
A formal Approach for Interfaces and Requirements of Smart
Objects in Building Models

Dr.-Ing. Jakob Kirchner, jakob.kirchner@tu-berlin.de
Fachgebiet Bauinformatik, Technische Universität Berlin, Germany

Prof. Dr.-Ing. Wolfgang Huhnt, wolfgang.huhnt@tu-berlin.de
Chair of Fachgebiet Bauinformatik, Technische Universität Berlin, Germany

Abstract
Smart objects represent building components in digital models and can draw conclusions from
their situation and behave to their current role in the model. The advantage of using smart objects
is the modularized implementation of model checks and an intended behavior. In this paper the
analysis of the requirements for the used algorithms in smart objects is used to propose a formal
approach of declaring interfaces for smart objects in building models. This covers mandatory
requirements and requirements for knowledge-based model checking or algorithms that control
the behavior. The difference between geometry and properties including the related problems is
presented. An application is the automatic query for fitting objects from object libraries according
to user-selected interfaces. This approach is intended to extend the current implemented models
in software products which are limited by predefined templates and sets of properties.

Keywords: smart objects, parametric modeling, knowledge-based engineering

1 Introduction
The introduction of BIM (Building Information Modeling) requires CAE (Computer Aided
Engineering) software systems which allow the creation, enhancement and modiϐication of
building models. According to the object-oriented paradigm these models are divided into objects
creating an encapsulation of properties and behavior. These objects usually correspond to
building components and represent their geometry, semantics and properties. They are also part
of object-interrelationships. When properties are used to drive the change of an object they can
be called parameters. The paradigm of parametric modeling extended by checking rules leads to
the idea of so-called smart	 objects (Hjelseth 2016). These checking rules – implemented as
algorithms – can be regarded as distributed or modularized knowledge. This corresponds to
classiϐication of the principles of 3D modeling in CAD (Computer Aided Design) systems whereas
“Knowledge-based CAD [includes the] ability to draw conclusions from the current design
situation (geometrical and also background information)“ (Verein Deutscher Ingenieure 2009,
p.13). Knowledge-based CAD is of a higher level than parametric or feature-based CAD. Current
modeling software for BIM already features the idea of smart objects, but limits the possibilities
and the modeling domain to predeϐined object types. This makes it very complicated and
sometimes impossible to take advantage of smart objects’ strength consisting of modularized
knowledge for model checks and other workϐlows.

2 Method
This research is based on the concept of smart objects as parametric CAD-objects consisting of
properties and geometry which are enriched with knowledge as algorithmic rules for checking

165

Kirchner & Huhnt 2021 A formal Approach for Interfaces and Requirements of Smart Objects in Building Models

Proc. of the Conference CIB W78 2021, 11-15 October 2021, Luxembourg

input data. It includes also the treatment of special cases that can occur because of dependencies
on other objects or properties of the building model as a whole.

In this paper the current state of model checking in BIM models is shortly summarized and is
used to classify the possibilities of smart objects. The internal structure of smart objects is
analyzed and geometrical and non-geometrical data is treated separately, because they are of a
different nature and involve different problems. The state-of-the-art approaches in selected
software products and their limits are used to explain the current lack of a formalized way of
describing the required and the supplied data of objects in building models. An example is
introduced which includes a useful set of rules of a typical smart object. The required data to
evaluate these rules is identiϐied. Affected objects which can supply matching data are also
included. Certain elements are proposed which can be used to formalize the description of
interfaces between smart and other objects.

3 Review of Literature and State-of-the-Art

3.1 Model checking in BIM
The automated rule-based checking of digital building models is a promising approach for
increasing the effort of these models (Eastman et al. 2009). The idea is to use algorithmic checks
for compliance of the model to modeling conventions, building codes or regulations, project
requirements, design decisions or data completeness, etc. (Solihin & Eastman 2015). As available
software products like Solibri	Model	Checker require a “high level of customization” (Solihin et al.
2020) there is an ongoing research with efforts to formalize and optimize the checking process.
The main parts of the checking process are identiϐied as (Eastman et al. 2009, Solihin et al. 2020):

x Translating the rules from natural language to checking rules in a formal language
x Preprocessing the building model data
x Execution of checking rules

Preprocessing the building model data is necessary as there usually is some explicit data missing
or auxiliary data structures are required to allow fast and complete queries in the checking rules.
The available approaches for querying rely on the open IFC data model as source for their custom
data structures or use the IFC counterpart: the ontology ifcOWL (Zhang et al. 2018).

