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Abstract 
3D object detection in point clouds is a recurring challenge. While image-based object detection 
shows satisfying results, the application of Deep Learning methods to point clouds is still 
challenging. The creation of training data in point clouds is time-consuming, but often necessary 
as industrial applications require specific labels. We propose a combined image and point cloud-
based approach to localize installations in huge point clouds of public buildings. The Mask R-CNN 
model, trained on limited training data, is employed on reconstructed panoramic images to 
reduce the detection complexity to a limited number of potential occurrences. The exact position 
of objects is obtained by point registration of reference objects. The false positive detections can 
be eliminated by a geometric verification. The combined approach demonstrates the use of 2D 
machine learning techniques for a quick processing of huge data sets and the selective application 
of more expensive geometric verification for exact object localization.  

Keywords: Point clouds, Object detection, Deep learning, Instance segmentation, Point cloud 
Registration, Hausdorff distance 

 

1 Introduction 
 
Building Information Modelling (BIM) is widely used in the Architecture, Construction and 
Engineering domain as well as for facility management due to its potential not just in the planning 
stage, but also for building life cycle management, renovation or physical simulations like HVAC. 
However, the buildings are often not exactly constructed according the CAD plans, have 
undocumented changes or never had digital plans to begin with. Thus, there is an increasing 
demand for creating an accurate as-built model of the existing building. 
 Nowadays, the creation of a BIM from an acquired point cloud is a manual or an assisted 
process requiring larger amounts of interaction. One of the major challenges is the lack of 
semantics in the acquired data. A sample may have been taken from a permanent structure, but 
also from installations, furniture, clutter like cloth or even humans and animals walking through 
the scanning process. Beyond the creation of a digital model of the permanent structures, many 
applications require a detection of installations and contained objects.  
We propose a combined approach of image-based machine learning techniques and geometric 
point-based measures to detect objects with their exact position and orientation within large 
point clouds. While the application of machine learning methods for semantization is an obvious 
choice, the major challenge is the collection of training data. A mixed approach is proposed that 
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provides satisfying results in the use case of detecting installed ticket dispensers and ticket 
control machines in point clouds of French train stations. 
 

2 Related Work 
 
Object detection in images has been a research topic since a long time but progressed quickly 
since the success of deep learning methods. Various detection tasks can be solved by training 
neural networks. Image classiϐication methods constitute the basis of many more advanced deep 
learning methods by assigning a single or multiple labels to an image. Famous neural networks 
for this task are VGG (Simonyan & Zisserman 2014), GoogLeNet (Szegedy et al. 2015) and ResNet 
(He et al. 2016). Object detection methods localize objects inside the image and provide a labelled 
bounding box per object. They often integrate image classiϐication methods for assigning a label 
to each subsection. The two most cited methods are Yolo (Redmon & Farhadi 2018) and Faster 
R-CNN (Ren et al. 2015). Mask R-CNN, an advancement of Faster R-CNN, was introduced by (He 
et al. 2017) and extends the method to instance segmentation. In addition to a bounding box, the 
silhouette of each object is provided as a pixel mask. 
 
 While point clouds are the method of choice for BIM modeling, due to their high accuracy and 
resolution, the state of the art of machine learning methods based on point clouds is still quite 
behind image-based methods. Compared to images, point clouds are unstructured and have a 
high variability in sampling density. In the last years, different approaches have been presented 
to apply neural networks to point clouds. Some methods have shown good results on aerial lidar 
(Blomley et al. 2016), e.g., random forest, but do not translate well into the indoor domain. 
SnapNet, introduced by (Boulch et al. 2018), generates images from different views in the point 
cloud and applies regular convolutional networks to perform a semantic segmentation, i.e., 
assigning a label to each pixel. The labels from the images are projected back onto the point cloud 
to obtain a semantized point cloud. Another approach of discretizing point clouds was followed 
by (Tchapmi et al. 2017). A 3D voxel grid is generated from the point cloud and a 3d convolutional 
neural network is applied for semantization. Promising results by using a graph gated neural 
network without discretization were presented by (Landrieu & Simonovsky 2018). They perform 
a clustering of points to reduce complexity and learn contextual relation between objects. They 
achieve a high precision, however, the processing time for medium sized data sets, ~80M points, 
is already quite high, ~2h. Point cloud-based methods are an active research ϐield and new 
methods are presented each year. However, the effort to create training set for a speciϐic task is a 
time-consuming manual task.  
 
