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Abstract

Smart buildings utilize real-time and historical sensor
data to deploy data-driven application. Unlike Building
Management Systems, where the data formats are some-
what aligned with industry standards, IoT is more flexi-
ble and less standardized. When multiple IoT solutions
are present, they often use different methods to format the
messages and represent metadata, hindering the effective
usage of IoT data in smart building applications. This
study proposes a framework and its software implemen-
tation for acquiring and managing real-time data using a
microservices-based system architecture. To create a stan-
dardized semantic information model, the proposed frame-
work employs smart building ontologies.

Introduction

Internet of Things (IoT) has rapidly evolved and is domi-
nant in many smart buildings where devices, sensors, ac-
tuators and smart building applications are connected via
the Internet. These smart building applications typically
enable smart Indoor Environmental Quality (IEQ) moni-
toring, space booking and maintenance, car parking, auto-
mated lighting, implementation of Demand Side Manage-
ment (DSM) strategies, etc. The IoT ecosystem is quite di-
verse, with a large variety of hardware, protocols, middle-
ware, interfaces and platforms, making heterogeneity an
inherent characteristic of IoT. Most buildings utilise mul-
tiple IoT platforms for different use cases, e.g., one plat-
form for Indoor Air Quality (IAQ) monitoring, another
one for space utilisation, etc. Every IoT platform pro-
vides different ways to connect and receive the data, which
makes the already heterogeneous smart building ecosys-
tems even more complex in terms of finding, querying, in-
tegrating and utilising IoT data for both humans and ma-
chines. Hence, acquiring, managing and accessing the
highly heterogeneous data efficiently is essential for the
development of smart buildings applications that depend
on and utilise data from various domains.

Many existing approaches rely on historical data extracted
from a data platform or Building Management System
(BMS) that is fed into a data analytical pipeline (Teizer
et al., 2017; Chen et al., 2021; Martin-Garin et al., 2020;
Bashir and Gill, 2016). Furthermore, most approaches
utilising time series data result in standalone applications,
which means that they have little to no interactions with
other systems in buildings. Recently, the more widespread
use of IoT and cloud computing in buildings has led to
an abundance of sensor data available in real-time. In ad-
dition, the use of web services makes it possible to inte-
grate 10T data with other systems, so they could utilise the
knowledge across multiple domains (such as BMS, Build-
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ing Information Models (BIM), Energy Management Sys-
tems (EMS)) for decision making. However, the hetero-
geneity of the data models of the different IoT systems, and
the heterogeneity of the data models of other systems such
as BMS, BIM and EMS, makes this integration extremely
challenging and the data cannot be seamlessly shared be-
tween different systems and across domains.

Therefore, this study proposes a framework encompass-
ing 1) a collection of data acquisition modules (data
providers), 2) a module for unifying schemata and seman-
tics (message processor), 3) Publish/Subscribe (Pub/Sub)
and real-time streaming service, 4) an ontology-based in-
formation model and 5) an Application Programming In-
terface (API). The paper also presents a proof-of-concept,
where a web application has been developed to demon-
strate the functionality and the potential of the proposed
framework. The aim is to provide an opportunity for client
applications to access real-time data without having to
write individual software applications to access the dif-
ferent types of data from different sources. The proposed
framework is extensible, i.e., more IoT devices can be eas-
ily added at any given point in time.

The remainder of this paper is organised as follows. Sec-
tion 2 highlights some fundamental aspects and common
IoT applications in buildings, as well as the usage of real-
time sensor data in these applications. Section 3 outlines
the main challenges that this study addresses, namely, 1)
the heterogeneity in acquiring data from multiple IoT plat-
forms and 2) the differences in data models and seman-
tics in different platforms. Section 4 describes the five
components of the proposed framework and its system ar-
chitecture. Section 5 presents the implementation of the
framework and a proof-of-concept web application that
consumes the data from multiple IoT platforms. Section 6
concludes the paper and gives directions for future work.

