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Abstract 
Successful applications of Artificial intelligence (AI) highlight the importance of representing 
domain-specific data in formats suitable for learning. Researchers in the BIM domain often adopt 
an inverse approach by selecting AI techniques first and then tailoring BIM information into 
specific formats, which results in incomplete information and limited application scenarios. We 
argue that BIM-specific data representations and learning techniques are crucial to leveraging the 
full richness and scope of the information in BIM models for AI applications. Consequently, this 
article poses two fundamental questions: 1) What formats are most suitable for BIM data 
representation? 2) What are the corresponding learning techniques needed for BIM? To 
begin the exploration of the first question, we propose a graph-based approach to represent 
design data for storage and computation. Through an object classification experiment, we 
demonstrate two AI algorithms achieve an accuracy of 95% and an F1 score of 0.95 after 
incorporating graph-related features. 

Keywords: Artificial Intelligence, Building Information Modelling, graph representation, graph 
learning, machine learning. 

1 Introduction 
The development of AI and its achievements have attracted attention all around the world. In 

the computer vision domain, digital images are usually stored in a three-dimensional matrix, 
providing a structured data format that can be efficiently manipulated by matrix operations. The 
initial Convolutional Neural Networks (CNNs), which aimed to simulate the function of neural 
cells of humans, were designed to process the representation of images in a matrix (Krizhevsky 
et al., 2012). In 2015, ResNet, a deep learning model, achieved a top-5 error rate of 3.57%, which 
is lower than the estimated human error rate of around 5% for the same task in the ImageNet 
Large Scale Visual Recognition Challenge (ILSVRC) (He et al., 2016). For the first time, a deep 
learning algorithm surpassed human performance on the object classification task (He et al., 
2015). This was a milestone in AI history, showing that accumulated large datasets with proper 
design algorithms can outperform humans in this specific capability. 

Recently, large language models (LLMs), such as GPT and Gemini, have demonstrated their 
capability to handle varied and complex language tasks. This breakthrough in LLMs, exemplified 
by GPT-3.5, resulted from the continuous expansion of dataset sizes and improvements in 
training mechanisms (OpenAI, 2022). However, it is essential not to overlook the foundational 
works in the natural language processing (NLP) domain that paved the path for today's successes. 
An early fundamental work is Word2Vector, which represents words as dense, numerical vectors 
that capture semantic and syntactic relationships between words (Mikolov, Chen, et al., 2013). 
This addresses the challenge of generating embeddings, enabling computers to understand and 
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process language more effectively (Mikolov, Sutskever, et al., 2013). Additionally, another 
seminal work is the Transformer model, a novel deep learning architecture, which introduces the 
attention mechanism to allow parallel computation but capture long-range dependencies and 
context effectively (Vaswani et al., 2017). Transformers have profoundly advanced the field of 
NLP, leading to the development of state-of-the-art LLMs, which have also been applied in other 
domains, such as computer vision. 

Reflecting on the development of AI in different domains (Figure 1), there is a route involving 
data representation from a machine-readable format to a learning-suitable one, such as 
processing languages to tokens, and audio to spectrograms. Each domain also develops specific 
learning algorithms that are designed for the data representation, such as CNNs for images and 
transformers for languages. 

 

 
Figure 1. Data representation in various domains. (Boroojerdi & Rudolph, 2022) (OpenSeq2Seq, 2024) (Devlin et al., 2018) 

All these exciting achievements inspire BIM researchers. However, we observe that most, if 
not all, BIM machine learning studies adopt an inverse approach by first selecting successful 
algorithms and then processing information into a specific format. For example, one might first 
select a decision tree algorithm and then parse object attributes into a suitable table. The main 
problem of this approach is that the diversity of building information is ignored, meaning that the 
processed information often fails to represent the richness and full meaning of design data. 
Additionally, these applications often result in a situation of specific purposes and narrow scopes, 
as we assume that techniques for processing images or point cloud data are the desired ones 
instead of considering developing techniques that can fit the specific characteristics of BIM. 

