
SHACL is for LBD what mvdXML is for IFC

Jyrki Oraskari, Jyrki.Oraskari@dc.rwth-aachen.de
Department of Design Computation, RWTH Aachen University, Aachen, Germany

Madhumitha Senthilvel, senthilvel@dc.rwth-aachen.de
Department of Design Computation, RWTH Aachen University, Aachen, Germany

Jakob Beetz, j.beetz@caad.arch.rwth-aachen.de
Department of Design Computation, RWTH Aachen University, Aachen, Germany

Abstract
The motivation for this work stems from an EU Ȃ funded project, which focuses on leveraging
digital tools for improving the renovation processes. In particular, specific tools require Linked
Building Data (LBD) that need to fulfil the application-specific exchange requirements. In this
research, we focus on two different use cases to investigate how to validate a Linked Building
Data model. First, we study how to minimise data loss and errors when data is converted and
brought into an LBD data store. The usage of unit tests to improve conversion quality is
introduced. The second use case focuses on how Model View Definition (MVD) in LBD for
evaluating the energy performance of the renovation designs in energy simulation can be formed.
This feasibility study shows that unit test can be written the conversion. Besides validation,
methods shown in the study can be used to create model views for LBD data using SHACL.

Keywords: IFC. MVD, LBD, SHACL, OWL, RDF, unit test paper

1 Introduction
Information management of the stakeholders’ data is one of the critical challenges in the
construction industry. Linked Data is an approach that has been proposed to lower the barriers
of data silos by using web technologies, Resource Description Framework ȋRDFȌ, and
recommended best practices for expressing and sharing information.
 The Linked Data for architecture, engineering and construction ȋAECȌ applies the relevant
vocabularies and structured interlinked data to publish content in a machine-interpretable form
that can be used for semantic queries.
The new model presentation can be used for model checking, machine inferencing, lossless data
exchange, and an extendable interlingua for the AEC programs, i.e., supporting interoperability
between software applications. ȋPauwels, et al., ʹͲͳ͹Ȍ
 The motivation for this work stems from an EU Ȃ funded project which focuses on leveraging
digital tools for improving the renovation processes. As part of this project, various workϐlows
for chaining tools used for common renovation-speciϐic use cases were developed. It was
identiϐied that the tools in such a workϐlow need to be supplied with the appropriate data
necessary for them to function seamlessly. In particular, certain tools required the use of Linked
Building Data ȋLBDȌ inputs, which were arrived at from IFC ϐiles through the usage of BOT-based
converters.
 This research focuses on two different use cases to investigate how to validate a Linked
Building Data model. First, we study how to minimise data loss and errors when data is converted
into LBD and how unit tests can improve the Linked Data quality when it is bought into the

693

Oraskari et al. 2021 SHACL is for LBD what mvdXML is for IFC

Proc. of the Conference CIB W78 2021, 11-15 October 2021, Luxembourg

system. The second use case focuses on how Model View Deϐinition in the context of the LBD data
for evaluating the energy performance of the renovation designs in energy simulation can be
formed.
 There have been studies on validating LBD data earlier. Here we focus on how to create a
validated MVD view of LBD data using SHACL.
 In the following chapters, we ϐirst review the Linked Data in the AEC domain, how the data
has been converted. Shapes Constraint Language ȋSHACLȌ is presented and how it has been
applied to LBD data of validation. In Chapters ͵ and Ͷ, we introduce our selected use cases, and
deϐine the criteria for the validation rules in the context. How the requirements can be tested
using SHACL are analysed. Finally, the ϐindings are discussed, and conclusions are summarised.