Background

Real-time data updates continuously with new data points
and results in continuous data streams that provide an in-
dication of the behaviour and performance of the built
environment. Building operation has complex dynamics
that depend on various influences such as changes in ex-
ternal conditions, occupant behaviour, system operation,
etc. Understanding these dynamics and utilising the ex-
isting data can positively influence and inform decision-
making related to architectural design, HVAC system de-
sign, control strategies, etc. Time series data from sensors
and sensor networks in buildings is often used in dash-
boards, charts and reports for visualisation of information
related to energy consumption, monitoring of [EQ param-
eters, predictive maintenance, Model Predictive Control
(MPC), prediction of building occupancy and modelling



of occupant behaviour, etc. Also, sensor data is used to
detect abnormal conditions (e.g., bad air quality, malfunc-
tioning devices, etc.) (Chen et al., 2021; Donkers et al.,
2021). This leads to initiation of predefined tasks such as
sensing alerts to facility managers or maintenance contrac-
tors.

Energy consumption data is often used in data-driven mod-
els to forecast energy demand and aid energy savings in in-
dividual buildings (Gémez-Omella et al., 2021; Leprince
and Zeiler, 2020). It is also done for a group of buildings
(i.e., to cluster and benchmark buildings by building type).
They are further used to develop strategies to flatten peak
demand in buildings for DSM (Cox et al., 2020; Walker
et al., 2020). Another application is analysing energy us-
age data to identify daily, weekly and seasonal patterns in
energy consumption (Miller et al., 2015).

Fault Detection and Diagnosis (FDD) is another applica-
tion domain focusing on detecting and diagnosing faults
and anomalous behaviour in HVAC systems (Mirnaghi and
Haghighat, 2020). FDD approaches aim to identify and
prevent faults that could lead to, for instance, high energy
consumption. As such, FDD methods are mostly data-
driven and typically rely on historical time series datasets.
Most of the required data (supply and return tempera-
tures, humidity, air pressure, flow, gas, electricity meter
data, CO, concentration, signals from actuators (opening/
closing), positioning of valves, etc.) is collected from
the BMS, where occupant interactions (door and window
opening, light level adjustment, temperature adjustment)
and occupant thermal comfort data are usually collected
from IoT devices, smartwatches and smartphones. Besides
FDD, such data can contribute to understanding occupant
behaviour, improving building operation and understand-
ing the patterns in energy use.

Measured performance data from buildings is also used to
improve the accuracy of simulation model input and out-
put (Mirnaghi and Haghighat, 2020). In this regard, en-
ergy consumption data can be used for autonomous tun-
ing of building energy models and continuous model cali-
bration. Other applications include using real-time sensor
data in combination with BIM, Virtual Reality (VR) and
Augmented Reality (AR) in evacuation scenarios (Chen
et al., 2021); for visualization of Indoor Air Quality (IAQ)
with the help of AR (Hadj Sassi and Chaari Fourati, 2020),
etc. Such applications aim to improve the health and safety
in buildings. A large number of the studies focusing on
IoT smart building applications rely either on a custom
micro-controller based sensor network installed specifi-
cally for the purpose (Hadj Sassi and Chaari Fourati, 2020;
Dave et al., 2018; Kang et al., 2018; Martin-Garin et al.,
2020; Zahid et al., 2021; Gao et al., 2021), or on collecting
data from one particular platform only (Riaz et al., 2014;
Hosamo et al., 2022; Tan et al., 2022), or on virtual sensors
that generate homogeneous data (Bashir and Gill, 2016),
thereby avoiding the necessity to deal with a large number
of heterogeneous platforms. Integrating data from hetero-
geneous platforms across domains is still in its infancy.
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In this regard, semantic technologies have shown signifi-
cant potential for integrating different domains and hetero-
geneous data in smart buildings. When it comes to IoT,
ontologies such as SSN/SOSA! (Haller et al., 2018) di-
rectly address the standardization of vocabulary of sensors,
observations, and their relationships. Other ontologies
such Brick? (Balaji et al., 2018), RealEstateCore3 (Ham-
mar et al., 2019) and Haystack# also share metadata rep-
resentations related to IoT. Since IoT data is related to the
building and its components as well (devices and spaces),
it is possible to integrate these types of data. Iol data
can be linked to BIM related concepts using Linked Build-
ing Data (LBD) ontologies’. However, the existing studies
that use ontologies for integrating the above domains (Dey
etal., 2015; Mavrokapnidis et al., 2021; Kucera and Pitner,
2018; Park et al., 2022) have so far not used the semantic
graphs to automate the discovery of IoT sensors and con-
necting to their real-time data streams.

