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Abstract 
The construction industry is experiencing a technological transition towards Digital Twins from 
a static digital information environment to a more dynamic one, enriched with real-time sensing 
and Artificial Intelligence support. This paper describes a method for leveraging a building digital 
twin for monitoring the indoor environmental quality and its long-term effects on human health. 
Whilst most Green Building Standards include life cycle assessment studies before beginning the 
construction, the long-term effects of exposure to indoor contaminants and other sources are not 
systematically considered. To tackle the complexity of this issue, the deployment of a digital twin 
of the occupied environment is required to provide a constant feed of data from various types of 
sensors. The pilot study described in this article aims to assess the requirements associated with 
a Digital Twins system for carrying out life cycle assessment calculations sourced from dynamic 
data feeds.  

Keywords: Digital Twin; LCA; human health; sensinsg; BIM; linked data 

1 Introduction 
The	building	and	construction	sector	has	greatly	beneϐitted	from	Building	Information	Modelling	
(BIM)	in	the	last	decades,	allowing	not	only	more	effective	planning	and	collaboration,	but	also	
convenient	ways	to	exchange	building	data	to	perform	analyses	and	simulations	across	different	
use-cases.	BIM-sourced	data	 remains	a	 fundamental	necessity	 for	designers,	 constructors	and	
facility	managers,	taking	advantage	of	the	rich	semantics	within	BIM	models.	This	is	true	for	many	
application	domains,	not	least	for	the	Life	Cycle	Assessment	(LCA),	an	internationally	recognized	
and	standardized	methodology	across	all	industries,	which	has	become	almost	common	practice	
to	carry	out	in	coupled	BIM-LCA	models	(Tsikos	and	Negendahl	ʹͲͳ͹,	Crippa	et	al.	ʹͲʹͲ).	Within	
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these	models,	building	semantics	and	valid	background	and	foreground	life	cycle	inventory	(LCI)	
data	about	each	building	component	is	required.	BIM	can	only	partly	satisfy	these	information	
requirements,	assuming	that	the	data	is	valid	and	accurate	(Tsikos	and	Negendahl	ʹͲͳ͹,		Crippa	
et	 al.	 ʹͲͳͺ).	 The	 remaining	 inputs	 are	 highly	 dependent	 on	 domain	 expertise	 and	 adequate	
methodologies	to	create	an	accurate	LCA	model	and	thereby	provide	meaningful	outputs.	Within	
the	 ϐield	of	design	and	construction,	 the	vast	majority	of	 these	models	account	mostly	 for	 the	
impact	 on	 the	 environment,	 but	 do	 not	 consider	 the	 long-term	 effects	 of	 buildings	 on	 their	
occupants	(Al	horr	et	al.	ʹͲͳ͸),	which	we	aim	to	study	and	explore	within	this	article.	 

The	 impacts	 on	 human	 health	 can	 be	 quantiϐied	 by	 monitoring	 the	 indoor	 air	 quality	 of	
inhabited	 spaces.	 This	 is	 achieved	 with	 the	 use	 of	 specialized	 sensors	 able	 to	 detect	 the	
concentrations	 of	 the	 air	 pollutants	 emitted	 inside	 the	 building	 (by	materials	 in	 the	 building	
components,	equipment	and	furniture,	but	also	occupancy).	The	limitations	of	BIM	when	it	comes	
to	real-time	data	and	its	connectivity	issues	make	it	less	suitable	to	use	(Boje	et	al.	ʹͲʹͲb).	The	
real-time	behavior	of	building	components,	as	well	as	the	user-related	factors	 for	the	physical	
building	under	investigation	can	only	be	put	into	context	with	the	use	of	a	Digital	Twin	(DT).	We	
therefore	present	a	pilot	case	study	on	a	real	building	along	with	its	DT,	its	connection	to	the	BIM,	
the	use	of	sensors	and	the	link	between	this	data	and	the	LCA-based	calculation	of	the	impacts	of	
indoor	air	pollutants	on	human	health. 

Moreover,	the	second	section	of	the	paper	expands	also	on	the	role	of	semantics	in	linking	and	
sharing	 information.	 The	 overall	methodology	 of	 the	 study	 is	 laid	 out	 in	 section	 ͵.	 Section	Ͷ	
presents	the	methodology	testing	on	a	real-life	building.	After	this,	the	technical	implementation	
requirements	of	the	building	digital	twin	are	outlined	and	discussed.	Finally,	the	implications	and	
limitations	of	the	study	are	outlined. 

2 Background 

2.1 Life Cycle Assessment  
LCA is standardized by ISO 14040:2006 and ISO 14044:2006 norms, which define guidance on: 
(a) the setting of goal and scope for an LCA, (b) the analysis stage, (c) the calculated impact 
assessments stage, (d) the interpretation of the results, (e) the reporting of results, (f) the known 
limitations, as well as (g) the relationships between LCA phases. However, the standards do not 
provide exact guidance on operational methodologies (as these depend on each process or 
product), nor on the computational structure of LCA – which can be formalized using a matrix 
representation (Heijungs and Sun 2002). The construction industry is known to be one of the 
most wasteful industries in terms of materials, and one of the main contributors to pollution and 
carbon emissions worldwide. The aim of conducting LCA, and in particular the life cycle impact 
assessment (LCIA) phase of LCA of a building, is to predict the potential impacts on the 
environment and on human health and thus apply more responsible construction methods, as 
well as use more efficient and environmentally friendly materials.  
 LCA	is	a	data	intensive	process,	and	in	order	to	reconstruct	the	full	inventory	of	a	product	(i.e.	
the	 ϐlows	of	materials	and	energy	 that	are	 involved	 in	 its	entire	 lifecycle),	 and	especially	of	 a	
complex	product	like	a	building,	it	is	often	necessary	to	rely	on	approximations	based	on	educated	
guesses	and	incomplete	available	information.	This	is	equally	true	for	LCA	studies	of	construction	
products	that	have	already	been	produced,	as	well	as	for	products	that	are	at	their	design	stage.	
Moreover,	 the	more	 the	 boundaries	 of	 the	 studied	 system	 (i.e.	 of	 the	 lifecycle	 of	 the	 studied	
product)	 are	 extended,	 the	higher	 is	 the	 amount	of	 data	and	 information	 that	 is	necessary	 to	
collect.	The	same	occurs	whenever	something	along	the	inventory	of	processes	changes,	such	as	
a	change	in	materials,	labor	or	other	logistical	assumptions	initially	made.	 