Solihin & Eastman (2015) classify the rules according to their required data. The complexity
increases with each level:

x Class 1 rules require explicit available data like attributes and relations.
x Class 2 rules require derived values which can be calculated without additional data

structures.
x Class 3 rules require extended data structures like geometry distance checking.
x Class 4 rules include a “proof of solution” which sets the focus on computing and

presenting solutions in the case of a failed compliance.
Rule-based checking is usually not executed instantly because of its large computational demand.
Consequently, it is embedded in an iterating process of modeling/ϐixing and checking. Although
Class	1 and Class	 2 rules might be validated instantly whenever their input changes, they are
usually part of the large collection of rules which is checked in each step of the iteration. Class	4
rules are not widely available apart from a few examples for instance the safety checking of
construction models including an automatic generation if needed, described by Zhang et al.
(2013).

3.2 Smart objects in BIM
Instead of validating and reporting “Fail” or “Pass” in automated rule-based checking in a global
model context (Eastman et al. 2009) smart objects usually work in a local model context. Smart
objects differ from the general approaches of automated rule-based checking as they only include
rules they are clearly and exclusively responsible for and react instantly to any changes. The term
smart	object is used to describe its role and enhanced abilities. Smart objects can use geometric
or non-geometric data for evaluating rules and respond to changes of the referenced data. The
goal is achieving the integrity of the part of model the smart object is responsible for. This matches

166

Kirchner & Huhnt 2021 A formal Approach for Interfaces and Requirements of Smart Objects in Building Models

Proc. of the Conference CIB W78 2021, 11-15 October 2021, Luxembourg

the goal of automatic rule-based checking of building models: the creation of a digital
representation of the building and its components which is correct and realizable according to
codes, standards and the modeler’s design intentions. Smart objects are one concept to fulϐil this
goal by implementing the checking rules as part of the domain knowledge (Hjelseth 2016). It’s
obvious to implement those checking rules in modularized software components which are
equivalent to the digital building components. Typical rules are based on manuals and codes of
the represented building component. As rules may conϐlict depending on the current state it’s
important to provide analytical methods to identify and resolve the conϐlicts. This is essential
because only a conϐlict-free state guarantees the integrity of a smart object. There are two
strategies to keep the integrity of smart objects: The adaption	strategy and the feedback	strategy.

Ibrahim & Krawczyk (2003) deϐine a smart object which is “[…] keeping its integrity as a unit
and maintaining its relations to other objects”. This is the adaption strategy which promises the
biggest advantage but is usually the more complicated one. It includes the smart object’s
mechanism of changing itself to adapt to a new model state. This makes it a parametric smart
object. It differs from ordinary parametric objects provided in CAD software in containing more
complex and a larger number of rules. These rules are used for checking for violations of the limits
set by the domain speciϐic requirements.

The feedback strategy differs as it does not require the smart object to change its state. It
simply delivers a feedback message if the smart object cannot feasibly adapt or identiϐies an
invalid state of the model according to its rules. The content of the message can be used to
reassure the integrity by prompting the user to adjust the model.

Both strategies require access to different data, but smart objects usually include rules of
Class 1, Class 2 and in the case of the adaption strategy locally limited rules of Class 4. To
understand the type of data which has to be accessible by the rules, it’s necessary to take two
different views: The view on geometry because the object is a CAD-object, and the domain-
knowledge view because it represents building component possibly part of the real world.

