libraries such as IfcOpenShell, NumPy, Trimesh,
and OpenCASCADE to extract geometric features from IFC files. These tools allow us
to interpret the IFC files and extract geometric data from building components.
The extraction process focuses on compiling a dataset with key spatial metrics for each
building element, ensuring these metrics are consistently derivable from any geometric
representation. Once the geometric features are extracted, we utilize a Multi-Layer Per-
ceptron (MLP) neural network model implemented using TensorFlow’s Keras API. The
MLP consists of six dense layers and employs dropout techniques to prevent overfitting,
enhancing the model’s generalization capability. The training phase involves feeding
the extracted features into the MLP, enabling the AI to learn to predict a component’s
class or purpose based on specific shapes, dimensions, and other geometric properties.
After training, we test the models using a separate dataset to evaluate their performance.
This testing phase assesses how accurately the AI can predict component types from
geometric features not encountered during training. The final step is to validate the
trained models on new, unfamiliar data, ensuring their predictions align with the actual
properties and functions of the components. The predictions are stored in an updated
version of the test data IFC file, with the predicted class added to a dedicated property for
each element. While the predicted component type can be reused in various ways, this
method simplifies validation by comparing the actual component’s class and the newly
added property.
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Table 1: Selection of geometric features for semantic classification
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Surface area and volume
Calculation of surface area and volume.
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Geometric representation type
Explicit (BREP, Advanced BREP) or implicit repre-
sentation (CSG, Procedural, etc.).

Shape and contour
Recognition of specific shapes, such as rectangles,
circles, and polygons, as well as more intricate
shapes like free-form surfaces.

Angle and slope
Measurement of angles and slopes, crucial for struc-
tural integrity and design.

Symmetry and pattern recognition
Identification of symmetries and recurring patterns
within the building structure.

Perforations and cavities
Recognition of holes, recesses, or voids within com-
ponents.

Degree of complexity
Assessment of the geometric complexity of compo-
nents, with implications for manufacturing and as-
sembly processes.
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Position and alignment
Determination of spatial positioning and alignment
of components relative to each other.

x
x

x
x

Connection and intersection points
Detection of points where components meet or in-
tersect.

Proportions and ratios
Analysis of proportionality between different com-
ponents.

x
x

x
x

Distance, contact, and overlap measurements
Determination of distances, contact areas, and over-
laps between components.

The AI-Demonstrator was applied to various IFC models, yielding robust results. We
focused on identifying essential properties that could enhance the AI model’s ability to
accurately predict the classes of architectural elements according to the identified char-
acteristics shown in Table 1. The finalized feature set, crucial for our AI-based prediction
model, is shown in Figure 2 and includes:
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• Sumof Length andWidth Squared: This metric helps distinguish between different
component sizes and shapes (Figure 2 - b)

• Areas: The element’s footprint and top surface areas provide insight into its spatial
footprint and coverage (Figure 2 - c)

• Coordinate Counts: The number of distinct minimal and maximal x, y, and z coordi-
nates in the element’s footprint, aiding in understanding the element’s spatial bound-
aries (Figure 2 - d)

• Mesh Quantity: The number of meshes present within the element’s footprint, indi-
cating the complexity of its geometry (Figure 2 - e)

• Vertices and Faces Count: The total number of vertices and faces of the element is
crucial for understanding the element’s geometric complexity (Figure 2 - f)

• VolumeMeasurements: Including the axis-aligned bounding box volume, the actual
object volume, and the convex hull volume, these metrics are essential for assessing
the element’s overall size and shape (Figure 2 - a, g)

• Ratio Calculations: Such as length-to-width ratio, object-to-convex hull volume ra-
tio, object volume-to-height ratio, convex hull volume-to-height ratio, and footprint
area-to-height ratio. These ratios help in understanding the proportional relationships
of the elements (Figure 2 - a, b, g)

• Euler Characteristic: Provides insight into the shape’s topology, which is essential
for distinguishing different types of components (Poincaré, 1895) (Figure 2 - h)

5.Test Cases and Discussion
To evaluate the accuracy of our prediction system, we derived features according to our
presented methodology and verified the model with data previously unseen by the AI.
Table 2 summarizes the AI prediction results for various IFC element types across six
test models.
We selected different buildings, primarily from the field of building construction, includ-
ing small-sized models, such as single-family houses from solid and timber construction,
and larger models, like high-rise buildings and office complexes.
The results indicate high success rates for IfcColumn, IfcDoor, IfcSlab, IfcWall, and IfcWin-
dow. These elements have distinctive geometric features that facilitate accurate predic-
tions. For example, IfcSlabs often have large footprint areas, while IfcDoors and IfcWin-
dows typically exhibit high vertex and face counts. IfcWalls are characterized by high
length-to-width ratios combined with low vertex and face counts.
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Figure 2: Geometric features used for the implementation of the demonstrator
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Table 2: Results of the test cases with a set of IFC models

IFC Entity # of Components Correct Predictions Average Confidence

IfcBeam 67 62.69% 66.99%
IfcColumn 36 93.36% 66.91%
IfcDoor 377 98.94% 99.13%
IfcFooting 62 69.35% 79.44%
IfcRailing 49 73.47% 85.80%
IfcSlab 65 97.10% 87.72%
IfcStair 17 76.47% 93.10%
IfcWall 1301 89.82% 83.11%
IfcWindow 398 97.82% 84.20%

Components with lower success rates, such as IfcBeam, IfcFooting, IfcRailing, and IfcStair,
suggest potential areas for improvement. Figure 3 illustrates three common variations
of railings, which differ significantly in geometry, such as volume, dimension ratios,
and vertex and face counts. One strategy is to increase the training dataset size. A
more extensive training dataset can help the model learn how these elements can be
represented.