BIM data are complex. First, even a simple BIM model contains varied data types, such as 
objects, relationships, and geometries. There is a need to integrate diverse modalities. 
Additionally, BIM data are often stored in software databases with limited access or in open 
schema files suitable for collaboration. Moreover, in the construction industry, the culture tends 
to protect work rather than share it with the community, resulting in limited open resources for 
BIM models. Luckily, there are increasingly more open datasets and design models available from 
recent studies. In short, the diversity of design information, the data accessibility issues, and the 
limited availability of data pose challenges in representing building information and leveraging 
learning. 
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Therefore, we argue that new data representation and new learning techniques are essential 
to leverage the full richness and scope of the information in BIM models for machine learning 
applications. This raises two fundamental questions:  

1) What formats are most suitable for BIM data representation?  
2) What are the corresponding learning techniques needed for BIM? 
We raise these two questions, although we cannot yet provide comprehensive answers. 

Instead, in this paper we explore a potential approach that adopts graphs to represent and 
leverage multi-modal building information for learning, which begins to address the first question.  

2 Background 

2.1 Machine learning in BIM 
Machine learning techniques have been widely applied to the BIM domain. However, most 

existing studies adopt an inverse approach. Researchers first identify a specific machine learning 
algorithm that performs well, and then process part of the building information into the required 
data format to launch the algorithm. For example, in the semantic enrichment domain for BIM 
object classification, researchers initially used traditional machine learning algorithms, such as 
Support Vector Machines (SVM) (Koo & Shin, 2018). To generate the required tabular data for 
SVM, researchers first extracted attributes from IFC objects, such as area and volume, as features 
for each object to form a row, and then manually labeled the class of each piece of data as the 
ground truth. 

Soon, more complex and advanced machine learning and deep learning techniques were 
explored. To launch the vision-based MVCNN algorithm, researchers set up virtual cameras to 
take images of a BIM object from 12 different cardinal directions  (Koo, Jung, & Yu, 2021). 
Similarly, the performance of point-based deep learning models captured the attention of 
researchers. Subsequently, the geometry of BIM objects was parsed as point clouds, which were 
fed into PointNet for classification (Koo, Jung, Yu, et al., 2021). Alternatively, the geometry was 
processed as graphs to serve GNNs (Collins et al., 2021). Another example validating the inverse 
approach is the testing of GNNs on BIM graphs, where researchers even manually labeled object 
relationships in a matrix and converted it to graphs for testing the emerging deep learning 
techniques (Wang et al., 2022). 

The inverse approach results in a relatively narrow application scope. More importantly, 
processing design data into a specific format preserves part of the information while abandoning 
other semantics. Tables can store attributes but struggle to represent relationships and 
geometries. Images retain vision features, but other details are hard to preserve. Graphs can 
maintain relationships and object attributes, but geometry and vision features are difficult to 
incorporate. Some studies explore leveraging different types of building information to improve 
classification performance using ensemble learning techniques (Utkucu et al., 2024). However, 
all of these efforts still follow the inverse approach by focusing on algorithms that handle specific 
types of information, such as geometry and vision, and then combining them. This method still 
prioritizes the selection of algorithms over the initial proper representation of design data. A 
comprehensive representation of the full richness and scope of information contained in BIM 
models for machine learning applications is still lacking. 

2.2 Graph representation  
As a BIM project progresses through its lifecycle, it generates various types of data. For many 

years, the linked building data (LBD) community has researched application of semantic web 
techniques to integrate and query building information (Pauwels, 2021). Building information is 
represented in a graph format by following designed ontologies, and query techniques, such as 
SPARQL, are used to retrieve information from these graphs to support applications (Pauwels et 
al., 2022). The LBD community has also developed ontologies for the built environment, such as 
the Building Topology Ontology (BOT) for describing building topology (Rasmussen et al., 2020). 
To create instance graphs, they develop converters to compile model information stored in IFC 
files into knowledge graphs, such as IFCtoLBD (Bonduel et al., 2018). However, the converter 
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compiles part of the information for specific applications, ignoring some building data, such as 
geometry, which constrains the scope of applications (Bonduel et al., 2018). 