2 Related Work

2.1 Linked Building Data
Over the last decade and a half, several linked building data ontologies have been proposed in the
Architecture, Engineering, Construction, Owner Operator ȋAECOOȌ sector. Web Ontology
Language ȋOWLȌ ȋMcGuinness, et al., ʹͲͲͶȌ ontology for IFC ȋifcOWLȌ ȋSchevers & Drogemuller,
ʹͲͲͷȌ ȋBeetz, et al., ʹͲͲͻȌ ȋPauwels & Terkaj, ʹͲͳ͸Ȍ is almost a literal conversion of the IFC
Express schemas developed by buildingSMART and aimed to increase interoperability by sharing
common data schema and exchange format.
 On the other hand, ifcWoD ȋDjuedja & Flore, ʹͲͳͻȌ was developed to express the object-
oriented constraints of the IFC schema and the semantics of the model as an OWL ontology. It is
as tightly coupled with the IFC versions as ifcOWL is. Then, like ifcWoD, SimpleBIM ȋPauwels &
Roxin, ʹͲͳ͸Ȍ was an attempt to create a simpler and more developer-friendly view on ifcOWL
data.
 There were also other ontologies. The Domotic OSGi Gateway ONTology ȋDOGONTȌ ȋBonino
& Corno, ʹͲͲͺȌ was initially developed to express home automation devices. In the last years, the
scope has been widened to cover IoT network components.
 COBieOWL ȋFarias, et al., ʹͲͳͷȌ is an approach to present Construction Operations Building
Information Exchange ȋCOBieȌ standard sheets as OWL classes and sheet columns as properties.
The OWL Ontology has been automatically populated from the template using the Java-based
COBieOWL tool.
 BIM Shared Ontology ȋBIMSOȌ and BIM Design Ontology ȋBIMDOȌ are modular ontologies
independent of the IFC standard. BIMSO is built on the UNIFORMAT II classiϐication system, and
BIMDO has its vocabulary ȋNiknam & Karshenas, ʹͲͳ͹Ȍ ȋRasmussen, et al., ʹͲͳͻȌ.

W͵C Linked Building Data Community Group ȋW͵C LBD-CGȌ1 proposed a new modular
approach, where an AEC ontology, the Building Topology Ontology ȋBOTȌ ȋRasmussen, et al.,
ʹͲͳ͹Ȍ, would not violate the W͵C best practices as the previous Linked Building Data ontologies
had done. For example, its design principle has been to reuse concepts in other more focused
ontologies. Unlike the voluminous ifcOWL, BOT is following the best practice of keeping
ontologies simple for easy maintenance.

Notable ontologies that have been used besides the BOT are Ontology for Property
Management ȋOPMȌ2, and Building Product Ontology ȋBPOȌ ȋWagner & Rüppel, ʹ ͲͳͻȌ that allows
manufacturers to deϐine their products.

There are also domain-speciϐic ontology suites with alignments to other LBD ontologies.
Digital Construction Ontologies ȋDiConȌ ȋTörmä & Zheng, ʹͲʹͳȌ, developed in Diction and
BIMͶEEB projects, is a modularised ontology group for expressing information related to the
execution of construction projects while the BIMͶRen ontologies3 are for modelling energy-
efϐicient renovations.

1 https://www.w3.org/community/lbd/
2 https://github.com/w3c-lbd-cg/opm
3 https://models.bim4ren.eu/

694

Oraskari et al. 2021 SHACL is for LBD what mvdXML is for IFC

Proc. of the Conference CIB W78 2021, 11-15 October 2021, Luxembourg

2.2 Linked Building Data Converters
There have been various tools to translate BIM data models into LBD. One of the early ones was
IFCtoRDF ȋPauwels & Oraskari, ʹ Ͳͳ͸Ȍ to translate IFC STEP documents onto ifcOWL ABox format.
IFCtoLBD converter is a Java-based converter developed in the Linked Building Data community.
This tool extracts core BOT ontology classes and their relationships, but also, product data is
present, and property values are expressed using the OPM ontology. ȋRasmussen, et al., ʹͲͳͻȌ
ȋBonduel, et al., ʹͲͳͺȌ ȋOraskari, et al., ʹͲʹͲȌ.

A plug-in4 that exports Linked Building Data from Autodesk Revit has been initially developed
by Jonas Eik Bacher-Jacobsen at NIRAS and continued by Rasmussen et al. ȋRasmussen, et al.,
ʹͲͳ͹Ȍ. It is written using the .NET developer platform. In addition to the core LBD data, the tool
can export ͵D spaces as OBJ encoded mesh geometry and outlines of areas as WKT polygons.
 On the other hand, NIRAS IFCʹBOT5 written by Mads Rasmussen is a lightweight command-
line tool written in Python ͵.ͺ. It extracts core BOT elements of an IFC document using the
IfcOpenShell6 Python library.