The	use	of	LCA	databases	such	as	ecoinvent1	helps	acquiring	speciϐic	inventory	data	on	certain	
materials,	pre-fabricated	or	manufactured	components,	across	their	entire	lifecycles.	However,	
their	use	 is	highly	 contextual,	 depending	on	 the	 country	of	 use,	 the	 region,	 the	 availability	of	
nearby	resources,	the	regulations	force	and	the	economic	factors	for	each	process.	LCA	databases	

                                                             
1 https://www.ecoinvent.org/ 
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have	seen	increased	use	across	many	industries,	and	LCA	studies	are	being	facilitated	into	the	
construction	industry	via	the	use	of	BIM.	The	coupling	of	LCA	databases	and	BIM	is	of	immense	
support	 in	 estimating	 the	 impact	on	 the	environment	 in	 the	 early	design	phase	of	 a	 building.	
However,	the	consideration	of	the	long-term	effects	of	buildings	on	the	health	of	their	occupants	
still	remains	underexplored	with	respect	to	the	other	impacts	addressed	in	LCA,	even	when	the	
LCA	study	is	supported	by	the	use	of	BIM,	apart	from	the	identiϐication	of	potential	toxic	materials	
in	the	early	design	phase.	Estimating	the	life	cycle	costs	for	the	client	(i.e.	the	subject	who	buys	or	
rents	the	apartment	or	the	house),	the	cost	and	impact	on	the	natural	environment	does	not	tell	
anything	about	how	the	building,	its	materials	and	usage	will	impact	its	occupants	(Al	horr	et	al.	
ʹͲͳ͸).	This	is	due	to	a	lack	of	information	on	the	behavior	of	the	building:	its	actual	use	by	the	
occupants,	 the	 efϐiciency	 of	 its	 technical	 systems,	 its	materials’	 and	 furniture’s	 emissions,	 the	
exchanges	 with	 the	 outdoor	 environment	 (i.e.	 temperature,	 air	 composition,	 etc.)	 and	 the	
complexity	of	the	mechanisms	that	affect	the	indoor	air	quality	effects	on	humans	occupying	it	
regularly.	 Although	BIM	can	 be	 used	 to	 represent	 and	 simulate	 certain	 use	 cases	 of	 the	 built	
environment,	such	applications	remain	highly	out	of	scope. 

2.2 Digital Twin 

2.2.1 Definition 
The	concept	of	“digital	twin”	is	neither	new,	nor	revolutionary,	but	it	is	currently	experiencing	a	
resurgence	and	a	period	of	“hype”	within	many	industries,	due	to	a	need	for	digitalization	and	the	
beneϐits	 this	would	 bring.	Many	 recent	 studies	 have	 compiled	 various	 lists	 on	 its	 deϐinitions,	
trying	to	pinpoint	where	it	all	started	(Negri	et	al.	ʹͲͳ͹,	Tao	et	al.	ʹͲͳͻ,	Fuller	et	al.	ʹͲʹͲ,	Moyne	
et	al.	ʹͲʹͲ).	Within	the	white	paper	by	Grieves	(Grieves	ʹͲͳͶ),	an	initial	attempt	to	deϐine	the	
digital	twin	paradigm	is	made,	by	distinguishing	between	͵	key	components:	(ͳ)	the	Physical,	(ʹ)	
the	Virtual	and	(͵)	the	Data	Connection.	Extending	this,	Tao	(Tao	and	Zhang	ʹͲͳ͹)	proposed	a	
ϐive-dimensional	model	for	the	digital	twin	paradigm:	the	Physical	(ͳ),	the	Virtual	-	also	referred	
to	as	Models	(ʹ),	the	Data	(͵),	the	Connections	(Ͷ)	and	Services	(ͷ).	Based	on	this	fundamental	
structure,	one	can	begin	to	perceive	a	digital	twin	as	a	complex	cyber-physical	system,	which	aims	
to	 take	 full	 advantage	of	 the	 real-time	 connection	between	a	 so-called	 “digital	 object”	 and	 its	
corresponding	“physical	twin”	and	keep	then	within	a	state	of	synchronization.	 
2.2.2 Applications 
A	digital	twin	can	have	many	practical	applications	in	real	life,	the	most	prevalent	being	energy	
monitoring	and	dynamic	allocation	for	buildings,	districts	and	grids,	ϐlood	monitoring,	structural	
monitoring	for	buildings,	bridges	and	nuclear	facilities,	etc.	These	applications	represent	focused	
uses	of	a	digital	twin	via	speciϐic	domain	models	(energy,	structural	analysis,	ϐlood	models,	etc.)	
which	are	offered	as	services	on	top	of	the	platform.	The	latter	can	represent	and	manage	a	digital	
twin	 in	 conjunction	 with	 its	 physical	 twin,	 often	 connected	 via	 sensor	 networks	 and	
Internet-of-Things	(IoT). 
2.2.3 Inputs to indoor human health assessment within LCA 
We	have	previously	explained	that	LCA	can	be	used	to	estimate	the	long-term	effects	on	human	
health,	 but	 in	 order	 to	 assess	 the	 indoor	 health	 effects	 (on	 the	 building	 occupants)	 highly	
contextualized	real-time	data	about	the	inhabited	environment	would	be	necessary.	The	use	of	a	
digital	twin	is	thus	required	to	provide	a	live	feed	of	sensor	data	related	to	occupancy,	air-quality,	
lighting,	temperature	and	the	presence	of	potentially	toxic	materials	within	the	proximity	of	the	
daily	occupants.	Using	real-time	data	from	sensors	to	feed	LCA	calculations	implies	ʹ	things: 