3.3 The view on geometry
The view on geometry is driven by solid modeling in 3-dimension space (Mäntylä 1988) and the
requirements for buildable components. The relevant paradigms for solid modeling are (Strout
2006):

x the explicit representation by topological objects of the boundary of the solid called
boundary	representation (b-rep or BREP)

x the implicit representation by combining primitive geometry objects with Boolean
operators in a binary tree called Constructive	Solid	Geometry (CSG)

x the implicit representation by using 2-dimensional shapes and extruding, sweeping and
revolving them by vectors or along curves. This is usually referred to as general	sweeping.

x Other paradigms like cell decomposition are not widely used for engineering applications.
As all paradigms have got advantages over one another, combining the paradigms is state-of

the art. That means base objects in an explicit description get used in implicit descriptions like
sweeps or Boolean operations. This is used to compute and update an explicit model. It’s strongly
connected to the idea of parametric modeling where parameters can drive the change of the
geometry whenever the assigned values of parameters get changed. The resulting visible
topology objects shaping a solid are Vertex, Edge and Face (ISO 2003). Referencing Vertices,
Edges or Faces of already created solids – in this case as representations of building components
– makes it possible to create a building model through adding object by object. For building
models – assuming we would know the process of erecting the real building in the phase of
creating the model – connecting each object like they are erected in reality would be a possible
solution. This leads to the idea of history-based models, where each user operation including the
creation of model objects is stored. The underlying data structure is a list or a tree of commands.
It depends on the used modeling software whether the data structure is exposed to the user or
not. Whenever a change to the model is committed, the occurrence of the change in the underlying
data structure is the starting point for a recomputation of the affected part of the history.

167

Kirchner & Huhnt 2021 A formal Approach for Interfaces and Requirements of Smart Objects in Building Models

Proc. of the Conference CIB W78 2021, 11-15 October 2021, Luxembourg

The described procedure for representing and updating geometry is the state-of-the-art in
current software products and forms the skeleton for almost every parametric modeling
software. Lee et al. (2006) developed the Building	Object	Behavior (BOB), a formalized graphical
description of how the geometry of building objects should behave in case of parametric or
relational changes. They deϐine “intelligence” of objects as a behavior according to domain
knowledge. Lee et al. focus on geometric parametric descriptions and do not use non-geometric
parameters. An extension to BOB was proposed by Cavieres et al. (2011). Smart objects do not
necessarily need to have a parametric geometry description, but this increases the advantage of
their use as it’s the main point of the adaption	strategy.

3.4 The domain-knowledge view
Extending the geometric description of smart objects and how their geometry is linked in history-
based models by domain-knowledge leads to non-geometric properties. Adding non-geometric
properties – that means they do not describe any part of the geometry – enriches objects with
data. In CAD software this is often referred to as feature (Shah 1995). A feature (-object) does not
have to be necessarily a representation of a real entity.

Domain-knowledge can be used to constrain the feasible values of geometric and non-
geometric properties. This allows an instant feedback or even (semi-)automatic preservation of
integrity by including a certain rule or constraint. This can be implemented by disallowing invalid
values or using a system of rule-based warning messages (Singh 2015). An easier approach is the
delivery of predeϐined value combinations for parameters as catalogs. These catalogs include
valid values, but do not necessarily include the checking logic whether these values are valid in
the context of the current role and situation of the object.

Fischer (2006) introduces the concept of making building components “[…] self-aware of
their functional relationships to systems of one or several disciplines […]”. This means the
implemented knowledge is used to check automatically in the current context of the virtual
building model. This is used to fulϐill the goal of better design decisions. As a consequence, the
smart object needs access to data from its neighboring objects or larger parts or domains of its
hosting building model, e.g. spatial constraints (Chen et al. 2016).

3.5 Smart objects in current software
Current modeling software supports the creation of parametric objects with a certain kind of
knowledge. This is usually very limited. In Autodesk Revit this is called “Loadable Families”. The
accessed data and referenceable geometry from neighboring objects or the building model is very
limited and deϐined by given template ϐiles (Autodesk 2021). It’s not possible to create new
customized template ϐiles with different deϐinitions of accessible data.

In Archicad 24 by GRAPHISOFT the objects described by GDL (Geometric Description
Language) have limited access to model data, too. A predeϐined set of so called “Global-Variables”
can be used to get preferences from the model or a very small subset of objects (GRAPHISOFT
2020, p. 335-437), but they cannot be customized or extended.