Moreover, in ȋBourreau & Oraskari, ʹͲʹͳȌ, Bourreau and Oraskari propose a novel dynamic
translation method where rule-based reasoning is used for the translation.

2.3 Shapes Constraint Language (SHACL)
SHACL is a general-purpose data validation language and speciϐication from the World Wide Web
Consortium ȋW͵CȌ, which focuses on conformance checking of information serialised as Linked
Data ȋKnublauch & Kontokostas, ʹͲͳ͹aȌ. It contains two major components: Shapes graph and
Data graph. The former contains a list of user-deϐined constraints which are syntactically
represented in SHACL language, while the latter is the RDF graph which is being validated against
the Shapes graph. SHACL constraints can be used to deϐine restrictions on the values that a
property can have, the datatype of the property, numerical ranges of values, absolute string
matches and also a mixture of the above. More complex constraints such as sub-graph pattern
validation, conditional checking can also be expressed using SPARQL queries inside SHACL
shapes, or through the use of SHACL JavaScript Functions. SHACL is a data-agnostic constraint
modelling language, i.e. regardless of the underlying schema of the data, as long as the data are
serialised as RDF, SHACL validation rules can be used for its conformance checks. Consequently,
in the Linked Data and AEC domain, where information spans multiple domains and contains
interlinks between them, SHACL is emerging as a candidate for complex semantic constraint
checking.

 Hagedorn and König have examined the feasibility of the rule validation approach in the AEC
industry. A ϐictive tunnel construction project was used as a use case ȋHagedorn & König, ʹͲʹͲȌ,
while in ȋStolk & McGlinn, ʹͲʹͲȌ, Stolk and McGlinn studied the possibility of using SHACL for
testing ifcOWL models. Furthermore, in ȋWerbrouck, et al., ʹ ͲͳͻȌ, Werbrouck et al. described how
SHACL can be used like mvdXML for LBD data, while SHACL-based dynamic constraint solving
has been explored for look-ahead-planning ȋSoman, ʹͲͳͻȌ.
 Prior SHACL, there was no W3C standard mechanism to check RDF data, although tools that
ignored the open-world and non-unique-name assumption existed. TopBraid and Protégé are
OWL aware tools. Compared with OWL, SHACL uses the closed-world assumption and separates
checking data validity from inferring new facts. (Knublauch, 2017)
 There have also been other approaches like plain SPARQL queries, SPARQL Inferencing
Notation (SPIN), Stardoc ICD, OSLC Resource Shapes, RDF Data Descriptions, and RDFUnit to test
the models. (Gayo, et al., 2017) (Gayo, et al., 2017)
 When compared with ShEx7, ShEx usually provides an enriched graph that contains a graph of
valid statements, while SHACL usually focuses on validating results. The default cardinality is in
SHACL zero while it is in ShEx one.

4 https://github.com/MadsHolten/revit-bot-exporter
5 https://github.com/NIRAS-MHRA/IFC2BOT
6 http://ifcopenshell.org/python
7 https://www.w3.org/community/shex/

695

Oraskari et al. 2021 SHACL is for LBD what mvdXML is for IFC

Proc. of the Conference CIB W78 2021, 11-15 October 2021, Luxembourg

3 Case: The Converter Unit Testing
When a converter program is designed and written, the process is prone to human errors caused
by misinterpretations of the concepts and software bugs. Additionally, there may also be concepts
that are not fully mappable.

Unit testing is a software development method to avoid unwanted errors in code when
introducing new features. A collection of unit tests, where each tests a small behavioural aspect
of the software, can be used to improve the code quality. When developing a program that
contains complex rules to convert source data into an instance data ȋABoxȌ model that comply
with the used ontologies, the output-based unit tests can be used.
 To deϐine the requirements for the unit tests, we started with the question: How to deϐine a
sound and valid conversion output?

In ȋKalfoglou & Schorlemmer, ʹͲͲ͵Ȍ, Kalfoglou et al. deϐine ontology mapping to be a way to
relate two vocabularies of the same domain “in such a way that the mathematical structure of
ontological signatures and their intended interpretations, as speciϐied by the ontological axioms,
are respected.”