ͳ) Constant	re-evaluation	with	time; 
ʹ) Improvement	in	accuracy	as	the	volume	of	data	gathered	by	the	digital	twins	increases.	 

The	constant	re-evaluation	of	LCA	based	on	different,	temporally	varying,	input	scenarios	leads	
to	the	concept	of	a	“temporally	differentiated”	or	“dynamic”	LCA	(DLCA)	process.	This	approach	
was	envisaged	as	a	means	to	automate	LCA	from	BIM	sourced	data	in	the	past	(Russell-Smith	and	
Lepech	 ʹͲͳͳ),	 however	 requiring	 a	 high	 level	 of	 automation.	 The	 “dynamic”	 nature	 of	 the	
assessment	is	associated	to	the	impact	of	changing	the	input	data	for	LCA	or	LCIA.	On	another	
level,	 the	 term	 “dynamic”	 is	more	generally	attributed	 to	 the	 concept	of	 considering	different	
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inputs	to	LCI	and	LCIA	with	their	variations	over	time.	(Beloin-Saint-Pierre	et	al.	ʹͲʹͲ)	elicit	a	
glossary	 of	 ͳͺ	different	 terms	which	 characterize	 key	 temporal	 considerations,	 among	which	
DLCA	assumes	a	level	of	dynamicity	within	the	system	and	a	temporal	differentiation	of	ϐlows.	 
The	evaluation	of	indoor	human	health	impacts	using	the	approach	illustrated	in	this	paper	can	
be	categorized	in	the	realm	of	DLCA	approaches.	The	DT	should	be	able	to	generate	results	in	
terms	of	 human	health	 impacts	 expressed	 in	DALYs	 (Disability	Adjusted	Life	Years),	 using	 as		
inputs	either	the	results	from	a	theoretical	model	of	indoor	emissions	(Wu	and	Apul	ʹ Ͳͳͷ),	or	the	
pollutant’s	concentrations	recorded	by	the	sensors	(Collinge	et	al.	ʹͲͳ͵),	in	conjunction	with	an	
existing	LCI	and	external	databases.	The	following	formula	from	(Collinge	et	al.	ʹ Ͳͳ͵)	can	be	used	
to	calculate	the	impact	from	indoor	pollutants: 
 

݄ሺ௧భି௧మ,௫ሻ ൌ 𝐶ሺ௧భି௧మ,௫ሻ ∙ ௜݂௡ௗ௢௢௥ ∙ 𝐵ܴ ∙ 𝑁 ∙ 𝐶𝐹ሺ௫,௜ሻ   (1) 
Where: 

- ݄ሺ௧భି௧మ,௫ሻ: End-point damage score for chemical x for time interval (t1-t2) [DALY] 
- 𝐶ሺ௧భି௧మ,௫ሻ: Concentration of chemical x for time interval (t1-t2) [mcg/m3] 
- ௜݂௡ௗ௢௢௥: Fraction of time occupants stay indoor [-] 
- 𝐵ܴ: Breathing rate [m3 person-1 hr-1] 
- 𝑁: Number of occupants [person] 
- 𝐶𝐹௫: Characterization factor for chemical x for effect i (cancer or non-cancer)[DALY/mcgintake] 

2.3 Semantic Models and Linked Data 
The	prime	challenge	in	applying	a	DT	in	a	speciϐic	application	domain	is	the	correctness	of	the	
data,	its	semantics	and	its	integration	with	domain-speciϐic	models	(Boje	et	al.	ʹ ͲʹͲb).	This	poses	
an	integration	problem	at	a	system	design	level,	and	an	interoperability	one	on	the	data	level.	The	
use	of	semantic	models,	such	as	BIM,	is	mandatory	in	order	to	express	and	source	building-related	
data.	The	use	of	IoT	and	sensor	networks	is	also	mandatory	for	our	use	case,	in	order	to	feed	the	
correct	data	at	the	right	time.	The	context	of	BIM	and	sensor-fed	data	needs	to	be	constructed	in	
order	to	provide	valid	input	for	domain-speciϐic	DLCA	models	to	ensure	correct	calculations	and	
estimations.	 

Within	the	process	of	contextualizing	DLCA	for	human	health	impacts	assessment,	there	are	
requirements	to	produce	a	semantic	model	along	the	digital	twin	pipeline,	and	the	requirement	
to	link	and	validate	the	data	as	it	moves	and	transforms	across.	To	tackle	these	challenges,	the	use	
of	semantic	web	technologies	such	as	the	Resource	Description	Framework2	(RDF)	and	the	Web	
Ontology	Language3	(OWL)	ontologies	is	recommended.	Ontologies	are	best	suited	to	represent	
complex	socio-technical	systems,	and	can	represent	virtually	any	“thing”,	from	abstract	classes	to	
real-world	individuals	with	the	use	of	the	Tbox	and	Abox	statements.	The	description	logics	at	
their	core	also	allow	to	formalize	rules	and	validate	the	integrity	of	our	models	and	data	(Pauwels	
et	al.	ʹͲͳ͹).	The	use	of	semantic	web	technologies	to	represent	and	integrate	web-based	systems	
and	architectures	for	digital	twins	have	already	been	investigated	(Chevallier	et	al.	ʹͲʹͲ)	(Boje	
et	al.	ʹͲʹͳ)	and	show	promise	in	their	convenience	when	extending	domains	and	linking	data	
over	the	web. 