 Another common approach of object detection in robotics is presented by (Aldoma et al. 
2012). They compare various methods to locate keypoints in kinect data, a popular low-cost 3d 
camera introduced by Microsoft in 2009 and generate descriptors on given objects. Classical 
machine learning is used to identify known objects from the generated descriptors. While these 
approaches achieve good recognition rates, they are difϐicult to apply to large datasets of several 
hundred gigabytes. 
 

3 Method overview 
 
Out method provides the following contributions: 

- Combined	 image/point	 cloud-based	 approach	 for	 high	 precision: We combine 
methods from the well-developed images-based object detection domain with point 
cloud-based methods to provide accurate position and orientation in 3D.   

- Requires	2D	annotations	instead	of	annotated	point	clouds: The manual annotation 
of point clouds for an individual application is a time-consuming task. Our method uses 
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2D annotations in the form of silhouettes. Depending on the sought-after objects, even 
bounding boxes may be sufϐicient. 

- Promising	 results	with	 smaller	 amounts	 of	 training	 data: The two-step approach 
allows to compensate for the potentially lacking performance of the image-based object 
detection due to smaller amount of training data. 

 

 
 Lidar scanners can capture their surrounding with a very high resolution and produce 
millions of samples per second. Complete scans of public buildings, e.g., train stations, can thus 
contain several billions of points and have a ϐile size of several hundred gigabytes. Processing that 
large amounts of data limits the choice of methods as global searches become computationally 
expensive. 
 Our method utilizes image-based object detection to narrow down the search complexity in 
large point clouds to a few occurrences, detailed in chapter 4. Often, images are taken during the 
acquisition process form the scanning positions to provide color information for each point 
sample. If no images are provided, a panoramic image is reconstructed from the colored points of 
each scanning position. The global search in the dataset is solved by applying a convolutional 
neural network for object detection onto the panoramic images. 
 The detection results, potential occurrences of the sought-after objects, undergo a geometric 
veriϐication in 3d space to suppress false positive detections while retrieving the exact 3d position 
and orientation, detailed in chapter 5. Using the reconstructed panoramic images from scanning 
positions for object detection, allows to project the image masks into the point cloud to obtain an 
estimated 3d position of the detection, as the positions and orientations of scanning positions are 
known from the registration process. Registering a point cloud of the reference object, which may 
be extracted manually from the point cloud once or sampled from a CAD representation, with the 
full acquired point cloud at the estimated 3d position provides the exact position and orientation 
of the detection. Finally, the geometric veriϐication helps differing correct from false detections, 
by considering the registration quality and the geometric differences between the reference 
object and the acquired point cloud. 
 For some applications, it is difϐicult to collect sufϐicient training data, e.g., if the sought-after 
objects are particular or the acquisition method produces distorted images, e.g., panoramic 
images. The presented method can, however, compensate for a lacking performance due to 
limited training data. Objects are often seen in more than just one scan, and a single detection is 
sufϐicient to identify the object in the point cloud. 
 
 

4 Object detection in panoramic images 
 
The ϐirst part of the method operates on images and helps to narrow down the object detection 
to a smaller number of occurrences. The panoramic images converted from colored point samples 
are fed into a Mask R-CNN network for object detection. The precision of this step may be lacking 

Figure 1. Pipeline of the presented method. Panoramic images are recreated from the input point cloud. A neural 
network performs an instance segmentation to detect the sought-after objects. The 3d positions and orientations 
are found after back projecting the detection mask into point cloud space. False positive detections are eliminated 
via geometric verification. 
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due to a low amount of training data. This is compensated in the subsequent geometric step, see 
chapter 5. 

4.1 Conversion of single scans into panoramic images 
Although most laser scanners capture images to provide color information for each point sample, 
not always are those images distributed with the point data. As LiDAR scanners usually have a 
low angular distortion, it is possible to reconstruct a panoramic image from a colored pointset 
with a known position and vertical direction. The coordinates of the panoramic image correspond 
to the azimuth ϕ and elevation θ angles of each point. To convert the points, they have to be 
transformed into the space of the corresponding scanning position. The two angles can be 
calculated from the normalized vector (𝑥, 𝑦, 𝑧): 

 
θ = 𝑎𝑟𝑐𝑐𝑜𝑠(𝑧) 
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A converted image is shown in Figure 2. The scanner only generates samples, where it captures a 
reϐlected laser signal. The uncovered parts of the image are shown in black. 