A data translator instantiates a partial ontology mapping for individuals ȋEuzenat, et al., ʹ ͲͲ͹Ȍ
ȋKalfoglou & Schorlemmer, ʹͲͲ͵Ȍ. Therefore, a proper output consists of individuals with a one-
to-one correspondence with an element in the input model, i.e., all individuals in the input model
that have a mapping have a counterpart in the output. Accordingly, the ϐirst requirement Rͷ is
that the unit tests validate the ontology mapping realisation for individuals deϐined in the
alignments.

Following Kalfoglou’s deϐinition, the relationship path and attribute sets correspondence of
the inputs and output has to be tested. Correspondingly the second requirement R͸ for the unit
test is to check that the translator keep the relations and the attributes of the data, i.e., is a
morphism.

3.1 Requirement R1 in SHACL

There needs to be, for all input graph individuals of an ifcOWL class that is part of an alignment
in the used ontologies, precisely one individual representing the same concept in the generated
Linked Building Data model. In general, this subgraph matching is a known problem in theoretical
computer science and is NP-complete. In the IFC context, it can be solved by comparing IFC GUIDs.
Therefore the problem can be expressed: For all instances with an alignment and a GUID
attribute, there has to be exactly one instance counterpart with the same GUID in the LBD graph.
In SHACL-SPARQL, this can be written as shown in Listing ͳ.

Listing 1. SHACL rule for checking BOT class alignment

1
2
3
4
5
6
7
8
9
10
11
12
13
14

inst:shapeBOTClasses a sh:NodeShape ;
 sh:targetClass ifc:IfcSite, ifc:IfcBuilding, ifc:Store;
 sh:property [
 sh:sparql [
 a sh:SPARQLConstraint ;
 sh:message "GUIDs of the aligment instances should match." ;
 sh:prefixes inst:prefixes;
 sh:select """
 SELECT $this (?guid as ?value){
 $this ifc:globalId_IfcRoot/express:hasString ?guid .
 FILTER NOT EXISTS { ?b props:globalIdIfcRoot_attribute_simple ?guid }
 }
 """
]

696

Oraskari et al. 2021 SHACL is for LBD what mvdXML is for IFC

Proc. of the Conference CIB W78 2021, 11-15 October 2021, Luxembourg

15] .

 The alignment rule ȋListing ͳȌ was tested using the IFCtoLBD converter and TopBraid SHACL
API8. In the test, the rule could validate that the aligned instances existed in the output model. The
rule is speciϐic to IFC version and OPM level ȋBonduel, et al., ʹ ͲͳͺȌ, but similar rules can be written
for the other combinations.

3.2 Requirement R2 in SHACL
To validate a converter against the requirement R͸, an approach where a generic one rule that
ϐits all OWL alignments is not plausible. For example, owl:equivalentProperty used for property
alignment has rdf:Property as both its domain and range. A similar problem is when the
alignment is deϐined using rdfs:subPropertyOf property. Therefore they cannot be used for
property paths needed for ifcOWL to BOT alignment.

Nonetheless, speciϐic validation tests to test the existence of a known property assertion in a
model can be written like shown in Listing ʹ.

Listing 2. SHACL rule for checking BOT relations alignment

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

inst:shapeBOTRelations a sh:NodeShape ;
 sh:targetClass ifc:IfcSite;
 sh:property [
 sh:sparql [
 a sh:SPARQLConstraint ;
 sh:message "bot:hasBuilding missing." ;
 sh:prefixes inst:prefixes;
 sh:select """
 SELECT $this (?guid as ?value){
 $this ifc:globalId_IfcRoot/express:hasString ?guid1 .
 $this a ifc:IfcSite .

 $ifc_building ifc:globalId_IfcRoot/express:hasString ?guid2 .
 $ifc_building a ifc:IfcBuilding .

 ?bot_site props:globalIdIfcRoot_attribute_simple ?guid1 .
 ?bot_building props:globalIdIfcRoot_attribute_simple ?guid2 .
 FILTER NOT EXISTS { ?bot_site bot:hasBuilding ?bot_building }
 }
 """
]
] .