Another emerging research domain in BIM uses graphs to represent and link 
multidisciplinary design models to support intelligent applications (Sacks et al., 2022; To rma , 
2013). The idea is to leverage the advantages of explicit edges in the graph format – each design 
model is compiled as a subgraph, and subgraphs are linked by across-domain relationships to 
form the metadata. Then, applications are applied to the linked meta-graphs, such as consistency 
maintenance, which propagates changes from one discipline graph to another, and enhancing 
interoperability by representing diverse design data in a uniform graph format (Wang et al., 
2023a, 2023b).The initial CBIM prototype illustrated the feasibility of adopting a graph-based 
approach to support multidisciplinary intelligent applications (Wang et al., 2023b). However, this 
emerging domain requires extensive research on developing automatic methods to instantiate 
across-domain relationships to link multidisciplinary subgraphs. The potential solution is to 
investigate the graph representation of design information and the development of effective 
algorithms for the BIM graph linking scenarios. 

3 Graph representation of BIM models for storage and learning 
The aim of this paper is not to fully answer the two questions proposed. Instead, we explore 

the use of graphs to represent different types of design information serving machine learning, 
aiming to contribute some understanding of the first question about the data representation of 
BIM. We do not touch on the second question related to learning techniques.  

We utilize two types of graphs: knowledge graphs for storing data and property graphs for 
computation, as shown in Figure 2. A BIM model has various types of information, including 
geometry, object attributes, object relationships, and so on. The knowledge graph is adopted to 
integrate and store these heterogeneous design data, where nodes stand for objects, and edges 
are object relationships. Additionally, some data that are not suitable to be represented as graphs, 
such as geometries, are stored in default geometry format files, and the file addresses are inserted 
in corresponding nodes as attribute values (Ouyang et al., 2023). Notably, the format and 
vocabulary in the knowledge graph should follow open schemas and ontologies to ensure 
interoperability. The main goals of the knowledge graph are to integrate various types of BIM 
data and store the as-is design information. 

For computation, property graphs are used. The property graph can be generated from the 
knowledge graph by processing multiple types of design data as embeddings. For example, the 
object relationships are processed as features for edges and nodes, and the attributes are 
extracted as vectors for nodes. For data not in a graph format, other processing techniques are 
needed to leverage these data into property graphs. For instance, we compute 24 different 
geometry features and concatenate them into node attribute vectors as a way of embedding 
geometry into graphs. Property graphs are designed for computation without the restrictions of 
formats. Instead, the construction of property graphs could be different for specific scenarios. 

 
Figure 2. Using graphs to represent and store building information, and to leverage learning. 

4 Case study 

4.1 Apartment graph data construction 
The architectural object classification task is selected as a case study. We collected 32 

apartment unit designs, stored in IFC files. We constructed a parser using Python and  
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IfcOpenShell (2024) to retrieve the information contained in IFC files. The extracted raw 
information includes all building objects, object geometries if available, object attributes, and 
some relationships. The object geometries are processed and stored in OBJ file format for each 
object.  

For relationships, we utilized IfcRelAggregates to retrieve the containing relationship among 
the project, site, building, and storey. We used IfcRelContainedInSpatialStructure to parse building 
elements contained in the corresponding storey. We adopted IfcOpenElement to retrieve the 
hosting objects (linked by IfcRelVoidsElement) and the hosted objects (linked by 
IfcRelFillsElement). Additionally, we computed the distance between two exact geometries and 
generated the contact relationship if the distance is zero. In short, there are three types of 
relationships adopted in the knowledge graphs: 1) containing, 2) hosting/hostedby, and 3) 
contact. The first two are retrieved from IFC files and the last one is generated by geometry 
computation, as some design software may not generate the contact semantics. 
 
Table 1. Designed features. 