Heterogeneity in IoT platforms and data mod-
els

IoT devices in buildings usually communicate to differ-
ent IoT platforms (such as Tuya®, Azure IoT Hub’, open-
HABS). Also, some IoT devices can publish their sensor
data to a local message broker, and the data can be di-
rectly accessed by accessing the message broker locally.
Both scenarios are shown in Fig.1. Communication of
sensor data and control commands is achieved either by
using lightweight real-time messaging protocols like Mes-
sage Queuing Telemetry Transport (MQTT), Constrained
Application Protocol (CoAP) or Representational State
Transfer (REST) over Hypertext Transfer Protocol (HTTP)
(Fig. 1). Different IoT devices are usually produced by dif-
ferent vendors and, therefore, even within the same build-
ing, sensor data is often contained within different plat-
forms (Fig. 1).

It is common to subscribe to a particular IoT platform’s
RESTful API to get access to the sensor data. For
example, platform 1 needs a GET request with the query
{{url}}/v1.0/devices/{{device_id}}/status
and platform 2 needs a GET request with
{{url}}/api/tk/query_now?token={{tokenl}}.
These two examples clearly show how the methods
to access the data are different for the different APIs,
because there is no common standard API specification in
the IoT industry. Therefore, when a new smart building
application needs to access data from multiple platforms,
the application developer needs to implement different
methods to access the data for each new application.

An example message received for an IAQ sensor node is

thttps://www.w3.org/TR/vocab-ssn/
2https://brickschema.org/ontology/
3https://www.realestatecore.io/
4https://project-haystack.org/doc/lib-phloT/index
Shttps://w3c-1bd-cg.github.io/lbd/
Shttps://www.tuya.com/
7https://azure.microsoft.com/en-us/products/iot-hub/
8https://www.openhab.org/
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Figure 1: Multiple 10T platforms

shown in Listing 1.

{ "status":"ok",
"entries":
[{"area":"" )
"name":"Airbox.Setup.FE",
"fw_ver":"vi.16",
"lat":51.4477128,
"lon":5.4946999,
"model":"AI-2004WP",
"odm":"acelink.edimax",
"h":46.8, "hcho":0,
"pm1":0,"pm10":6,
"pm25":6,
"t":21.95, "tvoc":0.05,
"co":0,"co2":588,
"type":"indoor-airbox",
"time":"2022-09-29T17:14:29+08:00",
"status":"online","adf_status":0}],
"exclusion":null,"total":1
}

Listing 1: IAQ sensor message payload

Listing 1 shows that message payload contains the sen-
sor reading and additional metadata. In the payload, un-
ambiguous keys (such as ‘co,’ and ‘tvoc’) and ambiguous
keys (such as ‘h’ and ‘t’) are both used. These keys could
also be different for another IoT platform. Listing 2 shows
the message body received from another IoT platform for
a smart plug data. In here, ‘add-ele’ refers to the energy
consumption in kWh, ‘cur_current’ refers to the electric
current in mA and so on.

{
"result": [
{"code": "switch_1", "value": false },
{"code": "countdown_1", "value": 0 },
{"code": "add_ele","value": 19 },
{"code": "cur_current", "value": 230 },
{"code": "cur_power", "value": 417 },
{"code": "cur_voltage", "value": 2029 }
1,
"success": true,
"t": 1664442846776,
"tid": "11ca62a63fd711edb87ecal0f69d78a9e"
}

Listing 2: Smart plug message payload

These examples show that the data schema and semantics
are customised for each platform and there isn’t a standard
representation. However, for a smart building application
developer, having to deal with different schemata and se-
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mantics for each application is a barrier for integrating this
data.