On the other hand, since the input models are part of the unit tests and thus unchanging, and the
primary function is to track whether a change in the source code affects the output negatively, it
sufϐices to validate that the known positive characteristics of the output model are kept. Earlier,
in IFCtoRDF this has been tested comparing output with an earlier result byte-wise, which causes
false-negative warnings, e.g., when Apache Jena library was updated to version ͵.ͳ͸.Ͳ and white
spacing was changed.
 One approach to avoid oversensitive warnings and to be able to give element level error
messages is to use checksums of the ordered set of triples connected to the elements or just the

8 https://github.com/TopQuadrant/shacl

697

Oraskari et al. 2021 SHACL is for LBD what mvdXML is for IFC

Proc. of the Conference CIB W78 2021, 11-15 October 2021, Luxembourg

properties. This was tested in a Java unit test and the TopQuadran SHACL engine. Listing ͵ shows
the SHACL code. In tests, it was able to warn when there was an unknown change in the connected
triple set.

Listing 3. SHACL rule to check checksum of properties

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

inst:shapeBOTChecksum a sh:NodeShape ;
 sh:targetNode inst:stairflight_ca457005-aa0d-4679-92c1-5067d702c9f3;
 sh:property [
 sh:sparql [
 a sh:SPARQLConstraint ;
 sh:message "The checksum of the properties is not valid." ;
 sh:prefixes inst:prefixes;
 sh:select """
 SELECT $this ?ResultSetHash WHERE {
 {
 SELECT $this (MD5(GROUP_CONCAT(CONCAT(STR(?p)); separator=' ')) as ?hash)
 WHERE {
 SELECT *
 WHERE {
 $this ?p ?o.
 ORDER BY ?s ?p ?o
 } GROUP BY $this
 }
 FILTER (?hash != "82c7dc90fcb57319f2bb7ead58ead1de")
 }
 """
] .

 Also, SHACL validation patterns can be generated programmatically from sample ϐiles. The
output can be compared with one of an earlier release of the tool, or check that it is consistent
with the other available LBD converters to compare the outputs. To test this, we used BOT Duplex
Apartment9 that had been exported by using Nira’s Autodesk Revit LBD Plugin Exporter
ȋRasmussen, et al., ʹͲͳ͹Ȍ. It is an independent implementation. Both converters used the same
IFC model.

The challenge was to match the individuals as the URI format differs, forming the attribute
properties differently. A program to write auto-generated SHACL rules to check that the
converter’s graph matched in topological level was written. Also here, for this, IFC GUIDs were
used to associate the individuals. Listing Ͷ shows a snippet of the long auto-generated SHACL
rules.

Listing 4. Sample auto-generated SHACL rule

1
2
3
4
5
6
7
8
9

 inst:shape_1
 a sh:NodeShape ;
 sh:targetNode
 inst:building_7b7032cc-b822-417b-9aea-642906a29bd4 .
 sh:property
 [sh:hasValue
 inst:storey_7b7032cc-b822-417b-9aea-6429f95d6512 ;
 sh:minCount 1 ;
 sh:path

9 https://github.com/MadsHolten/BOT-Duplex-house

698

Oraskari et al. 2021 SHACL is for LBD what mvdXML is for IFC

Proc. of the Conference CIB W78 2021, 11-15 October 2021, Luxembourg

10
11
12
13
14
15
16
17
18
19

 bot:hasStorey
] ;
 <--- cut here --->
 sh:property
 [sh:hasValue
 inst:storey_7b7032cc-b822-417b-9aea-6429f95f770e ;
 sh:minCount 1 ;
 sh:path
 bot:hasStorey
] .

 For the ϐirst requirement, Rͷ, with the assumption that GUIDs are available for the elements,
a general SHACL based unit test was easy to write. Requirement R͸ was more challenging than
the ϐirst one. In the case of the BOT ontology with relatively few properties, the property-based
approach where a rule is written for each property in the ontology is achievable. If using other
LBD ontologies, the same principles apply. The drawback is that SHACL rules for numerous
attribute properties would be tedious to write by hand. Hence, the presented checksum method
and programmatically written SHACL rules using examples to test known inputs in a unit test are
promising. Particularly, human errors caused by misinterpretations can be tracked using
independent example data, preferably from the ontology designer, for test generation.
 Complete source code for the test made is published in our GitHub10 repository.