3.6 The lack of interfaces
As current software already deϐines some interfaces for smart objects a fully customizable
deϐinition of interfaces is not yet possible. This leads to the current situation, that the use of smart
objects is limited and less expressive, because the lacking access to data needed for complex rules.
Interfaces would make it possible to identify required and provided capabilities of smart objects
if it is used comprehensively and consequently.

4 Towards the interfaces

4.1 Vision for smart objects
Modeling software supporting the creation of smart objects and the possibility to deϐine what
smart objects require opens the door for a new perspective and changes the dealing with objects
in a building model. It would be possible to model fast and get an instant feedback, if the base
integrity of the design is violated. This requires a library of prepared smart objects which are

168

Kirchner & Huhnt 2021 A formal Approach for Interfaces and Requirements of Smart Objects in Building Models

Proc. of the Conference CIB W78 2021, 11-15 October 2021, Luxembourg

designed to ϐit and work together. Creating and maintaining such a library is only reasonable if
it’s highly reused in different projects. The idea assumes that each object can provide and require
the data it needs to behave correctly. This is realized by deriving the required data from the
implemented rules of a smart object.

This consequently leads to a model where smart objects are like software modules. They are
registered and integrated in the building model like modules of a software application. Each smart
object would carry as many rules as needed for the goals of the model. A set of rules might be
grouped by their source, functional purpose or domain. Each set would describe a certain
capability of the smart object. This structure makes the rules comprehensible in the case of
unresolvable states. Unresolvable states occur if the smart object cannot adapt to the new model
state because the geometric constraint system can’t be resolved or checking rules fail. Grouping
allows a selective softening or even deactivation of certain ruleset. This is essential for analyzing
the occurring conϐlicts.

If each smart object deϐines the data it might use in its algorithms and also each object deϐines
which data it can provide to other objects, it would be possible to automatically retrieve a list of
ϐitting objects from the library, whenever an open connection point is selected.

4.2 An example
To clarify the needed input for algorithms included in smart objects, an example is presented on
using simple checking rules for building components.

Anchor channels can be embedded into components made of concrete for instance walls to
provide mounting for other components as can be seen in Figure 1.

As a parametric object, it can be placed on a wall by deϐining a start and an end point of the anchor
channel on a planar face of the wall. These points represent the geometric connection points. The
geometry of the anchor channel is parametric and creates the anchors based on the number of
anchors and the ϐirst and the last anchor’s position equidistantly. To verify the minimum distance
between the anchors the anchor channel object is enriched with additional checks. For example,
the minimum distance between the anchors depends inter alia on the strength class of concrete
used in the hosting component. An example of an algorithm according to the anchor channel’s
ofϐicial approval codes is included in Figure 2. To execute the algorithm the access to the current
distance of the anchors is needed which can be established internally. The access to the property
for the strength class of concrete of the other object is the difϐicult one. To coordinate the access,
the property needs to be globally identiϐiable and has to include a suitable datatype. Whenever
the concrete strength class changes or the driving geometric connection points are modiϐied, the
allowed minimum distance has to be updated and used for a check of the current geometry. If the

Figure 1. An anchor channel by JORDAHL® with a mounted plate
(picture with a friendly permission of JORDAHL GmbH).

169

Kirchner & Huhnt 2021 A formal Approach for Interfaces and Requirements of Smart Objects in Building Models

Proc. of the Conference CIB W78 2021, 11-15 October 2021, Luxembourg

check identiϐies a violation of the minimum distance the output is a simple warning or error
message. It also might be used to mark the object as invalid for the current model state.

5 Formal description of interfaces

5.1 Basic concept
The basic idea for modeling interfaces of smart objects is the classiϐication into a providing and a
requiring side. That means each object declares the properties and geometry objects – geometry
objects also include local coordinate systems – it needs to exist and to work properly.
Additionally, it can provide access to its properties or geometric objects for other objects.

Each smart object has requirements which are mandatory. Without fulϐilling them the smart
object can’t exist. That means the data is missing to compute a simple valid state for its geometry;
its geometric shape is indeϐinite. For example, an anchor channel needs a provided face of a
hosting component where it can be placed. Further requirements are optional, because they are
used to activate the “smartness” of the object by establishing the needed access for checking rules.