This study proposes a standard framework to harmonise
the data originating from various IoT devices and plat-
forms. The framework not only supports harmonisation
of IoT data itself, but also enables this IoT data to be in-
tegrated with other data sources using a semantic model
based on existing smart building ontologies. The proof-of-
concept application presented in this paper demonstrates
how IoT data originating from multiple sources are uni-
fied and integrated with a BIM model of a building. This
integration brings up the possibility for various interactive
applications such as Digital Twins (Tan et al., 2022), mon-
itoring the building in real-time and providing visual an-
alytics (Dave et al., 2018), BIM based predictive mainte-
nance, fire safety, FDD in HVAC systems (Hosamo et al.,
2022), and so on.

Proposed Framework and System Architec-
ture

The proposed framework comprises five components, each
of which is responsible for a set of functionalities. The five
components are 1) a collection of data acquisition modules
(data providers), 2) a module for unifying schemata and
semantics (message processor), 3) Pub/Sub and real-time
streaming service (based on MQTT and WebSocket), 4)
an ontology based information model and 5) an API. Fig-
ure 2 illustrates these five components. This architecture is
mainly focused on providing real-time sensor data for web
applications and, therefore, relies on WebSocket, which
is a protocol that enables bi-directional data exchange be-
tween browser and server via a persistent connection. That
makes it particularly suitable for services that require con-
tinuous data exchange.

Data providers.

The proposed framework relies on a collection of data
providers, each of which is a microservice running inde-
pendently. This microservice-based approach provides the
opportunity to implement data connectors for different IoT
devices separately according to their different protocols
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Figure 2: Proposed framework for 10T data management

and data models. Since they are independent, they can be
added or removed without affecting other data providers.
The main function of this data provider is to acquire IoT
sensor data from different platforms and publish them to
the Pub/Sub message broker. Each uniquely identifiable
IoT sensor node publishes its data to a unique topic. As
shown in Fig. 3, three types of IoT sensor nodes have been
used in this study.

.

L 4

Figure 3: IoT Nodes (Indoor Air Quality sensor, smart plug and
custom sensor node

IoT Node 1: An Indoor Air Quality sensor from Edi-
max measuring CO,, temperature, humidity, CO, TVOC,
PM2.5, PM10, and HCHO. Sensor data can be accessed
via their API hourly, daily, weekly, or in real-time.

IoT Node 2: A smart socket from BlitzWolf measuring
voltage, current, and power. Sensor data can be accessed
via their API.

IoT Node 3: A custom built ESP32-based sensor node
measuring temperature, humidity, CO,, TVOC, illumina-
tion and battery voltage.

Each node needs a microservice to publish the received
sensor data (from an API or directly from the sensors)
to the local Pub/Sub message broker. After the proposed
framework is implemented, adding this microservice is the
only change that is required when introducing a new IoT
device/platform. Then the data will be automatically fed
into the forthcoming services.

Pub/Sub message broker.

Pub/Sub is a messaging pattern where any message pub-
lished to a topic by a sender is immediately received by
all of the receivers who have subscribed to that particu-
lar topic. The sender publishes the messages not for a
particular receiver, but for a topic. The connection be-
tween the publisher and the subscriber is handled by the
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broker. Eclipse Mosquitto® is used as the message broker
in this study. It is based on the MQTT protocol which is
a lightweight, publish-subscribe, machine to machine net-
work protocol.

Message processor.