3 Methodology 
The	presented	pilot	is	encapsulated	and	dependent	from	the	overarching	research	methodology	
of	the	SemanticLCA	project.	Figure	ͳ	outlines	the	following	steps: 
ͳ. Literature	review	-	a	review	of	literature	on	LCA,	DLCA	and	existing	LCA	databases	–	these	
have	been	conducted	outside	of	the	scope	of	this	article,	some	of	which	have	been	referenced	in	
the	previous	section.	 
ʹ. Requirements	analysis	–	based	on	previous	literature,	several	requirements	are	identiϐied	for	
monitoring	human	health	within	inhabited	spaces	using	LCA	calculations	most	notably:	sensors, 

                                                             
2 https://www.w3.org/TR/rdf-schema/ 
3 https://www.w3.org/TR/2004/REC-owl-features-20040210/ 
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a	BIM,	a	digital	twin	and	a	validated	LCA	model; 
͵. Pilot	setup	–	the	selected	real-life	building	is	described.	The	layout	is	analyzed	in	terms	of	its	
sensor	network	deployment	as	well	as	optimal	sensor	placement,	according	to	the	requirements	
established	above.	 
Ͷ. DT	deployment	 –	 the	 existing	 sensor	 infrastructure	 is	 contextualized	under	 a	digital	 twin	
using	existing	technologies	and	semantic	models.	 
ͷ. Dataset	integration	–	the	integration	of	sensors,	BIM,	sensor	data	and	LCA	models	based	on	
semantics.	 
͸. Testing	 and	 validation	 –	 initial	 data	 collection	 is	 tested	 along	 the	 established	digital	 twin	
pipelines	and	prepared	for	gradual	validation	in	different	contexts. 
 

 
Figure 1. Building digital twin for LCA-based human health monitoring methodology 

4 Pilot requirements and setup 
Based	 on	 the	 literature	 review	 presented	 above	 and	 the	 nature	 of	 the	 pilot	 building	 under	
investigation,	the	following	key	requirements	were	identiϐied: 

ͳ) the	 sourcing	 of	 spatial	 data,	 geometry,	 components	 descriptions	 and	materials	 of	 the	
building	from	an	up-to-date	BIM; 

ʹ) the	real-time	sensing	data	capture	for	several	values	(described	in	Table	ͳ); 
͵) the	coupling	of	ͳ)	and	ʹ)	using	a	Digital	Twin	for	feeding	dynamic	LCA	models. 

 

 
Figure 2. Floor plan of pilot building with deployed sensors and spatial layout 

4.1 Building description 
The	 pilot	 building	 investigated	 during	 this	 research	 project	 is	 located	 in	 a	 formerly	 heavy	
industrialized	district	in	Luxembourg,	which	has	been	re-purposed	over	the	last	ʹͲ	years	into	a	
commercial	 and	 residential	 district.	 Within	 close	 proximity	 of	 the	 building,	 some	 industrial	
activity	is	still	taking	place	on	a	daily	basis,	being	the	cause	for	various	sources	of	pollution.	 
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The	 pilot	 building	 itself	 is	 a	 recent	 construction	 and	was	 designated	 as	 a	 ͷ-storey	 ofϐice	
building.	 The	 design	 was	 set	 around	 a	 low-tech	 passive-house	 building	 with	 very	 limited	
mechanical	ventilation	and	with	large	window	surfaces	on	the	façade	for	maximizing	solar	energy	
gains,	adapted	with	remote	controlled	solar	blinds.	A	part	of	the	second	ϐloor	of	the	building	was	
fully	adapted	with	extra	sensing	devices	to	monitor	the	air-quality,	presence	and	the	status	of	
certain	doors	and	windows	as	part	of	the	on-going	SemanticLCA	research	project.	Under	normal	
working	conditions	the	ofϐice	spaces	shown	in	Figure	ʹ	are	fully	utilized	by	the	employees.	The	
ϐigure	depicts	two	types	of	ofϐice	spaces:	closed	and	open.	The	closed	spaces	can	consist	of	normal	
ofϐices	 or	meeting	 rooms,	which	make	 it	 of	 particular	 interest	 to	monitor	 the	 changes	 in	 air-
quality	relative	to	occupancy	rates.	In	Figure	ʹ	one	can	notice	that	the	ϐloor	plan	consists	of	two	
separate	departments,	with	the	one	on	the	right-hand	side	being	equipped	with	signiϐicantly	more	
sensors.	The	similarity	of	space	usage	and	the	proximity	of	the	 two	departments	will	enable	a	
comparison	 and	 discussion	 around	 the	 level	 of	 sensing	 equipment	 required	 in	 the	 long-term	
monitoring	of	the	building. 

4.2 Sensing and actuation equipment 
The	positions	of	the	deployed	sensors	is	shown	in	Figure	ʹ,	with	their	descriptions	listed	in	Table	
ͳ.	The	majority	of	the	sensors	are	custom	made	for	monitoring	certain	key	parameters,	usually	
temperature,	humidity,	carbon	dioxide	concentrations.	On	the	right	wing	of	the	ϐloor,	all	windows	
and	doors	are	equipped	with	contact	sensors	to	detect	if	these	are	open	or	closed	at	any	given	
time.	These	are	complemented	by	several	sensors	from	the	retail	sector	for	covering	additional	
parameters	at	key	locations.	 