4 Case: Energy Simulation MVD use case
b�ildingSMART	 In�e�na�ional has deϐined a Model View Deϐinition ȋMVDȌ as a subset of IFC
schema for a speciϐic use case. Provided standard MVDs are, e.g. Coordination View, Structural
Analysis View, Quantity Takeoff View, and Energy Analysis View ȋBeetz, et al., ʹͲͳͺȌ.

ModelView deϐinition written in mvdXML is speciϐic to an IFC schema version, e.g., IFCͶ. It
consists of ExchangeRequirements and ConceptRoots, where ExchangeRequirements deϐine the
required information to fulϐil a particular task. ConceptRoots deϐine IFC elements for which the
same set of constraints apply and a collection of Concepts that assign ConceptTemplates and rules
for the associated attributes. ConceptTemplates are reusable templates, a graph with the schema
information embedded to describe a speciϐic functionality, to instantiate a set of attribute values
in a given IFC entity context. ȋWeise, et al., ʹͲͳ͹Ȍ ȋPinheiro, et al., ʹͲͳͺȌ

In SHACL, target instances can be selected using a rich set of deϐinitions. Compared to
mvdXML’s applicableRootEntity and applicability rules, SHACL Advanced features
sh:SPARQLTarget ȋKnublauch, et al., ʹͲͳ͹bȌ provides similar expressivity.

Also in SHACL, reusable parts of deϐinitions are possible. For example, external modules can
be references from other SHACL deϐinitions with owl:imports, reusable constraint components
can be written using deϐining SHACL-SPARQL sh:ConstraintComponent constraint components,
and SHACL Advanced features SHACL Triple Rules allows to infer new triples that can be used in
other rules.

In an energy simulation use case, the critical aspects of an MVD view are that there should be
geometry associated with the selected elements. They should have properties that are important
for the energy simulation.

In our ϐirst tests using TopBraid SHACL, models could be validated to contain geometry and
properties required in the exchange. Similar logical expressions as are in mvdXML rules can be
written. The problem here is that SHACL is designed to focus on ϐinding rule violation errors
ȋLabra-Gayo, et al., ʹͲͳͻȌ which causes it to accept inputs where SHACL rule targets are missing.
Therefore, the unit test needs to test the existence of the nodes separately. Data validation of
ifcOWL and LBD data has been handled earlier in ȋStolk & McGlinn, ʹͲʹͲȌ ȋWerbrouck, et al.,
ʹͲͳͻȌ.

10 https://github.com/jyrkioraskari/SHACL_UNITTESTS4LBD

699

Oraskari et al. 2021 SHACL is for LBD what mvdXML is for IFC

Proc. of the Conference CIB W78 2021, 11-15 October 2021, Luxembourg

As the model view for IFC is a valid subset of IFC schema, the model view for LBD should ϐilter
relevant data for the particular exchange scenario. Hence, checking the model is solving half of
the problem. The other half should ϐilter the data based on the exchange requirements. SHACL
SPARQL Construct query and SHACL inference model can implement this. In Listing ͷ is shown
how to combine validation and selecting windows elements with an associated ͵D geometry.
Listing ͸ shows a rule to list windows of a speciϐic size.

Listing 5. Sample SHACL Filter for Window elements

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

 inst:HasGeometry
 sh:path bot:hasSimple3DModel ;
 sh:minCount 1 .

inst:RuleFilterWindowsWithGeometryShape
 a sh:NodeShape ;
 sh:targetClass bot:Element ;
 sh:property inst:HasGeometry ;
 sh:rule [
 a sh:SPARQLRule;
 rdfs:label "Construct a Geometry MVD";
 sh:prefixes inst:prefixes ;
 sh:construct """
 CONSTRUCT {
 $this ?p ?o .
 }
 WHERE {
 $this ?p ?o .
 FILTER (regex (STR($this),"window_")).
 }
 """
] .

Listing 6. Sample SHACL Filter for Window elements

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

 inst:RuleFilterShape
 a sh:NodeShape ;
 sh:targetClass beo:Window ;
 sh:rule [
 a sh:SPARQLRule;
 rdfs:label "Constructs an MVD";
 sh:prefixes inst:prefixes ;
 sh:construct """
 CONSTRUCT {
 $this ?p ?o .
 }
 WHERE {
 $this props:objectTypeIfcObject_attribute_simple "2800mm x 2410mm" .
 $this ?p ?o .
 }
 """
] .