The broker receives messages in the original format that
they are published in by each IoT node. Therefore, the re-
ceived messages are in various formats (e.g., nested, flat
map). Therefore, this service converts the messages into a
uniform format. At this stage, all messages are rearranged
into non-nested key:value pairs. A sample of a processed
message is shown in Listing 3. These processed messages
are then published to a message broker again. Redis Pub-
/Sub broker!© is used for this process. Since the proposed
framework focuses on managing data for web based ap-
plications, socket.io!l,a WebSocket library, is used. This
library already uses the Redis Pub/Sub broker. The top-
ics in the MQTT broker and the ‘Room’ in the socket.io
implementation are analogous, i.e., socket.io’s ‘Room’ is
analogous to MQTT broker’s topic and is used to connect
to a particular MQTT topic. Therefore, joining a socket.io
Room means subscribing to the real-time data stream of a
particular IoT sensor node (note that each IoT node pub-
lishes their messages into a unique topic).

{
topic:
keys:

'esp32/083AF266DD84/pub’,
[ 'co2', 'tvoc',

'te', 'rh', 'lux', 'vbat' ],
values: [ 872, 71, 27.3233,
56.39648, 586.6666, 4.1569 1,
timestamp: 1662298546131

Listing 3: Messages processed to uniform format

Information model.

In this study, the information model is semantically de-
scribed using the SSN/SOSA, Brick and LBD ontologies
for making it possible to access, integrate and extract in-
formation across different data providers (IoT and non-IoT
such as BIM, BAS, etc.). A sample of the information
model adopted by the proposed framework is shown in

https://mosquitto.org/
10https://redis.io/docs/manual/pubsub/
Uhttps://socket.io/



Listing 4. The same model is visually represented in Fig.
4. The full model is available in this repository!2.
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Figure 4: Sample of the visual semantic representation of the
building and 10T sensor nodes

This semantic model makes use of Brick’s time series
identification. The MQTT topics are included using the
Brick ontology’s brick:hastimeseriesld relationship, be-
cause each sensor node publishes its sensor data into a
unique topic. This way, real-time data from an IoT node
located in a particular space in a building can be uniquely
identified using the semantic information model.

In an 10T infrastructure, it is much more common to have
a sensor node with multiple sensors attached to the same
sensor node. For example, the IAQ sensor node hosts eight
sensors. In the Brick ontology, the brick:hasPoint rela-
tionship can be used to uniquely identify these eight sen-
sors. In the SSN ontology, the ssn:hosts relationship can
be used to describe a node’s individual sensors. The abil-
ity to uniquely identify these sensors is also important to
get the identifier to access real-time/ historical data from a
particular sensor in an IoT node. This is shown in the in-
formation model in Listing 4. The brick:hasLocation and
ssn:deployedOnPlatform relationships can be used to lo-
cate the sensor in a particular room or a wall that belongs
to a particular room.

inst:08BEACOA1CO4_Edimax a brick:Sensor ;
rdfs:label "EDIMAX air quality sensor';
rdfs:seeAlso "https://www.edimax.com/
edimax/mw/cufiles/files
/download/datasheet/
AirBox_AI-1001W_V2_Datasheet_English.pdf" ;
brick:hasPoint
inst :08BEACOA1C04_Edimax_co2,
inst :08BEACOA1C04_Edimax_co,
inst :08BEACOA1C04_Edimax_h,
inst :08BEACOA1C04_Edimax_pm25,
inst :08BEACOA1C04_Edimax_pmi0,
inst :08BEACOA1CO4_Edimax_tvoc,
inst:08BEACOA1C04_Edimax_hcho,
inst:08BEACOA1CO4_Edimax_t ;
brick:hasLocation inst:space_892 ;
brick:timeseries [
brick:hasTimeseriesId "edimax/08BEACOA1C04/pub"
1.
inst :08BEACOA1CO04_Edimax_co2
a brick:C02_sensor .
inst :08BEACOA1C04_Edimax_co2_0Obs a sosa:0bservation ;
rdfs:label "CO2" ;

rdfs:comment "The realtime observation key is CO2"

sosa:observedProperty inst:Carbon_Dioxide ;

2https://github.com/ISBE-TUe/atlas-building-graph
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sosa:madeBySensor inst:08BEACOA1C04_Edimax_co2
sosa:hasResult [
a qudt:QuantityValue ;

qudt:unit unit:ppm ]

Listing 4: Sample of the semantic representation of the building
and loT sensor nodes

Data storage.

