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Abstract 
Recent research has shown the potential of combining Building Information Modeling (BIM) and 
Internet of Things (IoT) to produce accurate digital twins of buildings. Such digital twins rendered 
within 3D visualization environments can enable highly intuitive experiences of human-building 
interactions. Moreover, machine learning techniques can be applied to extract new knowledge 
from building historical data and update the knowledge base of the digital twin. Digital twins 
arrayed with data-driven learning capability will be of high practical value for highly complex 
subjects such as thermal comfort. Accurate predictions of thermal comfort depend on numerous 
variables, and complex equations or simulations that are computationally expensive. This paper 
set out to investigate a data-driven thermal comfort prediction model and its integration within 
the architecture of digital twins created using BIM and IoT systems. For this purpose, a supervised 
learning algorithm was used to train a classification model based on the ASHRAE Global Thermal 
Comfort Database II. A partial implementation of the proposed system was conducted and the 
overall effectiveness of the method proposed for thermal comfort prediction is discussed through 
a comparative analysis of the results. 
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1 Introduction 
Recently, the research community in the domain of building engineering has shown a growing 
interest in digital twin technologies. Most recent research trends have been focusing on how to 
create accurate and live digital twins of buildings by integrating the rich building contextual data 
ȋ͵D geometry, spatial relationships, etc.Ȍ provided through Building Information Modeling ȋBIMȌ, 
and live sensor data streaming from Internet of Things ȋIoTȌ nodes. Moreover, promising results 
have been reported with regards to making digital twins more intuitive and interactive using 
interfaces developed within interactive ͵D rendering engines ȋe.g., WebGLȌ. Moreover, 
application of machine learning algorithms over building’s historical data makes it possible to 
add self-learning capabilities to digital twinning. This offers high value given that making 
predictions about a building’s particular state or behavior in a real-time manner, based on 
experimental methods and simulation-based models is signiϐicantly challenging or inefϐicient 
from a practical standpoint. For example, to make real-time predictions of thermal comfort 
preferences, the data for various variables ȋe.g., space geometry, indoor environmental 
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conditions, clothing insulation, metabolic rate, etc.Ȍ must be monitored and then used in complex 
equations or computationally expensive simulations. 

Thermal comfort in buildings can be viewed as a condition of mind reϐlecting the level of an 
occupant’s satisfaction with the thermal environment ȋANSIȀASHRAE ʹͲͳ͹Ȍ. Various factors 
inϐluence the thermal comfort of occupants inside a building. Such factors include measurable 
environmental conditions ȋe.g., air temperature and relative humidityȌ, as well as personal and 
psychological factors such as, metabolic rate, level of clothing insulation, and space lighting 
ȋGrondzik & Kwok ʹͲͳͷȌ. The timely and accurate prediction of the occupants’ thermal 
preferences not only ensures their thermal comfort within building spaces, but also can lead to 
signiϐicant ϐinancial and energy savings. The latter can be achieved by regulating building 
coolingȀheating strategies according to the preferences of the occupants, which were predicted 
based on the current state of the thermal environment within the building spaces. To this end, 
live data about the variables that have an inϐluence on the occupant’s thermal sensations ȋe.g., 
relative humidity, air velocity, outdoor temperatureȌ can be collected and used in a predictive 
model to anticipate the expected thermal preference of the occupants for the next few minutes. 
However, due to the highly complex nature of the thermal comfort phenomenon and the fact that 
the thermal sensations expressed are directly affected by subjective judgments, effective 
prediction of thermal comfort remains an ongoing question to be addressed in building 
engineering research. 

The present study investigates the application of digital twinning to enable the live 
assessment of thermal comfort conditions in indoor building spaces. This study builds on 
previous work from the authors regarding the potential of BIM-IoT integrated architectures in 
ȋMotamedi & Shahinmoghadam ʹͲʹͳ; Shahinmoghadam & Motamedi ʹͲͳͻȌ. In a more recently 
published work by the authors ȋShahinmoghadam et al., ʹͲʹͳȌ, a virtual reality-rendered digital 
twin for the real-time assessment of thermal comfort was created by integrating BIM and live IoT 
data within a game engine environment. However, the accuracy of the proposed system will 
decrease as the geometry of the space increases in complexity. This is due to the system’s 
dependency on timely and accurate processing of thermal images used to calculate mean radiant 
temperature as a key input variable to the equations used in the PMV-PPD model ȋANSIȀASHRAE 
ʹͲͳ͹Ȍ. To avoid such dependency on the geometric characteristics of building spaces and real-
time thermal image processing results, the study reported here investigates the effectiveness of 
a data-driven approach as an alternative to the PMV-PPD model. In particular, methods from 
pattern recognition were applied to develop a thermal comfort prediction model to be included 
within the digital twin architecture proposed in ȋShahinmoghadam et al., ʹͲʹͳȌ. To achieve this, 
an ensemble learning method was used to develop a model capable of predicting the occupants’ 
thermal preferences based on live IoT data and user-deϐined input. The ASHRAE Global Thermal 
Comfort Database II ȋFöldváry Ličina et al ʹ ͲͳͺȌ was used to train, validate, and test the proposed 
model. The rest of the paper elaborates on the related background, proposed methodology, and 
discussion of the obtained results.   