 
Table 1. List of deployed sensor types on the network as shown in Figure 2 

Symbol Measurement	parameters Type No 

 
Temperature	(Cι),	Relative	Humidity	(Ψ),	Absolute	Humidity	
(g/m͵),	Dewpoint	(Cι) 

custom-made ͳͶ 

 
Temperature	(Cι),	Relative	Humidity	(Ψ),	Absolute	Humidity	
(g/m͵),	Dewpoint	(Cι),	Carbon	Dioxide	Concentration	(ppm) 

custom-made Ͷ 

 
Illuminance	or	luminous	ϐlux	per	area	(lx) custom-made ʹ 

 
Illuminance	or	luminous	ϐlux	per	area	(lx),	Occupancy	
(presence	detection) 

custom-made ͵ 

 
Contact	Status	(closed	or	open) custom-made ʹͶ 

 

Temperature	(Cι),	Relative	Humidity	(Ψ),	Carbon	Dioxide	
Concentration	(ppm),	Volatile	Organic	Compounds	(ppb),	
Particle	Matter	(μg/m͵),	Relative	Pollution	(Ψ) 

Foobot Ͷ 

 

Temperature	(Cι),	Relative	Humidity	(Ψ),Carbon	Dioxide	
Concentration	(ppm),	Volatile	Organic	Compounds	(ppb),	
Particle	Matter	ͳ.Ͳ,	ʹ.ͷ	and	ͳͲ	(μg/m͵)	,	Typical	Particle	Size	
(μm),	Air	Pressure	(hPa) 

Sensilla	
Technologies 

ͷ 

 
The	 placement	 of	 the	 sensors	 was	 distributed	 to	 optimize	 the	 area	 coverage,	 and	 detect	
differences	between	certain	locations,	which	can	infer	additional	information	about	events	within	
the	ofϐice	environment.	Recommendations	from	previously	established	research	on	the	subject	
(Eliades	et	al.	ʹͲͳ͵)(Lee	et	al.	ʹͲͳͻ),	as	well	as	manufacturer	documentation,	were	considered.	
Sensors	should	usually	be	placed	within	open	space,	at	heights	varying	from	ͳ.͵	to	ͳ.͹	meters,	not	
too	 close	nor	 too	 far	 from	 the	 ϐloor	or	 the	 ceiling,	 and	 several	placement	patterns	have	been	
investigated	 (Yoganathan	 et	 al.	 ʹͲͳͺ).	 However,	 this	 is	 often	 hard	 to	 achieve	 due	 to	 existing	
furniture	and	circulation	areas	which	must	be	kept	clear.	As	such,	 the	current	placement	was	
instead	focused	on	capturing	average	values	of	temperature	and	humidity	(and	in	certain	cases	
also	carbon	dioxide)	within	certain	spaces	and	on	certain	openings	(near	certain	windows	and	
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doors)	 in	 order	 to	 be	 able	 to	 determine	 air	 exchanges.	 Additionally,	 sensors	 from	 different	
manufacturers	were	placed	at	the	same	location	in	order	to	compare	readings	of	similar	types,	or	
detect	anomalies	or	faults.	Illuminance	sensors	were	placed	on	some	windows	on	the	right	side	
of	 the	 layout	 (Figure	 ʹ)	 and	 some	 spaces	 have	 both	 illuminance	 and	 presence	 detectors	 for	
establishing	occupancy	statuses.	Due	to	privacy	reasons,	this	could	not	be	done	across	a	larger	
surface	of	the	ϐloor	plan. 

Mechanical	 actuators	 are	 present	 for	 the	 remotely	 controlled	 blinds	 system	which	 spans	
across	the	whole	building	façade.	These	can	also	be	manually	controlled	by	occupants,	who	can	
quickly	change	the	light	intensity	within	a	space	or	the	air	ϐlow	in	the	case	that	a	window	is	open.	
Several	other	sensor	bridges	and	actuators	are	present	permitting	some	changes	of	the	system,	
but	these	are	not	show	on	Figure	ʹ.	 

4.3 Technology infrastructure for a digital twin 
We	can	 consider	 the	described	 ϐloor	 as	 the	physical	 twin	of	 our	ofϐice	 environment,	which	 is	
monitored	using	 the	 sensor	 network	 described	 above.	 The	 fusion	of	 several	 technologies	 can	
enable	the	creation	of	a	digital	twin	at	level	ͳ	(Boje	et	al.	ʹͲʹͲb).	For	this	pilot	case	study	we	have	
considered	 the	 inclusion	 of	 traditional	 sensing	 devices,	 a	 BIM	model,	 an	 ontology	 layer	 and	
several	dedicated	simulation	models	for	a	DLCA	for	human-health.	The	sensing	data	is	captured	
and	stored	in	a	dedicated	time	series	database,	 the	BIM	 is	 sourced	 in	an	 Industry	Foundation	
Classes4	(IFC)	format,	and	its	IfcOwl	equivalent,	whilst	the	context	of	the	pilot	is	captured	via	an	
ontology	 layer	 which	 combines	 several	 graphs.	 The	 management	 of	 the	 pilot	 is	 done	 via	 an	
adapted	interface	of	the	ͶD	Collab	prototype,	previously	presented	(Boje	et	al.	ʹ Ͳʹͳ),	and	its	own	
ͶD	Collab	ontology	(Boje	et	al.	ʹͲʹͲa),	with	the	addition	of	a	Sensor	class.	The	alignment	to	IFC	
allows	 the	 inclusion	 of	 the	 building	 context,	 basic	 elements,	 their	 geometry	 and	 declared	
materials	within	the	BIM.	These	are	all	regarded	as	sources	of	information	to	feed	into	an	LCA	
model	 for	 measuring	 the	 long-term	 impacts	 on	 the	 human	 health	 of	 the	 occupants.	 The	
implementation	of	the	model	to	compute	the	human	health	effects	over	time	is	a	process	currently	
under	 development,	 based	 on	 previous	 research	 as	 explained	 in	 section	 ʹ.ʹ,	 which	 is	
implemented	using	the	Brightwayʹ5	suite	of	libraries.	These	are	then	able	to	generate	results	in	
terms	of	human	health	impacts	expressed	in	DALYs.	The	challenge	lies	in	full	automation	of	the	
process	via	appropriate	information	pipelines	in	the	short-term,	but	most	importantly	in	being	
able	to	provide	valuable	insights	back	to	the	digital	twin	and	in	the	analysis	of	potential	actions	
in	the	long-term. 