Checking rules sharing a common goal can be grouped by their required access and form a
port which aggregates the requirements. The mandatory requirements can also be grouped into
a mandatory port. Introducing ports makes it possible to identify what is needed to activate a
single capability.

Ports on the providing side represent the access to all properties and geometric objects a
smart object is able to share. Additional ports may provide access to unique connectors of the
represented components, e.g. sockets for electrical connections, prepared mounting for door
handles, etc. An example is shown in Figure 3. The used notation is based on the Ball-and-socket
notation for ConnectableElement in UML 2.5.1 (Object Management Group 2017).
ConnectableElement is a suitable modeling representation, because it already includes the
concept of ports and interfaces.

Following the concept of parametric modeling, as soon as an object is integrated in the model
and plugged into a ϐitting interface a binding is established. Whenever a change is induced to a
property or geometry all dependent properties or geometry objects get triggered because of
direct or transitive bindings. Smart objects have to update their state and reapply the checking

Figure 2. Flowchart of a rule checking algorithm for minimum distance
of anchors in dependency of the concrete strength class of the hosting
component made of concrete. This is a simplified example based on the
design rules in JORDAHL GmbH (2020).

170

Kirchner & Huhnt 2021 A formal Approach for Interfaces and Requirements of Smart Objects in Building Models

Proc. of the Conference CIB W78 2021, 11-15 October 2021, Luxembourg

rules using the model’s current state. The creation of bindings assumes compatible interfaces on
both sides.

Bindings for properties are always stable because only the change of their value is regarded
as an appropriate change. That means the referenced property in a binding never dissolves or
changes its underlying structure. Instead, referenced geometry objects in bindings may break or
need a different concept.

5.2 Persistence of referenced geometry
Because geometry objects may be removed or split, their references in bindings may dissolve or
become ambiguous. Usually implicitly represented geometry cause these problems more often
than explicitly represented. It forces a decision how dependent objects should be handled. In CAD
models this is called the problem of persistent	naming (Stroud 2006, p. 382). This problem cannot
be solved by the proposed approach. But there is the chance to avoid the problem in some cases
or at least give a feedback to the user.

Each object has a port that provides access to the object’s available geometry objects. Other
objects can establish a binding to these geometry objects. Whenever a change occurs which
triggers a topological change the set of provided geometry objects will change. If semantically
equal geometry objects get created, they can be offered to smart objects whose bindings just have
broken. Either the smart objects include an implemented behavior to automatically choose a new
reference or the user can be prompted to choose one. At least a warning message has to be
presented informing about the lost binding.

Temporarily freezing a binding and delivering a warning message is also applicable in other
inconsistent states for instance an unresolvable geometric constraint system.

5.3 Identification
For the process of integrating a smart object into the model and establishing the bindings it’s
necessary to make properties and geometry objects identiϐiable. Of course, all bindings can be set
manually, but an automatic process is more effective. Assuming a smart object is added to a
building model, setting all bindings individually is a time-consuming task. Instead, selecting other
objects aggregates the bindings to the properties and geometry objects of the selected ones. For
example, an anchor channel is added by mounting it to a wall and additionally binds to certain
needed properties for the checking algorithms. The type of the property needs to have an
identiϐier to enable the automatic selection for the binding. This can be implemented for instance
using data templates deϐined in ISO (2020). This also ensures matching data types for bindings.

Figure 3. Example of a smart object anchor channel and its ports bound
to a hosting object Wall (concrete) using provided ports.

171

Kirchner & Huhnt 2021 A formal Approach for Interfaces and Requirements of Smart Objects in Building Models

Proc. of the Conference CIB W78 2021, 11-15 October 2021, Luxembourg

So far there is no equivalent formal approach available for identifying geometry objects as
they are usually part of the geometry kernel in modeling software without added semantics by
knowledge. This is linked with the mentioned persistence	 of	 referenced	 geometry. Explicit
representations can get a manual classiϐication and identiϐication of the geometry objects which
would also be time consuming. A promising approach is based on classiϐication rules. This is also
necessary to automatically detect a matching geometry object for instance when docking heating
pipes to each other or to predeϐined connectors.