2 Background and related works 

2.1 Thermal comfort prediction 
The thermal comfort models prescribed by current standards such as ȋANSIȀASHRAE ʹͲͳ͹Ȍ and 
ȋISO ͹͹͵Ͳ ʹͲͲͷȌ are based on the mathematical expressions of occupant thermal sensations that 
have been derived from chamber experiments and ϐield study data ȋKim et al ʹͲͳͺȌ. Examples of 
such models are Fanger’s PMV model ȋFanger ͳͻ͹ͲȌ and De Dear & Brager’s adaptive model ȋDe 
Dear & Brager ͳͻͻͺȌ, which are among the most cited models within the existing body of 
knowledge. This being said, Computational Fluid Dynamics ȋCFDȌ simulations are commonly used 
in the design phase of buildings to evaluate thermal comfort conditions ȋChiang, Wang & Huang 
ʹͲͳʹ; Alizadeh & Sadrameli ʹͲͳͺ; Chen, Xin & Liu ʹͲʹͲȌ. Although such approaches can be 
effective during the design stage, during the operation stage of the building’s lifecycle, practical 
issues arise when attempting to monitor thermal comfort conditions in real time. This is due to 
the inherent complexity of the existing models and the high cost of real-time computation for 
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sophisticated simulations. Consequently, in practice, simplistic approaches are most often 
adopted, such as setback settings based on a ϐixed comfort temperature. Such simplistic 
approaches to the regularization of the building’s coolingȀheating operations lead to numerous 
situations in which building occupants feel discomfort and exhibit behaviors that are undesirable 
from an energy preservation perspective, such as, opening windows since they feel coldȀhot 
while the heaterȀcooler is working. Hence, efϐicient prediction models for real-time monitoring 
of thermal comfort have yet to be investigated. 

To address the above-mentioned issues and predict the thermal demands of occupants, 
researchers have been investigating various machine learning methods and developing personal 
comfort models ȋDai et al ʹͲͳ͹; Kim et al ʹͲͳͺ; Luo et al ʹͲʹͲȌ. In these studies, different input 
factors were considered to predict the thermal comfort related parameters. Depending on the 
input factors and the target parameters ȋe.g., thermal sensations, thermal preferences, etc.Ȍ, 
different databases with varying sizes have been developed or re-used. For example, Li et al., 
ȋʹͲͳͺȌ created a dataset of facial infrared thermography to predict thermal comfort based on 
skin temperature data. However, access to the large volume of data in ASHRAE Global Thermal 
Comfort Database II ȋFöldváry Ličina et al ʹͲͳͺȌ has provided an opportunity to more effectively 
investigate the potential of pattern recognition approaches to thermal comfort prediction. Given 
that the mentioned database is recent, the number of reported studies using it is limited. Among 
the recent studies ȋLuo et al ʹ ͲʹͲ; Wang et al ʹ ͲʹͲ; Zhou et al ʹ ͲʹͲȌ, the work of Luo et al., ȋʹͲʹͲȌ 
has received particular attention within the research community. The study investigated nine 
different supervised machine learning algorithms to predict occupant votes for thermal 
sensations and preferences in ͹-point and ͵-point scales, respectively. The best predictions were 
obtained using the Random Forest algorithm with a ͸͸.͵Ψ accuracy for ͵-point thermal 
preference votes. However, their methodology raises two major concerns. First, the number of 
samples used to train and test the models was considerably smaller than the total number of 
samples existing in the original database. The reason for this was the high rate of missing values 
among the database entries. However, by investigating an effective remedial strategy to deal with 
the missing values, larger data sets could be used to train and test the models, which in return, 
could improve the generalization power of the models. Second, considering the imbalanced ratio 
of the samples existing in the original database for different target labels, the accuracy metric that 
was used in the study to evaluate the quality of predictions can be misleading. Alternatively, 
metrics speciϐic to class imbalance problems could be used to more effectively account for class 
imbalance and accurately evaluate the prediction performance of the models.  