700

Oraskari et al. 2021 SHACL is for LBD what mvdXML is for IFC

Proc. of the Conference CIB W78 2021, 11-15 October 2021, Luxembourg

 SHACL SPARQL Construct query can be used to develop MVD view, but it has also limitations.
While the purpose is to create a ϐiltered list of validated triples, re-creating new triples is
“counterproductive” since always, when creating something, the result should be validated. Also,
the SPARQL Construct query is best suited for simple copies. A query to copy triples recursively
for a validated building element is not elementary. It is recommended to use OPM level ͳ
ȋBonduel, et al., ʹ ͲͳͺȌ and avoid blank nodes. Future studies will study how this can be developed
further and focus on the best granularity and algorithm of the graph split separately. The
principles used here are generic and well suitable for any LBD ontology.

5 Conclusion and Future work
In this work, we presented an exploration of unit tests that can be framed and carried out to check
the conformance of Linked Building Data using SHACL. As mentioned previously, this work is part
of the EU-funded BIMͶRen project. Different tools are leveraged to form workϐlows that can be
used to improve processes in the renovation phase. Conformance tests such as those presented
in this paper play an essential role in checking that the RDF data contains the necessary
information for tools that would use them. Since such conformance tests can be used in any tasks
that require checking RDF data, the methodology and ϐindings from this work can be extrapolated
and used for any tool that outputs RDF data.

Besides the MVD checking and ϐiltering of the Linked Building Data model, unit tests in a
converter have a role in ensuring no data loss or corruption in the translation process. So far,
there have not been unit tests that focus on the ontology translation process of an LBD model.
This study presents a couple of unit test methods to improve conversion quality. In this feasibility
study, we have shown that unit tests can be written for the key aspects of the conversion. After
this feasibility study, a more extensive analysis will be made.

In the last decade, one of the big problems in LBD domain has been to manage the vast amount
of building-related data and the difϐiculty to separate the wheat from the chaff. This work shows
that besides validation, model views can be created for LBD data using SHACL. Although the used
SHACL SPARQL Construct method works, it also has limitations. Re-creating the data add a new
process layer and breaks against the idea that the tool is only ϐiltering the content, but It also
opens new possibilities for further conversions and to simplify the data for the view. In future
studies, we show how standard model views can be created using SHACL.

Acknowledgements
This research is part of the BIMͶRen project which has received funding from the European
Union’s Horizon HʹͲʹͲ research and innovation programme under grant agreement No ͺʹͲ͹͹͵.

References
Beetz, J., Borrmann, A. & Weise, M., 2018. Process-based definition of model content. In: Building
 Information Modeling. s.l.:Springer, pp. 127-138.
Beetz, J., Leeuwen, J. & Vries, B., 2009. IfcOWL: A case of transforming EXPRESS schemas into
 ontologies. AI EDAM, Volume 23, pp. 89-101.
Bonduel, M. et al., 2018. The IFC to linked building data converter: current status. s.l., s.n.,
 pp. 34-43.
Bonino, D. & Corno, F., 2008. Dogont-ontology modeling for intelligent domotic environments.
 s.l., s.n., pp. 790-803.
Bourreau, P. & Oraskari, J., 2021. BIM format conversion as inference-based ontology alignment.
 Manuscript submitted for publication. LDAC 2021, Luxenburg.
Djuedja, T. & Flore, J., 2019. Information modelling for the development of sustainable
 construction (MINDOC), s.l.: s.n.
Euzenat, J., Shvaiko, P. & others, 2007. Ontology matching. s.l.:Springer.
Farias, M. T., Roxin, A. & Nicolle, C., 2015. Cobieowl, an owl ontology based on cobie standard.