Many applications need to access historical sensor data. There-
fore, the processed messages can be recorded in a suitable data
storage such a timeseries database, or can be archived in a long
term archival such as blob storage for later usage as shown in Fig.
2. When recording the real-time data, a suitable database schema
should be used including the MQTT topic and each of the keys
in the rearranged messages.

Application Programming Interface.

When a client requests data, a WebSocket connection is made
between the API server and the client (in this case, a web appli-
cation) and the last message of the requested sensor is retrieved
from the Redis database. The purpose of providing the last mes-
sage is to avoid waiting until the next message to see the sensor
data. This is achieved by using the socket.io/redis-adapter and
Redis database. The redis-adapter relies on the Redis Pub/Sub
mechanism. Then, the real-time sensor data is communicated
via the WebSocket connection. The API also provides the end
point to execute SPARQL Protocol and RDF Query Language
(SPARQL)"™ queries on the information model of the building
and sensors, as described in the Results section.

Results
Framework implementation

Software implementation of the proposed framework is done us-
ing microservices. Three IoT nodes were selected for the imple-
mentation. Two nodes communicate to their own IoT platforms,
and the third IoT node publishes its messages to the Mosquitto
message broker directly. First, three data provider microservices
(Node.js applications) are implemented reflecting the three de-
vice categories - the smart socket, air quality sensor and ESP32
sensor node (Bullet 1 Fig. 5).

Second, the three data providers publish their sensor readings
into Mosquito message broker (Bullet 2 Fig. 5). Third, the mes-
sage processor service (another Node.js application) subscribe to
all the messages, rearrange them and publish to the Redis Pub-
/Sub broker (Bullet 3 Fig. 5). At this stage, it is also possi-
ble to write the sensor reading to a time series database or an
archive. The fourth component is the semantic graph stored in
the GrapdDB database (Bullet 4 Fig. 5). The fifth component in
the API (Nest.js backend) which handles the requests from client
applications, authentication and authorisation (Bullet 5 Fig. 5).
The next section describes the implementation of the proof-of-
concept web application.

Proof-of-concept: accessing real-time sensor data us-
ing a web application

A web application (example client application as in Fig. 5) is

implemented to demonstrate how to utilise the proposed frame-

work to develop smart building applications which require access

to sensor data from various platforms. The aim of this web ap-
. plication is to discover the available sensors in a building and
" subscribe to their real-time data (Fig. 6).

Bhttps://www.w3.org/TR/rdf-sparql-query/

H
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Figure 5: Detailed implementation of the frdmework

Discovering the sensors and observations by using their type,
location or any other relationships can be done by executing
SPARQL queries. For example, the query in Listing 5 fetches
the number of sensors and number of sensors with real-time data.
The query in Listing 6 returns the topic that the selected sensor
publishes its data to. This topic is then used to join the relevant
socket.io ‘Room’, which allows to communicate the sensor data
in real-time via the WebSocket. By using formal ontologies for
discovering the sensors, the developer can avoid the complexity
of having to deal with non-standard and ambiguous naming con-
ventions used by different IoT platforms.

SELECT 7Room 7Name (count(?sensor) as 7TotalSensors)
(count (?topic) as ?0nlineSensors) WHERE {

{
<\${selectedFloor['Floor']}> bot:hasSpace 7Room .
?Room props:name 7Name .
?sensor brick:hasLocation 7Room .
}
OPTIONAL {
?sensor brick:timeseries Tarr .
7arr brick:hasTimeseriesId 7topic
}

}
group by ?Room ?Name
order by desc(?0nlineSensors)

Listing 5: Get sensor count

SELECT ?topic WHERE {

<\${selectedSensor.Sensor}> brick:timeseries 7arr .