2.2 Digital twinning and thermal comfort monitoring 
Previous research has shown that BIM-IoT integrated data can be effectively used to create 
accurate digital twins to monitor the state and behavior of various building components and 
systems ȋMotamedi & Shahinmoghadam ʹͲʹͳȌ. Furthermore, ʹDȀ͵D-rendered interactive 
interfaces developed for such digital twins can deliver rich visualizations and immersive 
experiences of user interactivity, which will be of signiϐicant value to building visual analytics 
applications ȋMotamedi et al ʹͲͳͶȌ. In this light, the potential of using BIM data within game 
engine environments has been under investigation for a wide range of applications such as, 
architectural and engineering design processes ȋKang & Hong ʹͲͳͷȌ, indoor spatial analysis and 
lighting design ȋMotamedi et al ʹͲͳ͹; Natephra et al ʹͲͳ͹Ȍ, and safety planning ȋFeng et al ʹ ͲʹͲȌ.  

In the context of thermal comfort, real-time monitoring of the comfort conditions can be 
achieved by capturing the current state of the thermal comfort variables through a network of 
sensors and using the monitoring data as input for a prediction model. Moreover, by linking live 
thermal environment monitoring data to a building’s contextual information provided through 
BIM-based workϐlows ȋe.g., ʹDȀ͵D spatial informationȌ, various rich visualizations can be 
created, thereby enabling an in-depth analysis of the current conditions ȋMarzouk & Abdelaty 
ʹͲͳͶ; Chang, Dzeng & Wu ʹͲͳͺȌ. Other studies have shown how game engines can be utilized to 
render BIM and IoT sensor data, so as to add a sense of immersion and higher levels of 
interactivity to the monitoring of thermal environments ȋNatephra & Motamedi ʹͲͳͻa, ʹͲͳͻb; 
Hosokawa et al ʹͲͳ͸; Fukuda et al ʹͲͳͻȌ. 
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In light of all the issues discussed earlier in this paper, the present study sets out to include a 
machine learning-based prediction model within a digital twin architecture designed for the real-
time and immersive monitoring of the thermal comfort conditions in building enclosures. Based 
on the promising results reported in ȋLuo et al ʹͲʹͲȌ, the Random Forest algorithm was selected. 
The algorithm was used to train and test a classiϐication model, to predict ͵-point thermal 
preferences, i.e., occupant votes described as ǲcoolerǳ, ǲwarmerǳ, or ǲno changeǳ. The model was 
trained and tested using the ASHRAE Global Thermal Comfort Database II ȋFöldváry Ličina et al 
ʹͲͳͺȌ and proper strategies were considered to address the shortcomings of ȋLuo et al ʹͲʹͲȌ 
mentioned in Section ʹ.ͳ. Moreover, a general architecture was proposed to illustrate how the 
live IoT sensor data and user-deϐined input can be used to make live predictions of thermal 
preferences within a digital twin rendered using BIM geometric data. The next section elaborates 
on the methodology proposed to meet the mentioned objectives. 

3 Methods 

3.1 Model training and evaluation 
3.1.1 Data preparation 
 
To prepare the data sets for model training and testing, data cleaning and preprocessing steps 
were required. Hence, as the ϐirst step, non-informative columns ȋe.g., columns containing the 
same data represented using different unitsȌ were removed from the original database. 
Subsequently, each column with more than a ͸ͲΨ rate of missing values was discarded. Next, all 
the data entries with missing values in the target variable ȋi.e., thermal preferenceȌ were 
removed. As a result of taking the aforementioned steps, γ͹͸,ͲͲͲ samples described with ͻ 
features were kept and these constituted the base data frame that was used in this study. Among 
the ͻ features, ͵ were of categorical type ȋseason, building type, cooling strategyȌ and the rest 
were of numerical type ȋair temperature, relative humidity, air velocity, average outdoor monthly 
temperature, metabolic rate, clothing insulation levelȌ. 

Preprocessing of numerical features consisted of removing the mean and scaling to unit 
variance. In this way, the numerical data for each feature was represented so as to resemble a 
Gaussian distribution with zero mean and unit variance. For categorical data types, one-hot 
encoding was used by deriving the categories based on the unique values appearing in each 
feature and creating a binary column for each unique value. As a result of one-hot encoding, the 
size of the feature vector was increased to ͳͻ. Afterwards, to preserve a maximum number of 
samples from the original database, mean and median imputation strategies ȋreplacing missing 
values with the meanȀmedian of each columnȌ were considered in this work.  