4.4 Results on human health impacts 
Based	on	the	data	gathered	on	the	pilot,	the	values	for	total	Volatile	Organic	Compounds	(TVOC)	
and	Particle	Matter	(PM)	-	ʹ.ͷ	(mcg/m͵)	were	manually	extracted	in	order	to	evaluate	the	impact	
on	 human	 health	measured	 in	 DALYs,	 from	 the	 formula	 introduced	 in	 section	 ʹ.ʹ.	 The	 room	
chosen	for	this	example	is	marked	in	Figure	ʹ,	and	several	assumptions	were	made,	such	as:	Ͷ	
occupants	(N);	an	indoor	occupancy	rate	of	Ͳ.͵͵	( ௜݂௡ௗ௢௢௥)	–	accounting	for	typical	ͅ h	working	time	
inside	the	ofϐices	(Wu	and	Apul	ʹͲͳͷ);	a	typical	breathing	rate	(BR)	of	Ͳ.ͷͶ	as	recommended	by	
(Collinge	et	al.	ʹͲͳ͵);	and	a	 typical	distribution	of	VOC	 (Collinge	et	al.	ʹͲͳ͵).	Based	on	 these	
assumptions	and	actual	measured	values,	 the	 results	are	shown	 in	Table	ʹ.	 The	current	daily	
exposure	levels	are	an	input	into	the	DLCA	calculation	itself,	which	should	account	for	the	whole	
building,	across	its	entire	lifecycle,	allowing	us	to	estimate	the	long-term	effects. 

 
Table 2. Results of calculated impacts on human health in DALYs based on data from Figure 3 

Indicator  Week	impact	ȏDALYȐ Daily	impact	ȏDALYȐ 
PMʹǤͷ Non-cancer ͵.ͺ͹e-͵ ͹.ͷͶe-ͷ 

TVOC Cancer ͳ.ʹʹe-͵ ʹ.ͲͲe-ͷ 
Non-cancer ͷ.͹ͷe-ͷ ͻ.͵ͺe-͹ 

                                                             
4 https://standards.buildingsmart.org/IFC/RELEASE/IFC4/ADD2_TC1/HTML/ 
5 https://brightway.dev/ 
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Figure 3. Sample sensor measurements for TVOC and PM 2.5 for a 1-week interval 

5 Critical analysis 

5.1 Sensor data 
The	deployed	sensor	network	provides	a	constant	ϐlow	of	sensing	data	of	various	parameters.	
However,	each	sensor	type,	its	observations	and	limitations	need	to	be	well	understood	by	the	
system.	The	data	accumulated	within	a	time	series	dataset	offers	a	high	exploitation	potential	to	
perform	 aggregations	 using	 various	mathematical	 expressions	 in	 preparation	 of	 higher-level	
algorithms	and	the	LCA	simulations.	However,	this	requires	a	good	understanding	of	the	incoming	
data	and	a	good	understanding	of	how	it	should	be	cleansed	and	pre-processed	in	order	to	be	
usable	 at	 higher	 levels.	 Additionally,	 due	 to	 the	 hybrid	 sensors	 in	 place,	 the	 reading	 times	
(timestamps)	 of	 observations	 are	 not	 the	 same	 and	 therefore	 the	 digital	 twin	 has	 a	 different	
synchronicity	rate	with	each	sensing	device.	The	preparation	of	such	data	often	requires	a	speciϐic	
time	parameter,	which	can	affect	the	accuracy	of	the	data.	 

In	section	Ͷ.ʹ	we	described	the	need	for	several	sensors	to	deduce	an	airϐlow	exchange	within	
a	space.	The	detection	of	such	events	using	captured	data	needs	to	be	cross-referenced	with	the	
status	of	certain	openings	(doors	and	windows)	in	order	to	conϐirm	that	such	an	event	was	indeed	
possible.	 This	 requires	 additional	 context	 and	 knowledge	 of	 the	 placement	 and	 relationships	
between	 sensors	which	 is	 hard	 to	 co-relate	 using	 raw	 data.	 Still,	 an	 access	 to	 the	 ventilation	
systems	data	readings,	or	the	Building	Management	System	logs,	would	in	most	cases	serve	this	
purpose. 

5.2 From BIM to Digital Twin 
In	section	ʹ	we	argued	that	a	BIM	model	is	insufϐicient	to	provide	all	the	required	information	
about	the	building	within	the	current	case	study.	The	use	of	building	geometry	using	IFC	is	very	
limiting	due	to	its	implicit	representation	(needs	to	be	generated	following	the	IFC	speciϐication).	
The	use	of	component	materials	is	often	vague,	and	the	quality	depends	on	the	explicit	statements	
within	the	BIM	model	which	are	often	missing.	Imbedded	semantics	within	the	BIM	model	can	
provide	additional	context	in	terms	of	the	intended	use	of	the	building	(such	as	the	types	of	spaces	
for	example),	but	in	the	end	it	is	down	to	actual	sensed	data	via	the	DT	that	will	allow	a	more	
realistic	prediction. 