No Name Category No Name Category 
1 Num of edges Building relationship 17  Max y Geometry 
2 Num of edge types Building relationship 18  Max z Geometry 
3 Betweenness centrality Graph topology 19  Min x Geometry 
4 Closeness centrality Graph topology 20  Min y Geometry 
5 Clustering coefficient Graph topology 21  Min z Geometry 
6 Avg shortest path length Graph topology 22  Num_face Geometry 
7 Subgraph centrality Graph topology 23  Max_face Geometry 
8 Area Geometry 24  Num_face_adjacency Geometry 
9 Volume Geometry 25  Num_facet Geometry 
10 Bbx length Geometry 26  Num_unique_edges Geometry 
11 Bbx width Geometry 27  Len_unique_edges Geometry 
12  Bbx height Geometry 28  Num_vertices Geometry 
13  Bbx_height/bbx_length Geometry 29  Average_degree Geometry 
14  Bbx_height/bbx_width Geometry 30  Euler characteristic Geometry 
15  Bbx_width/bbx_length Geometry 31  Genus Geometry 

16  Max x Geometry 32 
 Num of connected 
components Geometry 

All parsed and enriched building semantics are compiled as a knowledge graph, where the 
terminology of object types and attributes follows the IFC schema, and the object relationships 
follow BOT. The geometry file address is stored under the corresponding nodes. An example of 
knowledge graph representation can be found in Fig 8 of Wang et al. (2024). 

For data statistics, eight architectural object types are considered: site (32 instances), 
building (32), storey (65), door (295), slab (409), wall (1086), window (429), and railing (17). 
Feature engineering was adopted, as shown in Table 1. The first seven features are graph-based, 
where the first two describe the building topology, and the other five are computed based on 
graph algorithms related to the graph topology. Additionally, we compute 25 geometry features 
by following Utkucu et al. (2024). All the generated features are organized as tables for traditional 
machine learning algorithms, or inserted as node features in graphs for GNN. 

4.2 Training and evaluation 
We selected two algorithms for training and testing: one GNN algorithm and one traditional 

machine learning algorithm. As this experiment only considers node features without edge 
features, GraphSAGE was selected (Wang et al., 2021). Additionally, the random forest (RF) 
algorithm was selected for processing the tabular data, because it has demonstrated good 
performance for BIM object classification (Utkucu et al., 2024).  
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To ensure a fair comparison, we randomly divided 70% of the models to form the training 
dataset, and the remaining 30% of the models for the testing dataset. Accuracy and the F1 score 
were selected to evaluate performance. Accuracy is the ratio of correctly predicted instances to 
the total instances in the dataset. It provides an intuitive way to reveal performance as it does not 
consider class imbalances. Additionally, the F1 score is introduced to evaluate the ability of the 
algorithm on the imbalanced dataset, as it takes into account both false positives and false 
negatives of each class. 

4.3 Results 
This experiment aims to illustrate the performance of different algorithms with incremental 

features, specifically focusing on the trend of adding graph-based features. Two algorithms were 
used: GraphSAGE from GNNs and RF from traditional machine learning, with results presented in 
Table 2. 
 
Table 2. Results of leveraging different features for machine learning. 

No. Format Feature category* Dimension Algorithm F1 Accuracy  
0 Graph - 0 GraphSAGE 0.49 43.7% 
1 Graph Building 2 GraphSAGE 0.74 81.1% 
2 Graph Topology 5 GraphSAGE 0.70 76.0% 
3 Graph Geometry 25 GraphSAGE 0.66 91.7% 
4 Graph Building + Geometry 27 GraphSAGE 0.67 92.8% 
5 Graph Building + Topology 7 GraphSAGE 0.81 84.8% 
6 Graph Building + Topology + Geometry 32 GraphSAGE 0.95 95.3% 

7 Tabular Building 2 RF** 0.46 75.3% 
8 Tabular Topology 5 RF 0.62 63.6% 
9 Tabular Geometry 25 RF 0.67 93.2% 
10 Tabular Building + Geometry 27 RF 0.81 94.5% 
11 Tabular Building + Topology 7 RF 0.74 81.5% 
12 Tabular Building + Topology + Geometry 32 RF 0.95 96.3% 
* ‘Building’ refers to the two building relationship features. ‘Topology’ denotes the five graph topology 
features. Notably, the two feature categories are computed on graphs. ** RF: Random Forest. 