To account for the class imbalance issue, two re-sampling strategies were compared. This was 
an important step given the ratio of the samples describing each thermal preference class: ǲno 
changeǳ: ͷͳΨ, ǲcoolerǳ: ͵ʹΨ, ǲwarmerǳ: ͳ͹Ψ. The main purpose of applying the re-sampling 
strategy was to prevent the decision functions of the trained classiϐiers from favoring the class 
with the larger number of samples, i.e., ǲno changeǳ. The two re-sampling strategies compared in 
this project were random under-sampling and random over-sampling. For random under-
sampling, random resampling without replacement was performed to reduce the number of 
samples from majority classes ȋǲno changeǳ and ǲcoolerǳȌ to the number of the samples existing 
for the minority class ȋǲwarmerǳȌ. For random over-sampling, the number of samples from 
minority classes ȋǲcoolerǳ, ǲwarmerǳȌ were increased to the number of the majority class ȋǲno 
changeǳȌ samples, through random resampling with replacement. 

Finally, ͺͷΨ of total samples were used for model training, and the remaining ͳͷΨ of the 
samples were kept as the test set. Sample splitting was performed in a stratiϐied manner to 
account for the class ratios. MRUeRYeU, SaUWicXlaU aWWeQWiRQ ZaV Said WR SeUfRUP Ue-VaPSliQg RQl\ fRU 
Whe WUaiQiQg VeW, WheUeb\ eliPiQaWiQg Whe UiVk Rf iQWURdXciQg Whe WeVW VaPSleV WR Whe claVVifieU dXUiQg Whe 
WUaiQiQg ShaVe.  
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3.1.2 Model tuning and performance evaluation 
As mentioned previously, the Random Forest ȋBreiman ʹͲͲͳȌ algorithm is used in this work for 
the purpose of training the thermal preference prediction model. The Random Forest model was 
developed as an ensemble of Decision Tree classiϐiers that were trained via the bootstrap 
aggregating ȋbaggingȌ method. In particular, every classiϐication tree in the ensemble was trained 
using different random subsets of the training set when sampling was performed with 
replacement, i.e., bagging. To avoid overϐitting the training data, tuning of hyper-parameters was 
performed to restrict the decision trees used in the Random Forest classiϐier from adapting 
themselves to the training data. For this purpose, a grid search implementation was used to 
search the pre-deϐined hyper-parameter space for the best cross-validation score. The search 
space considered in this project for the Random Forest hyper-parameters is described in Table ͳ. 

 
Table 1. Hyper-parameter search space considered for the Random Forest classifier 

H�perǦparameter	description Search	space 
Number of classiϐication trees used as base estimators  ȏʹͲͲ, ͷͲͲ, ͳͲͲͲ, ʹͲͲͲȐ 
Maximum depth of the trees ȏʹ, ͸, ͳͲ, ͳͷȐ 
Minimum number of samples required to split an internal node ȏͶ, ͺ, ͳʹȐ 
Minimum number of samples required to be at a leaf node ȏʹ, ͸, ͳͲȐ 

 
The scoring strategy considered for the cross-validation was based on ǲbalanced accuracyǳ 

scores. The balanced accuracy metric was used since it can speciϐically account for the class 
imbalance issue by avoiding overstated performance measurements on the imbalanced data sets. 
The balanced accuracy scores were obtained by calculating the macro-average of recall scores 
ȋratio of true positive predictions over the sum of the true positive and false negative predictionsȌ 
per class, i.e., calculating mean of the recall scores by giving equal weight to each class. 

Finally, to evaluate the quality of the predictions made by the optimal trained classiϐier, the 
test dataset was introduced to the model to predict the labels for unseen instances. Afterwards, 
the corresponding confusion matrix was plotted by comparing the predicted labels against the 
true labels. Next, regular and balanced accuracy metrics were used to quantitatively summarize 
the prediction performance of the model.  

3.2 System architecture  
 

Figure ͳ shows how the trained thermal preference prediction model can be included within 
a digital twin architecture, in the form of a web service.    