701

Oraskari et al. 2021 SHACL is for LBD what mvdXML is for IFC

Proc. of the Conference CIB W78 2021, 11-15 October 2021, Luxembourg

 s.l., s.n., pp. 361-377.
Hagedorn, P. & König, M., 2020. Rule-Based Semantic Validation for Standardized Linked Building
 Models. s.l., s.n., pp. 772-787.
Kalfoglou, Y. & Schorlemmer, M., 2003. Ontology mapping: the state of the art. The Knowledge
 Engineering Review, Volume 18, p. 1.
Knublauch, H., Allemang, D. & Steyskal, S., 2017b. SHACL Advanced Features. [Online]
 Available at: https://www.w3.org/TR/shacl-af/ [Accessed 6 5 2021].
Knublauch, H. & Kontokostas, D., 2017a. Shapes Constraint Language (SHACL). [Online]
 Available at: https://www.w3.org/TR/shacl/[Accessed 6 5 2021].
Labra-Gayo, J. E., Garcı́a-González, H., Fernández-Alvarez, D. & Prud’hommeaux, E., 2019.
 Challenges in RDF validation. In: Current Trends in Semantic Web Technologies: Theory and
 Practice. s.l.:Springer, pp. 121-151.
McGuinness, D. L., Van Harmelen, F. & others, 2004. OWL web ontology language overview.
 W3C recommendation, Volume 10, p. 2004.
Niknam, M. & Karshenas, S., 2017. A shared ontology approach to semantic representation of
 BIM data. Automation in Construction, Volume 80, pp. 22-36.
Oraskari, J. et al., 2020. jyrkioraskari/IFCtoLBD: IFCtoLBD 2.5. [Online]
 Available at: https://doi.org/10.5281/zenodo.4056940
Pauwels, P., Krijnen, T., Terkaj, W. & Beetz, J., 2017. Enhancing the ifcOWL ontology with
 an alternative representation for geometric data. Automation in Construction, Volume 80,
 pp. 77-94.
Pauwels, P. & Oraskari, J., 2016. IFC-to-RDF Converter. URL:
 https://github. com/IDLabResearch/IFC-to-RDF-converter (Letzter Zugriff am: 24.03. 2016).
Pauwels, P. & Roxin, A., 2016. SimpleBIM: From full ifcOWL graphs to simplified building graphs.
 s.l., s.n., pp. 11-18.
Pauwels, P. & Terkaj, W., 2016. EXPRESS to OWL for construction industry: Towards
 a recommendable and usable ifcOWL ontology. Automation in Construction, Volume 63,
 pp. 100-133.
Pinheiro, S. et al., 2018. MVD based information exchange between BIM and building energy
 performance simulation. Automation in Construction, Volume 90, pp. 91-103.
Rasmussen, M. H., Hviid, C. A. & Karlshøj, J., 2017. Web-based topology queries on a BIM model.
Rasmussen, M. H. et al., 2019. Managing interrelated project information in AEC
 Knowledge Graphs. Automation in Construction, Volume 108, p. 102956.
Rasmussen, M. H., Lefrançois, M., Schneider, G. F. & Pauwels, P., 2019. BOT: the building topology
 ontology of the W3C linked building data group. Semantic Web, pp. 1-19.
Rasmussen, M. H., Pauwels, P., Hviid, C. A. & Karlshoj, J., 2017. Proposing a central AEC ontology
 that allows for domain specific extensions. s.l., s.n., pp. 237-244.
Schevers, H. & Drogemuller, R., 2005. Converting the industry foundation classes to the web
 ontology language. s.l., s.n., pp. 73-73.
Soman, R. K., 2019. Linked-Data Based Dynamic Constraint Solving Framework to Support
 Look-Ahead-Planning in Construction. Newcastle-upon-Tyne, s.n., pp. 871-880.
Stolk, S. & McGlinn, K., 2020. Validation of IfcOWL datasets using SHACL.
Törmä, S. & Zheng, Y., 2021. Digital Construction Ontologies (DiCon). s.l.:s.n.
Wagner, A. & Rüppel, U., 2019. BPO: the building product ontology for assembled products.
 s.l., s.n., p. 12.
Weise, M., Liebich, T., Nisbet, N. & Benghi, C., 2017. IFC model checking based on mvdXML 1.1.
 eWork and eBusiness in Architecture, Engineering and Construction: ECPPM 2016,
 pp. 19-26.
Werbrouck, J., Senthilvel, M., Beetz, J. & Pauwels, P., 2019. A checking approach for distributed
 building data. s.l., s.n., p. 173.

702