Section	Ͷ.Ͷ.	shows	an	example	of	determining	the	impacts	on	human	health	using	sensor	data,	
as	well	as	other	assumptions	(number	of	people,	use	of	spaces,	 breathing	rate).	However,	 this	
cannot	 account	 for	 the	dynamic	 environment	 in	 reality.	 Ideally,	 presence	detection	 should	be	
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correlated	with	existing	sensor	data	automatically	and	contextualised	by	the	DT.	Current	lack	of	
models	to	deploy	such	a	use	are	scarce	and	remain	challenges	to	be	addressed	in	the	future. 

5.3 The role of semantics in facilitating a meaningful context 
The	challenge	in	developing	DT	lies	in	managing	and	connecting	the	dots	of	all	the	components	
discussed	above.	We	can	see	 that	the	BIM	domain	dominates	the	building	representation.	The	
central	 ontology	 at	 this	 stage	 is	 the	 IFC	 schema.	 Several	 more	 light-weight	 and	 specialised	
ontologies	which	 aim	 at	 representing	BIM	 assets	 at	 the	micro	 scale	 have	been	 identiϐied	 and	
analysed,	covering	deϐinitions	for	geometries,	meta-data	and	how	they	can	be	linked	(BOT6,	FOG7,	
OMG8,	 etc.),	 which	 need	 to	 be	 aligned	 and	 tested	 for	 an	 LCA	 use-case.	 From	 the	 sensing	
perspective,	the	SOSA	and	SSN9	ontologies	seem	to	be	the	go-to	models	for	representing	sensors	
and	their	observations	at	higher	levels.	However,	an	open	LCA	ontology	suited	for	our	use	case	is	
yet	to	be	developed.	The	input	from	ontologies	such	as	the	ones	previously	mentioned	would	need	
to	be	directed	to	provide	meaningful	context	to	a	dynamic-LCA	ontology	for	human	health,	which	
would	 then	 enable	 to	 feed	 the	 LCA	 calculations	 and	 subsequently	 the	 interpretation	 of	 these	
results.	 The	 role	 of	 semantics	 for	 such	 a	 sensitive,	 complex	 scenario,	 is	 evident	 and	 would	
contribute	immensely	towards	the	automation	of	our	buildings. 

6 Conclusion, limitations and future work 
The	estimation	of	the	impact	of	buildings’	 indoor	environment	quality	on	human	health	in	the	
long	 term	 in	 LCA	 is	 signiϐicantly	 underexplored	with	 respect	 to	other	 environmental	 impacts	
categories.	The	requirements	to	enact	the	pilot	were	described	from	an	overview	of	the	literature	
and	the	constraints	of	the	pilot	site.	The	placement	of	sensing	equipment,	its	link	to	the	BIM	and	
digital	twin	were	also	described	conceptually	and	a	critical	analysis	of	the	status-quo	was	given	
in	section	ͷ.	Preliminary	manual	processing	of	the	data	showed	how	human	health	impacts	can	
be	calculated	and	what	the	challenges	are	related	to	interpreting	sensor	data	and	contextualizing	
it.	Future	work	will	focus	on	developing	and	integrating	a	novel	LCA	ontology,	as	well	as	integrate	
and	evolve	the	pilot	using	additional	sensors	and	actuators	to	better	understand	and	control	the	
ofϐice	environment. 

Acknowledgements 
The	authors	acknowledge	ϐinancial	support	from	Fonds	National	de	la	Recherche	Luxembourg,	
and	Engineering	and	Physical	Sciences	Research	Council	(EPSRC),	United	Kingdom,	to	the	
SemanticLCA	project,	grant	reference:	INTER-UKRI/ͳͻ/ͳͶͳͲ͸ʹͶ͹	(LU)	/	EPSRC-
EP/TͲͳͻͷͳͶ/ͳemanticlca.net	(UK). 

References 
 
Beloin-Saint-Pierre, D. et al. 2020. Addressing temporal considerations in life cycle assessment. Science of 

the Total Environment 743, p. 140700. Available at: 
https://doi.org/10.1016/j.scitotenv.2020.140700. 

Boje, C., Bolshakova, V., Guerriero, A., Kubicki, S. and Halin, G. 2020a. Semantics for linking data from 4D 
BIM to digital collaborative support. Frontiers of Engineering Management . doi: 
https://doi.org/10.1007/s42524-020-0111-7. 

Boje, C., Guerriero, A., Kubicki, S. and Rezgui, Y. 2020b. Towards a semantic Construction Digital Twin: 
Directions for future research. Automation in Construction 114(January), p. 103179. Available at: 
https://doi.org/10.1016/j.autcon.2020.103179. 

Boje, C., Kubicki, S. and Guerriero, A. 2021. A 4D BIM System Architecture for the Semantic Web. In: 18th 
International Conference on Computing in Civil and Building Engineering. Springer International 

                                                             
6 https://w3c-lbd-cg.github.io/bot/ 
7 https://mathib.github.io/fog-ontology/ 
8 https://www.projekt-scope.de/ontologies/omg/ 
9 https://www.w3.org/TR/vocab-ssn/ 

576



Boje et al. 2021 A pilot using a Building Digital Twin for LCA-based human health monitoring  

Proc. of the Conference CIB W78 2021, 11-15 October 2021, Luxembourg 

Publishing, pp. 561–573. Available at: https://doi.org/10.1007/978-3-030-51295-8_40. 
Chevallier, Z., Finance, B. and Boulakia, B.C. 2020. A reference architecture for smart building digital twin. 