4.2 Mask R-CNN for object segmentation. 
The reconstructed panoramic images provide a direct link between the pixels in the image and 
the point samples in the acquired point cloud. Thus, a detection in the image can be converted 
into a set of points. Various deep learning methods exist to perform this task. Mask R-CNN is 
particularly suitable as a state-of-the-art instance segmentation method as it provides a mask 
which assigns a set of pixels to a detected object. However, depending on the sought-after object 
types, a regular object detection method providing only a bounding box instead of a mask may be 
sufϐicient, especially for large compact objects whose silhouette is close to a rectangular shape 
than for thin elongated shapes. 
 Training Mask R-CNN on a smaller set of panoramic images comes with two challenges. 
Complex models trained on a limited training set often leads to an overϐitting of the model. 
Overϐitting describes an adaption of the model to noise and single individual examples and is a 
common problem for complex models. It results in high precision on the used training data, but a 
signiϐicant lower precision on new data. This method heavily relies on data augmentation to 
increase the amount of available training data. Data augmentation generates new training data 
from existing samples, by applying simple modiϐications. Those modiϐications introduce 
alterations to the image, which does not impact the presence of the object. E.g., adding noise or 

Figure 2. Left: Converted panoramic image from color point cloud. No points have been collected in the sky, as 
there is no surface. Some artifacts have been caused by people moving through the scene during the scanning 
process. Right: Actual photo taken be the Lidar scanner. A panoramic photo is periodic, the periodic shift results 
from the point cloud registration during the acquisition process. 
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blur to an image, mirroring or rotating the image or using crops of the original image which still 
contain the silhouette of the labeled object.  
 Another established technique that can be employed against overϐitting is dropout which was 
introduced by (Srivastava et al. 2014). Dropout randomly nodes in the neural network during the 
training process. While not being very intuitive, it has become a well-established technique in the 
community. 
 The second challenge is the large size of panoramic images and their strong distortion, see 
Figure 2. Depending on the used LiDAR scanner and chosen resolution, the number of points in 
single scans, and thus the corresponding panoramic images, can exceed 40 million. Many neural 
networks have speciϐic image input size or do not scale well with large image sizes. To not lose 
information, the input images are cut into several smaller images instead of a downscaling. 
 The distortion in the panoramic images results from the conversion of the point cloud 
generated through a spherical scanning process to a rectangular image. Thus, the distortion is the 
highest at the lower and upper boundary of the image and the distortion is small in the horizontal 
middle part of the image. In the use case of detecting installations for direct human interaction, 
the most likely area in the image falls into the area of lowest distortion. 
 Thus, the input images are cut onto 1024x1024 px subimages centered along the horizontal 
line. The remaining upper and lower parts of the image are equally cut into subimages, which may 
overlap as the dimensions of input images typically are not a multiple of 1024. 
 

5 Geometric object localization 
 
Starting from the masks generated by the Mask R-CNN the estimated 3d position of the potentially 
detected object is calculated. As almost all pixels in the panoramic image correspond to a 3d point, 
the estimated 3d position is given by the average position of the points covered by the mask. 
Pixels in the panoramic image that are not covered by points, e.g., the sky in Figure 2, are simply 
excluded. Starting from the estimated 3d position the point cloud of the reference object is locally 
registered with the acquired point cloud to obtain an exact orientation and position in 3d. In case 
of false positive detections this step is already likely to fail as there are not sufϐicient local 
correspondences between the geometry of the reference object and the acquired point cloud. 
After aligning the reference point cloud, the point clouds are compared to verify identical 
geometry. 

 

Figure 3. Left: Photograph of a “main line” ticket dispenser and the reference point cloud. Right: A photograph of 
the second object, a ticket control machine and its reference point cloud. 
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5.1 Reference objects 
In this paper, the points cloud segmentation use case is an inventory of two speciϐic furniture 
equipment in train stations: “main	 line”	 ticket	 dispensers and ticket	 control	 machines. These 
speciϐic objects, designed from the same factory, allow to restrict the detection to their exact 
geometry. Reference objects, i.e., a small point cloud, of the sought-after equipment are used in 
the geometric step for detecting the exact position and orientation, as well as to perform a 
geometric veriϐication to reject false positive detections from the machine learning part on similar 
objects. The reference object can be manually extracted from a point cloud or automatically 
generated from a CAD model by sampling the outer envelope. The resolution of the reference 
point cloud is down sampled to at most 1 point per cm³. Some missing parts in the reference 
objects are tolerable, e.g., the bottom and top surfaces as they are hidden or not visible from the 
scanner position. The reference point clouds of the sought-after objects in the use case of train 
stations are shown in Figure 3. 
 