6 Conclusion and outlook
This paper gives an overview of the current state of smart objects in digital building models and
introduces a formal approach for declaring interfaces for smart objects. Current software
products only support a limited set of interfaces. They are not customizable and extendable. But
this is a necessary step in using the knowledge, integrated in smart objects. Typical use cases are
model checking and reactions to modiϐications which have an effect on the object. The approach
using ports would introduce a more intuitive way of modeling by adding more and more smart
objects to the model and binding them to each other. It also supports the activation of a smart
objects capabilities as soon as the required data can be provided and the bindings have been
established. This would also include the support of automatically querying libraries of smart
objects for ϐitting objects whenever an open port is selected. It would also be possible to check
which data is missing for selected capabilities.

The next step is a reference implementation. An implementation for an existing software
product like Autodesk Revit is partly possible, but a new implementation is more promising.
Existing software would have to support a separated level of logic, although it’s usually not
possible to extend its core features. In a ϐirst step the focus would have to lie on properties rather
than on the geometry, because the properties and their bindings do not include problems like the
mentioned persistence	of	referenced	geometry.

The combination of interfaces for smart objects with data dictionaries like the buildingSMART
Data Dictionary (bSDD) is a promising approach. Using the identiϐication and template systems
of data dictionaries, they can represent the base for modeling smart objects using a common pool
of properties.

In this paper the assumption is made that smart objects can only bind to other objects in the
model. An extension would be the binding and access to global model and software features. This
might include extra query paths, for instance a smart object representing an engine measuring
the distance to walls with the purpose of checking the free space for cooling. It would allow Class	
3 rules to be included in smart objects and is connected to the approaches of querying the building
model as described by Zhang et al. (2018) or Solihin et al. (2020). Another example are smart
objects representing windows prepared for higher wind speeds which can query the model for
the vertical distance to the ground and use it for the computation of the wind speeds and
dependent checking algorithms. Therefore, an implementation is needed which presumably will
be a completely new modeling software.

References
Autodesk (2021). About	 Family	 Templates. Viewed 2021-04-13,

https://help.autodesk.com/view/RVT/2021/ENU/?guid=GUID-E36987A9-A68F-4121-A391-
907306BAA60A.

Cavieres, A., Gentry, R. & Al-Haddad, T. (2011). Knowledge-Based Parametric Tools for Concrete Masonry
Walls: Conceptual Design and Preliminary Structural Analysis. Automation	in	Construction,	Selected	
papers	from	the	26th	ISARC	2009. 20 (6). pp. 716-728. DOI:10.1016/j.autcon.2011.01.003

Chen, S. Y., Lok, K. & Jeng, T. (2016). Smart BIM Object for Design Intelligence. Proc.	of	the	21st	International	
Conference	on	Computer-Aided	Architectural	Design	Research	in	Asia	(CAADRIA	2016), The University
of Melbourne, Melbourne, Australia, 30th March – 2nd April 2016. pp. 457-466.

Eastman, C., Lee, J., Jeong, Y. & Lee, J. (2009). Automatic rule-based checking of building designs. Automation	
in	Construction. 18 (8). pp. 1011-1033. DOI:10.1016/J.AUTCON.2009.07.002

172

Kirchner & Huhnt 2021 A formal Approach for Interfaces and Requirements of Smart Objects in Building Models

Proc. of the Conference CIB W78 2021, 11-15 October 2021, Luxembourg

Fischer, M. (2006). Formalizing Construction Knowledge for Concurrent Performance-Based Design.		
Intelligent	 Computing	 in	 Engineering	 and	 Architecture, 13th EG-ICE Workshop 2006, Ascona,
Switzerland. pp. 186–205. DOI:10.1007/11888598_20

GRAPHISOFT (2020). GDL	 Reference	 Guide	 (Archicad	 24).
https://help.graphisoft.com/AC/24/SPA/GDL.pdf.