 

Figure 1. Proposed digital twin system architecture 
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A detailed explanation of the various functionalities that can be delivered by the modules 
included in the three layers depicted in Figure ͳ can be found in ȋShahinmoghadam et al., ʹͲʹͳȌ. 
Regarding the new adaptation, i.e., integrating the ǲtrained modelǳ module within the previously 
proposed digital twin architecture, a service-oriented architecture has been considered for the 
sake of model deployment. In particular, subsequent to training and testing the thermal 
preference prediction model, it is deployed on a cloud server and the prediction functionality is 
requested through a web API. HTTP requests containing live IoT readings and user input data are 
sent to initiate the prediction function of the model deployed on the cloud server, and the 
prediction results are returned in the form of HTTP responses. The prediction results are then 
stored in the cloud to be accessed via the application layer.   

4 Results and discussion 
Once the preprocessing steps described in Section ͵.ͳ.ͳ were completed, a basic Random Forest 
classiϐier, i.e., a model with ͳͲͲ trees with no parameter tuning, was used to compare the 
effectiveness of the two imputation strategies through a ͷ-fold cross-validation process. The 
cross-validated balanced accuracy scores obtained for the mean and median strategies were 
ͷʹ.ʹ͵Ψ and ͷʹ.ʹͳΨ, respectively. Since the mean strategy, yielded ȋvery slightlyȌ better results, 
all numerical missing values were imputed with the mean value of the corresponding columns.   

Subsequently, the random over-sampling and under-sampling strategies were compared 
using the same basic Random Forest classiϐier and with reference to the ͷ-fold cross-validated 
balanced accuracy scores. The corresponding scores are shown in Figure ʹ.  

 

As Figure ʹ shows, although the balanced accuracy scores were improved after applying both 
re-sampling strategies, the over-sampling method yielded better results. However, it should be 
noted that the scores shown in Figure ʹ represent the cross-validated scores, which are expected 
to be higher than the actual score of each model. Moreover, the ͅ Ͳ.ʹΨ score for the over-sampling 
strategy should not be considered as a signiϐicant improvement at this step because the over-
sampled instances in the validation folds might have been seen by the model from the training 
folds. However, it is safe to say that the obtained scores can be used to compare the relative 
effectiveness of the two strategies. 

To identify the optimal hyper-parameters of the Random Forest classiϐier, the parameter 
space described in Table ͳ was searched by considering all possible combinations. This was done 
by performing a ͷ-fold cross validation and calculating the balanced accuracy scores for each 
prospective model. The best score was obtained using ʹͲͲͲ decision trees, and for each tree, the 
maximum depth, minimum number of samples to split at internal nodes, and minimum number 
of samples to be used at a leaf node, were ͳͷ, ͺ, and ʹ, respectively.   

After identifying the optimal hyper-parameters to be used in the Random Forest algorithm, 
the ϐinal classiϐication model was developed using the training set. Subsequently, the test set was 
introduced to the trained model to evaluate the quality of its predictions for unseen data. To 
highlight the effect of the re-sampling strategy, another Random Forest classiϐier was trained and 
tested with original data. The resulting confusion matrices are shown in Figure ͵.  

Figure 2. Comparison of the effectiveness of re-sampling strategies 
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As can be seen in Figure ͵a, when no remedy was applied to account for the problem of class 
imbalance, the obtained decision function favored the majority class ȋi.e., ‘no change’Ȍ. The 
corresponding confusion matrix shows that in ͳ͵Ͷ͸ and ͳͺͲͻ cases, the ‘warmer’ and ‘cooler’ 
preferences were confused, respectively, with the majority class ȋ‘no change’Ȍ. However, by 
applying the over-sampling strategy and training the model with balanced data, the number of 
true positive predictions were signiϐicantly increased for ‘warmer’ and ‘cooler’ classes. Moreover, 
the false negative predictions dropped from ͳͶͺͲ ȋͳ͵Ͷ͸Ϊͳ͵ͶȌ to ͹͵͵ ȋͷͲͶΪʹʹͻȌ for ‘warmer’ 
class, and from ͳͺͶͻ ȋͳͺͲͻΪͶͲȌ to ͳ͵Ͷͳ ȋͺ͹ͶΪͶ͸͹Ȍ for ‘cooler’ class. 

 

(a) Random Forest classifier trained with original data (b)  Random Forest classifier trained with over-sampled data 

Figure Ͷ illustrates in greater detail the quality of the predictions obtained from the models 
trained with original and over-sampled data, as well as the importance of choosing proper 
evaluation metrics, the models’ prediction performance measurements with reference to 
accuracy and balanced accuracy metrics. As the ϐigure shows, when the classiϐier was trained with 
over-sampled data, the model’s prediction performance improved in terms of balanced accuracy 
score. The accuracy scores represented in Figure Ͷ are discussed below.   