5.2 3D alignment 
The reference point cloud is locally aligned with the predicted object in the acquired point cloud 
via point	cloud	registration	method	following a similar approach as presented by (Aldoma et al. 
2012). Point cloud registration can be divided into two different categories: global and local 
registration. Local registration, e.g., Iterative Closest Point, requires the two point clouds to be 
roughly aligned and iteratively aligns the two point clouds by minimizing the distance. The 
estimated position resulting from the Mask R-CNN detection generally does not provide a 
sufϐicient close alignment. Thus, a global registration is required which instead of directly 
minimizing the distance between the two point clouds aims at detecting keypoints in both point 
clouds. Keypoints are distinctive points with a speciϐic neighborhood. This method uses the Scale-
Invariant Feature Transform (SIFT) keypoint of the Point Cloud Library (Rusu & Cousins 2011), 
a 3D variant of the original SIFT keypoint for images introduced by (Lowe 2004). 
 Instead of calculating the keypoints for the whole acquired point cloud, which is very 
expensive considering the common size of several hundred gigabytes of point data, only a local 
area of the acquired point cloud with a radius of 1m around the estimated 3d position is 
considered. 
 Aligning the two point clouds is solved by ϐinding correspondences for the keypoints of the 
small reference point cloud within the keypoints of the acquired point cloud and minimizing the 
distance between them. As this is an error prone process, the RANSAC principle (Fischler & Bolles 
1981) is applied that aligns a random small number of corresponding keypoints and uses the 
remaining keypoints to verify a good alignment. This process is repeated to ϐind an alignment that 
ϐits the largest number of keypoints. After the keypoint-based global registration, a local 
registration using Iterative	Closest	Point is applied for a ϐine alignment. The result of registering a 
reference point cloud with the acquired point cloud is shown in Figure 4. 

Figure 4. Left: Reference object placed at the estimated 3d position before registration. Right: After 
registering the reference object is well aligned with the real object. 
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5.3 Geometric Verification 
After aligning the reference model with the acquired point cloud, the aligned geometry of the 
reference object should match the acquired point cloud in case of a correct detection. The point 
cloud registration, however, will always provide the best match as a result, no matter if those two 
point clouds actually share a similar geometry or not. As the performance of the machine learning 
method strongly depends on the amount of training data, the number of false positives may be 
high if not much training data is available. Thus, after registration a comparison between the 
aligned reference object and the acquired point cloud is performed to reject a false detection. To 
validate a correct detection the point cloud of the reference object is compared in its aligned 
position within the acquired point cloud. 
 The geometry is compared by checking if in the acquired point cloud there are points close to 
the points of the reference object. In other words, it is veriϐied that there is an object in the scene 
that has the same shape as the reference object. 

For verifying the geometry of the object, the one-sided Hausdorff-distance is used, i.e., for 
each point of the reference object, the distance of the closest point in the acquired point cloud is 
calculated, see Figure 5. If the distance is below 3cm, the geometric matching is assumed correct. 
In addition, the orientation of the aligned reference object is considered. If the alignment is non 
vertical, the detection is discarded. 

6 Experiments 
 
The method has been implemented by using the public Mask R-CNN implemented provided by 
Matterport (Matterport 2019) as well as the Point Cloud Library (Rusu & Cousins 2011) for the 
point cloud registration and distance calculation. The manual labeling of the training dataset for 
our use case is done with the COCO Annotator tool (Brooks 2019). 
 The point clouds of 5 different train stations were used in this study. The smallest one 
consisting of 33 scanning positions and around 390M points and the largest one with 576 
scanning positions and approximately 18 billion points. 126 different pictures containing one of 
the two reference objects, see Figure 3, have been identiϐied and labeled in order to build the 
machine learning 2d dataset. However, in many cases the objects are quite small in the 
background. 
 