In: CEUR Workshop Proceedings., pp. 1–12. 
Collinge, W., Landis, A.E., Jones, A.K., Schaefer, L.A. and Bilec, M.M. 2013. Indoor environmental quality in a 

dynamic life cycle assessment framework for whole buildings: Focus on human health chemical 
impacts. Building and Environment . doi: 10.1016/j.buildenv.2013.01.015. 

Crippa, J., Araujo, A.M.F., Bem, D., Ugaya, C.M.L. and Scheer, S. 2020. A systematic review of BIM usage for 
life cycle impact assessment. Built Environment Project and Asset Management 10(4), pp. 603–618. 
doi: 10.1108/BEPAM-03-2019-0028. 

Crippa, J., Boeing, L.C., Caparelli, A.P.A., da Costa, M. do R. de M.M., Scheer, S., Araujo, A.M.F. and Bem, D. 
2018. A BIM–LCA integration technique to embodied carbon estimation applied on wall systems in 
Brazil. Built Environment Project and Asset Management 8(5), pp. 491–503. doi: 10.1108/BEPAM-
10-2017-0093. 

Eliades, D.G., Michaelides, M.P., Panayiotou, C.G. and Polycarpou, M.M. 2013. Security-oriented sensor 
placement in intelligent buildings. Building and Environment 63, pp. 114–121. Available at: 
http://dx.doi.org/10.1016/j.buildenv.2013.02.006. 

Fuller, A., Fan, Z., Day, C. and Barlow, C. 2020. Digital Twin: Enabling Technologies, Challenges and Open 
Research. doi: 10.1109/ACCESS.2020.2998358. 

Grieves, M. 2014. Digital Twin: Manufacturing Excellence Through Virtual Factory Replication. White 
Paper (March). Available at: 
https://www.researchgate.net/publication/275211047_Digital_Twin_Manufacturing_Excellence_t
hrough_Virtual_Factory_Replication [Accessed: 15 January 2020]. 

Heijungs, R. and Sun, S. 2002. The computational structure of life cycle assessment. The International 
Journal of Life Cycle Assessment . doi: 10.1007/bf02978899. 

Al horr, Y., Arif, M., Katafygiotou, M., Mazroei, A., Kaushik, A. and Elsarrag, E. 2016. Impact of indoor 
environmental quality on occupant well-being and comfort: A review of the literature. 
International Journal of Sustainable Built Environment . doi: 10.1016/j.ijsbe.2016.03.006. 

Lee, S. yeon, Lee, I. bok, Yeo, U. hyeon, Kim, R. woo and Kim, J. gyu 2019. Optimal sensor placement for 
monitoring and controlling greenhouse internal environments. Biosystems Engineering 188, pp. 
190–206. Available at: https://doi.org/10.1016/j.biosystemseng.2019.10.005. 

Moyne, J., Qamsane, Y., Balta, E.C., Kovalenko, I., Faris, J., Barton, K. and Tilbury, D.M. 2020. A 
Requirements Driven Digital Twin Framework: Specification and Opportunities. IEEE Access 
8(June), pp. 107781–107801. doi: 10.1109/ACCESS.2020.3000437. 

Negri, E., Fumagalli, L. and Macchi, M. 2017. A Review of the Roles of Digital Twin in CPS-based 
Production Systems. Procedia Manufacturing 11(June), pp. 939–948. Available at: 
http://dx.doi.org/10.1016/j.promfg.2017.07.198. 

Pauwels, P., Zhang, S. and Lee, Y.-C. 2017. Semantic web technologies in AEC industry: A literature 
overview. Automation in Construction 73, pp. 145–165. Available at: 
https://linkinghub.elsevier.com/retrieve/pii/S0926580516302928. 

Russell-Smith, S. and Lepech, M. 2011. Dynamic life cycle assessment of building design and retrofit 
processes. In: Congress on Computing in Civil Engineering, Proceedings., pp. 194–201. doi: 
10.1061/41182(416)94. 

Tao, F., Zhang, H., Liu, A. and Nee, A.Y.C. 2019. Digital Twin in Industry: State-of-the-Art. IEEE Transactions 
on Industrial Informatics 15(4), pp. 2405–2415. Available at: 
https://ieeexplore.ieee.org/document/8477101/. 

Tao, F. and Zhang, M. 2017. Digital Twin Shop-Floor: A New Shop-Floor Paradigm Towards Smart 
Manufacturing. IEEE Access 5, pp. 20418–20427. doi: 10.1109/ACCESS.2017.2756069. 

Tsikos, M. and Negendahl, K. 2017. Sustainable Design with Respect to LCA Using Parametric Design and 
BIM Tools. World Sustainable Built Environment Conference (June), p. 9. Available at: 
http://orbit.dtu.dk/files/133787517/Sustainable_Design_with_Respect_to_LCA_Using_Parametric_
Design_and_BIM_Tools.pdf. 

Wu, S.R. and Apul, D. 2015. Framework for integrating indoor air quality impacts into life cycle 
assessments of buildings and building related products. Journal of Green Building . doi: 
10.3992/jgb.10.1.127. 

Yoganathan, D., Kondepudi, S., Kalluri, B. and Manthapuri, S. 2018. Optimal sensor placement strategy for 
office buildings using clustering algorithms. Energy and Buildings 158, pp. 1206–1225. Available at: 
http://dx.doi.org/10.1016/j.enbuild.2017.10.074. 

 

577