 
As can be seen in Table 2, as the number of feature categories used increases, the performance 

of the algorithms improves significantly, and both algorithms achieve the most accurate and 
robust performance when using all features. For instance, the F1 score of GraphSAGE improves 
from 0.66 when using only a single feature category to 0.95 when combining all three feature 
categories (No. 6). Similarly, for RF, the accuracy improves by more than 30%, from 63.6% to 
96.3%, and its F1 score reaches 0.95 when adopting all three feature categories (No. 12) 

Both building and topology features are computed based on graphs. Comparing the adoption 
of graph-based features (No. 5 in GraphSAGE) with geometry features (No. 3), the graph-based 
features yield a higher F1 score (0.81 vs. 0.66), indicating a more robust prediction ability. RF 
shows a similar pattern, with lower accuracy but higher F1 scores when using graph-based 
features compared to only using geometry features. 

Moreover, even without any designed features, GraphSAGE achieves an F1 score of 0.49 and 
an accuracy of 43.7% (No. 0), which is higher than the F1 score achieved by RF using two-
dimensional building features (No. 7). This result reveals that a graph itself contains topology 
information that GNNs can leverage for prediction. For BIM graphs, the links between nodes 
represent practical meanings, which validates the advantage of the graph data structure in 
preserving BIM object relationships and contributing to algorithm performance. 
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5 Discussion 

5.1 Advantages and disadvantages  
The proposed graph-based approach offers several notable advantages and contributions. It 

illustrates the use of different types of graphs for various purposes. Knowledge graphs following 
ontologies are suitable as an as-is data repository for storage, while property graphs with more 
flexible formats can be used for computation. By leveraging multiple feature categories, the 
experiment demonstrates that algorithm performance significantly improves, especially with 
graph-based features. Furthermore, the experiment highlights that graph structures can 
effectively preserve building relationships and contribute to performance even without pre-
defined features.  

However, the approach also has several disadvantages. The process of constructing property 
graphs results in information loss. For example, all parsed IFC attributes were abandoned due to 
their diverse and complex language descriptions, which are challenging to represent in a uniform 
way for machine learning. Additionally, the geometry features used were artificially designed, 
whereas an ideal situation would allow machines to learn and generate geometry-based feature 
embedding directly. The experiment also considered a limited number of object classes, which do 
not represent the diversity of real BIM models. These limitations suggest a need for a more 
generic approach to graph representation learning, emphasizing rich, comprehensive, and full-
scope data integration to address the highlighted challenges. 

5.2 Challenges of graph representation learning for BIM 
 The experiments with graph representation learning for BIM aim to explore methods that 

leverage multi-modal design data, enabling machines to understand designs and support diverse 
BIM scenario tasks. In other words, this is part of an effort to seek a generic approach to process 
various types of design data to a machine-readable representation suitable for learning tasks. 

The core of graph representation learning is to generate embeddings, by processing human-
friendly design data into high-dimensional vectors suitable for computers. Different types of data 
may require different types of techniques for processing. For object attributes in natural language 
format, LLMs can leverage them to generate embeddings, effectively handling diverse and 
complex attribute descriptions. Additionally, learning algorithms can be used to process object 
geometries and generate embeddings directly. Incorporating vision features into the graph 
representation learning process can provide richer data context. This can be achievable by 
generating object images using virtual cameras and converting these images into feature 
embeddings through deep learning. Moreover, edge features representing relationships should 
also be considered for embedding.  

Beyond generation, integrating these different embeddings poses another challenge. A 
straightforward method could involve concatenating all embeddings together. Alternatively, 
learning algorithms could be used to process these diverse embeddings and output a unified 
representation. These approaches need to be validated through experiments to determine their 
effectiveness. However, it appears likely that new AI algorithms will be needed for processing the 
new BIM data representations. 

5.3 Towards general AI systems for BIM 
The two questions we posed are driven by an ambitious goal of developing a general AI 

system that can understand BIM, much like LLMs understand human language. This level of 
intelligence would provide a versatile solution for many existing BIM-related tasks and open new 
possibilities, just as LLMs have enabled a wide array of NLP applications.  

To achieve this ultimate goal, the first fundamental task is to develop effective and efficient 
embedding methods that can integrate and project complex, diverse, and heterogeneous BIM data 
into a vector space where algorithms can operate. This contains developing learning-suitable 
representations for BIM data, as explained in Section 5.2.  