Regarding the ͸͸.͵Ψ accuracy score for ͵-point thermal preference votes reported in ȋLuo et 
al ʹͲʹͲȌ, two critical issues can be raised here: 

First, in that study, the predictions were evaluated based on regular accuracy scores. 
However, as mentioned previously, accuracy scores can overstate the prediction performance 
when working with imbalance data sets. In this respect, an important observation can be derived 
from Figure Ͷ: performance evaluation based on accuracy scores can be considerably misleading 
for the problem at hand. As the ϐigure shows, when no remedial action was taken to account for 
class imbalance, the Random Forest model yielded a ͸ʹ.ͶΨ accuracy score, while the model’s 

Figure 3. Confusion matrices obtained by testing the trained Random Forest classifiers 

Figure 4. Summary of prediction performance measurements 
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balanced accuracy score was ͷͳ.ʹΨ, which is lower than the balanced accuracy score for the 
model trained with re-sampled data. 

Second, it should be noted that the total number of samples used in this project was 
approximately ͹ times larger than that used in ȋLuo et al ʹͲʹͲȌ. The larger dataset used in the 
present work was obtained by imputing the missing values, as opposed to Luo et al.’s method that 
discarded samples with missing values even for a single feature. Hence, it can be concluded that 
the model’s performance results reported here are more robust in comparison, as a larger 
number of test samples were used in this project to evaluate the generalization capability of the 
trained classiϐier. 

As for discussing the results obtained regarding the machine learning-based prediction 
model, it should be noted that to select the best model parameters, the criteria used for calculating 
the cost of the errors should be deϐined beforehand. The criteria should then be used to smooth 
the decision function of the model ȋthrough parameter tuningȌ. In this way, the cost of the wrong 
predictions made by the trained model can be minimized. In other words, it should ϐirst be deϐined 
whether the priority is given to the thermal comfort of the occupants or to other factors such as 
energy preservation. 

Finally, although validation of the trained model against the ground truth data from the used 
database yielded promising results, the full implementation of the digital twin system depicted in 
Figure ͳ and validation of its overall effectiveness is beyond the scope of the present work. 
However, an overview of the implementation and validation processes is given as follows. With 
the trained and tested prediction model at hand, live predictions can be made by deploying the 
trained model on a cloud server and making its prediction functionality available on the web 
through a designated API ȋdeploying the developed prediction model as a microserviceȌ. For each 
prediction to be made by the trained model, nine feature values are required as input to the 
prediction function. Among these features, the values for season, building type, cooling strategy, 
clothing insulation level, and metabolic rate, can be deϐined in advance by the end-user using the 
main interface. Values regarding the average air temperature, relative humidity, and air velocity 
in the building spaces can be provided through web requests sent from the game engine 
development environment to the cloud storage module, which contains the most recent IoT 
sensor readings. As the nine feature values are provided within the game engine environment, 
web requests containing all the input values will be sent to the cloud server on which the thermal 
preference prediction model has been deployed, to initiate the prediction function. Finally, the 
server responses containing the corresponding predicted thermal preferences will be received in 
the game engine environment. To validate the overall effectiveness of the system, an experimental 
evaluation should be conducted by involving a diverse group of experts and asking their opinions 
with regards to the completeness, consistency, and usability of the proposed system. 

5 Conclusion 
This study investigated a machine learning-based thermal preference prediction model to be 
included within the architecture of a digital twin system. The digital twin uses BIM and IoT data 
to provide a real-time and immersive assessment of the thermal comfort conditions in building 
spaces. Using a large public database, an ensemble learning method ȋRandom ForestȌ was used 
to train a model capable of predicting building occupant thermal preferences in a ͵-point scale 
ȋwarmer, cooler, no changeȌ. The study of ȋLuo et al ʹͲʹͲȌ was considered as a base reference to 
discuss the obtained results.  

In a broader context, the study showed how extracting hidden patterns from accumulated 
operational data and updating the digital twin’s knowledge base with the newly discovered 
patterns can enable a building digital twin to continuously evolve. The study proposed a general 
architecture and implementation scheme to integrate the developed data-driven thermal 
preference prediction model to a digital twin application, which makes use of BIM and live IoT 
data for thermal environment monitoring and immersive visualization purposes. In future work, 
the authors will investigate a full implementation of the system and validate the overall 
effectiveness of the proposed digital twin architecture. 
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