Figure 3: Common variations of IFC railings.

Improving predictions for IfcBeam and IfcFootingmay require additional strategies due to
classification thresholds. For instance, the distinction between a beam and a deep beam
or wall depends on the ratio of the span to the overall section depth, with a ratio of ≥ 3
indicating a deep beam or wall. Figure 4 illustrates this threshold, showing elements
that change from beam to deep beam or wall as the span-to-depth ratio exceeds 3 (Code,
2005).

Beam 1 Wall 1

Beam 2 Wall 2

Figure 4: Transition threshold from IFC beam to IFC wall based on span-to-depth ratio.

In modeling software, while a wall with a low overall height ( l
h
< 3) can be modeled, it

will not change automatically from IfcWall to IfcBeam and thus can be misclassified.
In our tests, the AI performed well across all models with comparatively uniform and
geometrically less complex components, such as IfcColumn or IfcSlab elements, achiev-
ing high accuracy and confidence in predictions. However, persistent issues with less
uniform and increasingly geometrically complex, such as IfcRailing or IfcStairFlight ele-
ments, indicate the need for further improvements in the AI model or the training data to
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achieve better results for these elements. Additionally, the average confidence in predic-
tions only sometimes correlates with accuracy; for example, predictions for IfcColumn
have a low confidence of 66,91% but an accuracy of 93.36%. Variations in accuracy and
confidence across different test models may be due to varying model complexities, in-
sufficient training data for specific elements, or the AI model’s inherent limitations.
Overall, the data indicates that our models’ predictive performance is solid, with specific
areas needing improvement. Further investigation should review the training datasets
and the AI model to address area-specific weaknesses and achieve higher accuracy and
reliability. Despite the promising results, several limitations need to be addressed:
First, the effectiveness of our approach depends on identifying the correct geometric
features for each semantic characteristic. This iterative process requires continuous re-
finement to ensure the most relevant features are used.
Second, during our implementation and validation, we observed that a completely au-
tomated validation process is not feasible. The AI model sometimes predicts component
types that, while different from their original classification in the IFC model, are not
necessarily incorrect. For instance, a subcomponent of a curtain wall might be predicted
as a support structure. Although this differs from its original classification as part of a
curtain wall, it could still be valid. Therefore, human verification is required to deter-
mine whether the AI’s predictions are sensible and accurate. This necessity for manual
review makes fully automated validation impractical and time-consuming.
Second, during our implementation and validation phases, we observed that a com-
pletely automated validation process is not feasible. The AI model can predict com-
ponent types that, while different from their original classification in the IFC model, are
not necessarily incorrect. For instance, a subcomponent of a curtain wall might be pre-
dicted as a support structure, which could be a valid classification. Therefore, human
verification is necessary to determine the correctness of the AI’s predictions. This man-
ual review process is time-consuming and indicates that fully automated validation is
impractical. Third, developing geometric features and the AI model is an ongoing pro-
cess. Initial results are promising, but significant time, effort, and resources are needed to
continuously improve predictions’ accuracy and reliability. This involves expanding the
dataset and refining the feature extraction and model training processes. Lastly, the cur-
rent implementation performs well for relatively standardized components that do not
exhibit unusual behavior. However, the system’s reliability decreases with more com-
plex or less common components. Relying entirely on this system for all classifications
may not be practical, but using it as a decision support tool could be beneficial.

6.Conclusions
The introduction of Geometric Intelligence offers a promising way to enhance the quality
and interoperability of digital models in the construction industry. By using AI to extract
and utilizeGeometric Intelligence, we can improve the semantic richness of these models,
leading to more efficient and accurate design, construction, and maintenance processes.
However, this approach’s success relies on several crucial factors: maintaining data qual-
ity and diversity, ensuring precise definitions of geometric features, and achieving con-
sistent AI model performance. Our initial definition of geometric features is a first step,
and we invite the community to develop this catalog further. As it stabilizes and gains
broader recognition, this engineering approach will be especially useful for applying to
other semantic attributes beyond component types.
Future research should apply this methodology to essential semantic attributes like load-
bearing characteristics. One practical application could be integrating the AI model into
authoring tools for real-time feedback, warning users of potential misclassifications. An-
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other application uses the AImodel as a decision support system during the design phase
to help modelers correctly classify components and reduce errors.
While the initial implementation shows promise, especially for standardized compo-
nents, significant areas for improvement remain. The iterative nature of the process and
the need for human validation highlight the importance of continuous development and
refinement. Future work should expand the methodology to other semantic properties
and integrate it into practical applications to enhance its effectiveness.
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