Figure 5. Left: False positive detection of a ticket dispenser on a soda vending machine. The registration does not 
provide a proper alignment as the objects do not match. Right: Original point cloud of reference object and the 
same point cloud colored by the distance of the closest point in the acquired point cloud. Blue color indicates a 
satisfying close alignment and red indicates a distance of more than 20cm. 
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 The training of the Mask R-CNN neural network used the pretrained network from the COCO 
dataset (Lin et al. 2014) to speed up the training. For comparison of the performance with low 
amounts of training data, two models have been trained. One on the limited number of 111 
annotated panoramic images and one on a training set of 466 images including photos manually 
taken by the authors using regular cameras and images collected from the web. The results of the 
model trained only on panoramic images is shown in Figure 6. Out of 27 occurrences of the 
sought-after objects, 22 were detected correctly, 5 objects were missed and additional 6 false 
positives were reported. The geometric veriϐication successfully suppressed all 6 false positives 
leading to a detection precision of 1,0 with a recall of 0,815. 
 The second model trained on a much larger training set using regular photos achieved a 
detection performance of 23 detected objects, 4 missed occurrences and 5 false positives. After 
successful suppression of the false positives by the geometric veriϐication, a precision of 1,0 and 
a recall of 0,851 was achieved. Both evaluations did not consider, that some pictures showed the 
same actual instance of an object in different images. In this case, a single correction is sufϐicient. 

Figure 6: Results of the Mask R-CNN step before the geometric localization step to suppress false positive 
detections. Trained on crops from 111 reconstructed panoramic images, the results of the classifier on 15 images 
are shown above. Out of a total of 27 occurrences, 22 have been detected correctly. There are 6 false positives 
and 5 false negatives, i.e., missed occurrences. The subsequent geometric verification achieved a suppression of 
all false positives. In most cases the missed occurrences are in the background with one major exceptions, shown 
in the mid images in the top row. 
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However, due to the limited number of object occurrences in the reconstructed panoramic 
images into account, multiple occurrences of the same object were not considered in the 
evaluation. Using a large number of regular images showed to improve the detection performance 
compared to the much smaller number of reconstructed panoramic images. Considering that the 
same instance of an object typically appears in 3 to 4 images according to the provided datasets 
both models provide a satisfying detection performance. 

6.1 Limitations 
The main limitation of our method is the requirement of reference objects. However, providing 
an orientation of detected objects is difϐicult without knowing the shape of the object. Additional 
limitations come from the strict geometric veriϐication. Although the ticket	control	machine in the 
storage room, see Figure 7, were detected by the machine learning method, the detection was 
later rejected. 

6.2 Conclusion 
This paper presents an instance segmentation method for unstructured point cloud scenes. Due 
to the lack of existing point cloud datasets with suitable labels and the current complexity of 
handling huge volumes of points, the authors chose to mix well known image segmentation 
machine learning technics (Mask R-CNN approach) with point cloud registration methods. 
Obtained results are a partially labelled point cloud scene. The covered use case brings some 
methodological simpliϐications: target objects need to have a ϐixed geometry (industrial 
manufacturing), allowing the use of reference point cloud objects. A dataset composed of 466 
images is created and manually labelled in order to train a Mask R-CNN model. This model is 
applied to images extracted from colorized point cloud scenes. Outputs are 2D instance class 
masks that are mapped on the raw point cloud. Then, point cloud registration techniques (SIFT, 
Iterative Closest Point, Hausdorff-distance) are applied to reϐine predictions into the point cloud 
scene. 

 
 The presented approach deals with limited amounts of training data for machine learning in 
industrial applications while still achieving promising results. If very large amount of training 
data was available at some point, it could be possible to include the orientation of objects into the 
learning process and ϐinally avoid the need of reference objects. The orientation of an object could 
be learned as an additional label, e.g., “ticket dispenser machine” & “facing_angle_45_deg” 

Figure 7: Challenging cases for the method. Left: Larger parts of ticket dispenser may be hidden in the wall and 
additionally occluded by people. Due to operational reasons, the acquisition in public buildings often happens 
during operational hours. Right: Although the AI based object detection correctly identified the ticket control 
machine, the geometric verification rejected those detections due to non-vertical orientation. It can be discussed 
if the object should be detected in this case or not. 
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providing the relative orientation of the object towards the scanner. However, removal of the 
geometric localization would also introduce a lower precision in 3d position and probably 
orientation. 
 The proposed segmentation method is suitable for detection and tag of industrial objects 
having a ϐixed geometry. Future works will be focused on parametric objects such as doors and 
windows. Last types of objects, the more difϐicult, are those with non-predictable geometries such 
as ϐloors. 
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