Next, it is crucial to develop self-supervised learning techniques compatible with BIM. The 
success of current LLMs is mainly due to pre-training with vast amounts of data in an efficient, 
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self-supervised manner, where data labeling for supervised learning becomes impractical 
(Radford et al., 2018). The key to self-supervised learning is to obtain learning signals from the 
raw input data. LLMs obtain these signals by predicting the next token in a sequence from vast 
amounts of text data, thus learning the structure and semantics of the language (Radford et al., 
2018). For BIM data, self-supervised learning signals could be derived from the inherent semantic 
information within the BIM models. Additionally, domain-specific pretext tasks can be developed, 
such as predicting missing components or reconstructing parts of the BIM from partial 
information.  

Building on effective embedding and self-supervised learning techniques, it becomes 
technically feasible to develop large models, i.e., general AI systems for BIM. This may involve 
self-supervised pre-training with a vast number of BIM models, followed by supervised fine-
tuning to align the pre-trained model's behavior with the specific needs of target users, such as 
designers and engineers. 

Lastly, a general AI system for BIM may need to be multimodal with the ability of 
understanding human language. Human language is the most natural way for people to 
communicate with computer systems. An alternative solution could involve developing 
converters to translate user instructions from human language into BIM representation formats 
accepted by the AI system. However, experience from NLP and computer vision indicates that 
naturally multimodal models generally perform better in terms of accuracy, cost, and inference 
speed (OpenAI, 2024).  

5.4 Re-visiting the key questions 
Back to the two questions posed at the beginning: 1) What formats are most suitable for BIM 

data representation? 2) What are the corresponding learning techniques needed for BIM? Note 
that we make no claim that graphs are the best data format, but have illustrated in this work that 
graphs are a useful approach as they can capture complex and diverse BIM data to support 
learning. 

What is next? In section 5.2, we further discussed the exploration of processing the various 
types of BIM data as embeddings to support machine learning. This could be the potential answer 
to the first question. In section 5.3, we illustrate our latest understanding of designing suitable 
techniques and roadmaps towards general AI systems for BIM, aiming to fully resolve the two 
questions. We understand that the two questions could be interrelated, as formulating the data 
representation requires the development of new appropriate learning techniques. Lastly, we 
believe that further exploration of these questions, even if not fully achieving the ultimate goal, 
will provide deeper insights into the best practices for integrating machine learning with BIM. 

6 Conclusion 
BIM models contain diverse data. Current BIM machine learning studies typically adopt an 

inverse approach to process part of design data into a specific format to launch a pre-selected 
algorithm. We argue that new data representations and learning techniques are necessary to fully 
utilize the richness and scope of information contained in BIM models for machine learning 
applications. Therefore, we raised the two fundamental questions stated in the introduction: 1) 
What formats are most suitable for BIM data representation? 2) What are the 
corresponding learning techniques needed for BIM?  

As an exploratory study, we proposed a graph-based approach for representing building 
information and developed one experiment to illustrate the effectiveness of leveraging various 
design data. In the BIM object classification experiment, both machine learning and GNN 
algorithms performed more accurately and robustly as the richness of features was increased. 
Specifically, the two algorithms achieve accuracy and F1 at 0.95, after considering graph-based 
and geometry features. In contrast, if we remove all the designed features, GraphSAGE, the GNN 
algorithm, can leverage only the graph structure and achieve an F1 score of 0.49 in an eight-class 
classification task. This further validates that the graph data structure preserves semantics and 
can contribute to learning. 
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This work only scratches the surface of the first question about the data representation of 
BIM. Future research will involve exploring BIM graph representation learning by integrating and 
processing multi-modal design data into high-dimensional embeddings to support various 
downstream learning tasks. Self-supervised learning techniques will be tested on large BIM graph 
datasets with interactive training techniques towards a general AI system for BIM. We believe 
that raising these questions will foster avenues for both academia and industry to explore new 
paths of application of AI to BIM, eventually enabling a more intelligent future for building design. 
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