Hjelseth, E. (2016). Classiϐication of BIM-Based Model Checking Concepts. Journal	 of	 Information	
Technology	in	Construction	(ITcon). 21 (23). pp. 354-369.

Ibrahim, M. & Krawczyk, R. (2003). The Level of Knowledge of CAD Objects within the Building Information
Model. Proc.	 of	 the	 2003	 Annual	 Conference	 of	 the	 Association	 for	 Computer	 Aided	 Design	 in	
Architecture. Indianapolis, IN, USA, October 24th-27th 2003. pp. 173-177.

ISO (2003). Industrial	Automation	Systems	-	Product	Data	Representation	and	Exchange	-	Part	42:	Integrated	
Generic	 Resource:	 Geometric	 and	 Topological	 Representation. ISO 10303-42:2003, International
Organization for Standardization.

ISO (2020). Building	Information	Modelling	(BIM)	-	Data	templates	for	construction	objects	used	in	the	life	
cycle	 of	 built	 assets	 -	 Concepts	 and	 principles. ISO 23387:2020, International Organization for
Standardization.

JORDAHL GmbH (2020). Technische Information: JORDAHL® Schienen und Zubehör. Viewed 2021-06-28,
https://jordahl-group.com/ϐileadmin/user_upload/jordahl-
group.com/downloads/Broschueren/de/JOR_LIT_BR_SUZ_DE.pdf.

Lee, G., Sacks, R. & Eastman, C. M. (2006). Specifying Parametric Building Object Behavior (BOB) for a
Building Information Modeling System. Automation	in	Construction,	Knowledge	Enabled	Information	
System	Applications	in	Construction. 15 (6). pp. 758-776. DOI:10.1016/j.autcon.2005.09.009

Mäntylä, M. (1988). Introduction	to	Solid	Modeling. W. H. Freeman & Co. New York, NY, USA.
Object Management Group (2017). Uniϔied	 Modeling	 Language	 (UML)	 Speciϔication,	 Version	 2.5.1.

https://www.omg.org/spec/UML/2.5.1/ (Visited on 2021-04-13)
Singh, M. M., Anil, S. & Borrmann, A. (2015). Modular Coordination and BIM: Development of Rule Based

Smart Building Components. Proc.	of	Creative	Construction	Conference	2015, Krakow, Poland, June
21st – 24th 2015. pp. 519-527. DOI:10.1016/j.proeng.2015.10.104

Shah, J. J. & Mäntylä, M. (1995). Parametric	 and	 Feature-Based	 CAD/CAM:	 Concepts,	 Techniques,	 and	
Applications. John Wiley & Sons, Inc. 605 Third Ave. New York, NY, USA.

Solihin, W. & Eastman, C. (2015). Classiϐication of Rules for Automated BIM Rule Checking Development.
Automation	in	Construction 53 (May 2015). pp. 69–82. DOI:10.1016/j.autcon.2015.03.003.

Solihin, W., Dimyadi, J., Lee, Y.-C., Eastman C., & Amor R. (2020). Simpliϐied Schema Queries for Supporting
BIM-Based Rule-Checking Applications. Automation	in	Construction. 117 (September 2020), 103248.
DOI:10.1016/j.autcon.2020.103248

Stroud, I. (2006). Boundary	Representation	Modelling	Techniques. Springer London.
Verein Deutscher Ingenieure (2009). 3D	product	modelling	 -	Technical	and	organizational	requirements,	

Procedures,	 tools,	 and	 applications,	 Cost-effective	 practical	 use. VDI 2209:2009, Verein Deutscher
Ingenieure.

Zhang, C., Beetz, J. & de Vries, B. (2018). BimSPARQL: Domain-Speciϐic Functional SPARQL Extensions for
Querying RDF Building Data. Semantic	Web. 9 (6). pp. 829–55. DOI:10.3233/SW-180297

Zhang, S., Teizer, J., Lee, J.-K., Eastman, C. & Venugopal, M. (2013). Building Information Modeling (BIM) and
Safety: Automatic Safety Checking of Construction Models and Schedules. Automation	 in	
Construction. 29 (January). pp. 183–95. DOI:10.1016/j.autcon.2012.05.006

173