?arr brick:hasTimeseriesId ?topic

Listing 6: Get real-time sensor data topic

The above queries fetch the relevant data from the GraphDB
triple store. The web app in Fig. 6 is populated with the RDF
query results. Once a sensor is selected from the sensors table
in Fig. 6, its real-time topic is obtained from the semantic graph
via the query in Listing 6, which is then used to subscribe to the
real-time data stream using the socket.io implementation. Fig. 7
shows the real-time data stream of that sensor.

The implementation of this example client application shows that
the developer does not have to deal with the complexity of having
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to understand how to acquire data from each IoT platform and
harmonise them.

Discussion

10T systems in buildings are highly dynamic and heterogeneous.
Therefore, discovering the data and metadata depends highly on
the IoT platform used by a given IoT device. This poses a chal-
lenge when integrating these sensor data with other building data.
Therefore, it is important to provide client applications (web ap-
plications, users, middleware) with a generalised way of access-
ing the data and metadata of IoT devices. Due to the ambiguity in
IoT messages provided by each device, it is required to harmonise
them before providing them to the client applications.

This study addresses the heterogeneity concern by a framework
that harmonises IoT data and metadata. The framework enables
the unification of IoT data, publishing them via a message bro-
ker, and also providing the semantics of IoT devices using an
information model based on well-established existing ontolo-
gies. According to the SSN/SOSA ontology, the sensor read-
ing and the timestamp can also be recorded in the graph under
the sosa:Observation using sosa:hasResult and sosa:resultTime
relationships. The proposed information model avoids record-
ing the timeseries data in the graph because of the high volume
of timeseries data generated by IoT devices, and the graph can
quickly become unmanageable. While some existing studies em-
bed all the timeseries data in the semantic graph (proven to be
inefficient), other studies introduce the connection to timeseries
database using the sensor identifiers (Kucera and Pitner, 2018;
Balaji et al., 2018). Additionally, some studies include the con-
nection string to the actual database in the semantic graph, which
could lead to a security risk. We believe the connection strings
should be kept in the scope of the API, and not in the semantic
graph to avoid such risks. The proposed framework demonstrates
how to embed the links to real-time time series data in the infor-
mation model in an efficient way, and how they can be directly
used to connect to real-time data streams. However, introduc-
ing the ‘topic’ of a real-time data stream is not explicitly imple-
mented in any ontology and this study used the Brick ontology’s
brick:hasTimeseriesld relationship to implement it.

The proof-of-concept client application demonstrates how the
IoT sensor data can be used independent of the IoT platform con-
figurations. The complexity of having to deal with different plat-
forms is significantly reduced by the proposed framework. The
developer can execute a SPARQL query to obtain the necessary
sensor metadata and subscribe to its real-time data stream simply
by communicating with the APL.

Conclusion

The utilization of data-driven applications is essential for improv-
ing the performance of smart buildings, and the abundance of
real-time data provided by IoT devices is crucial for such applica-
tions. However, the flexible message formats and data models in-
herent in IoT technology pose challenges for data integration. To
address this issue, this study proposes a framework for acquiring,
unifying, and semantically enriching IoT data, and demonstrates
its implementation using microservices. This practical approach
to data integration can accelerate the development of data-driven
applications in smart buildings.

Future research should aim to enable bi-directional communi-
cation between IoT devices and data-driven applications, as the
current framework only allows for one-way communication, with
the client application consuming data but not issuing commands
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Figure 6: Web app demonstrating Query results for building, storeys, sensor count, and sensor metadata
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Figure 7: Real-time data stream of selected sensor

to IoT devices. Additionally, future work could improve the se-
mantic information model by leveraging metadata such as sen-
sor operating range (minimum and maximum values), operating
conditions, accuracy, sensitivity, and other relevant factors using
a semantic approach. Future research also need to provide sys-
tematic and scalable methods to semi-automatically generate this
kind of a semantic model in a systematic and scalable manner for
buildings with hundreds if not thousands of IoT sensors.
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