

Future of the Industry Foundation Classes: towards IFC 5

Léon van Berlo, leon.vanberlo@buildingsmart.org
buildingSMART	International,	London,	United	Kingdom	

Thomas Krijnen, t.f.krijnen@tudelft.nl
Delft	University	of	Technology,	Delft,	The	Netherlands	

Helga Tauscher, helga.tauscher@htw-dresden.de
HTW	Dresden	-	University	of	Applied	Sciences,	Dresden,	Germany	

Thomas Liebich, tl@aec3.de
AEC3,	Munich,	Germany	

Arie van Kranenburg, management@arkey.nl �
Arkey	Systems,	Houten,	The	Netherlands	

Pasi Paasiala, Pasi.Paasiala@solibri.com �
Solibri,	Helsinki,	Finland	

	

����������
The buildingSMART Technical Roadmap, published in April 2020, was the start of multiple
modernization efforts for buildingSMART Solutions and Standards. The modernization,
modularization, and normalization of the Industry Foundation Classes (IFC) is one of the
priorities. A taskforce has been working on restructuring the core of IFC for the IFC 5
developments. The following topics are discussed and researched (a) modularization of IFC (b)
normalization of the IFC object trees and relations (c) language independency of the base data
structure (d) modernization of the deployment tools and procedures for maintaining IFC. This
paper reports progress on all these topics.

The normalization of the object tree is an integrated effort that involves changes in the use of
objectiϐied relations, property sets and predeϐined types. The modularization provides
interoperability between domains and a solution to easily support incremental updates in
software implementations. This so called 'late binding' approach and the consequences on the IFC
schema have been researched and reported in this paper.

The paper is a progress report with an overview of considerations and work done so far. It
will end with a discussion chapter about consequences of the modernization work and a call for
participation in further developments.

Keywords: IFC, openBIM, BIM, Industry Foundation Classes

1 Introduction
In April 2020 buildingSMART International published the ‘Technical Roadmap’ (Berlo, 2020)
subtitled ‘Getting ready for the future’. The future of the Industry Foundation Classes (IFC) was a
major topic of the roadmap. After publication of the roadmap, a small taskforce team has started
laying the groundwork of the new IFC version 5 standard. This taskforce has extensive experience
with IFC and consists of a mix of implementors, data modelers and academic inϐluences. The

123

Berlo et al. 2021 Future of the Industry Foundation Classes: towards IFC 5

Proc. of the Conference CIB W78 2021, 11-15 October 2021, Luxembourg

authors of this paper are all part of the IFC 5 taskforce. The taskforce met every two weeks to
integrate and discuss ideas and solutions for IFC 5. In between they worked on their own on
certain topics.

This paper is authored a year after publication of the roadmap and conception of the IFC 5
taskforce. It is intended as a status report of work in progress. It should be seen as a discussion
paper with the intent to broaden the participation in the development of IFC 5.

1.1 Background and Motivation
The ‘buildingSMART Technical roadmap’ published in April 2020 covered a wide range of
technical topics, including standardization of APIs and additional services like the buildingSMART
Data Dictionary (bSDD). It is an integrated approach to modernization and integration of different
standards and solutions from buildingSMART. The Industry Foundation Classes (IFCs) are the
ϐlagship standard of buildingSMART. It is the most mature standard that has a long history and
many implementations in software. Currently, the conceptual model of IFC is closely associated
with the EXPRESS modelling language. This makes it hard to represent IFC in different formats
than STEP. Using STEP was probably the best choice to model the IFC schema when it was
targeting ϐile-based exchange.

With new concepts like smart buildings, smart cities, and digital twins just around the corner,
there is an increased expectation for future-proof standards and solutions. The increased demand
for partial updates of BIM data, filtering high data volumes, low latency in exchange, applications
of Artificial Intelligence and Machine Learning cannot be met with file-based information silos.

The IFC 5 taskforce was facing a massive challenge when starting to work since the topics of
language independency, modularization, normalization, and new use-cases are interconnected.
Topics of discussion are interwoven and there is a high threshold to the integrated view. After a
year many of the core topics have been discussed and this paper provides an overview of the
current status. Next steps will be to further develop IFC 5 in different sub teams focused on the
product tree, relations, geometry, and other resources.

 The IFC 5 initiative focusses on modernization and normalization to support the new use-
cases. It does not intent to add new domains or other content. That means the upcoming IFC 4.3
version and IFC 5 will have the same semantic scope. This way the IFC 5 release can focus on
technological agreements and is not limited by long consensus-forming processes on semantic
definitions.

1.2 History and formative principles of IFC
The origins of IFC date back to 1995 when the development started. Many of the now common
frameworks for describing data models and data exchange serializations, such as UML, XML or
JSON did not exist at that time, or they were still in early development stages. The most mature
framework to deϐine a data schema and its serialization at that time was STEP (the series of ISO
10303 standards). Therefore, IFC had been developed based on EXPRESS for data schema and
STEP physical ϐile, SPF, for ϐile-based exchanges.

Now, 25 years later, IFC has become the most recognized open exchange format for Building
Information Modeling (a term, that was only coined after IFC development had begun). Hundreds
of software applications are IFC-compatible by allowing export and/or import of IFC ϐiles, and
millions of IFC ϐiles have been generated, still based on the original technology stack of EXPRESS
and SPF.

On the other hand, new challenges lie ahead, and new technology frameworks are available.
UML has become the most commonly used language for deϐining object diagrams, XSD/XML has
become the most used technology to deϐine and exchange semantic data followed by Json Schema
and Json, and semantic web technologies such as OWL are around. Most developers are ϐluent in
these technologies but have little to no experience with EXPRESS, the same applies to the
available tooling.

Therefore, the time is ripe to reconsider the underlying framework on which IFC is based. A
similar challenge is coming from the ever-growing IFC data schema itself. There is the constantly
increasing subtyping tree of elements, often only representing a particular domain-speciϐic

124

Berlo et al. 2021 Future of the Industry Foundation Classes: towards IFC 5

Proc. of the Conference CIB W78 2021, 11-15 October 2021, Luxembourg

classiϐication. This becomes particularly evident when the infrastructure extensions require
addition of new element classiϐications for the new domains. The latest head count had about 880
entities (or classes) for the upcoming IFC 4.3 release. Within the geometry resources, the various
ways to express shapes add to the complexity.

Over the last 20 years many extension projects that were carried out by buildingSMART (or
IAI, as it was previously known) led to additions to the schema, not all of which had ever been
supported by a broader range of applications. In practice there is a subset of the schema that is
well-supported among applications, namely the IFC 2x3 Coordination View and the current IFC 4
Reference View. At the same time, other parts of the schema are not yet validated by intense use.

A very early powerful decision in IFC development was to exclude most domain properties
(with some partially questionable exceptions) from the IFC EXPRESS schema. These are instead
treated as reference data - the so called IFC property sets. Even though this may not be precise
language, they are referred to as a “late bound” extension to IFC. They are not part of the schema,
but still part of the overall IFC speciϐication. To illustrate this, consider IfcProduct, the abstract
supertype in the IFC schema that introduces the concept of representation and placement, in
other words, the supertype of most elements that are visible to a user. In the IFC 4.3 rc3 schema
there are 221 (transitive) subtypes of this class. The median number of attributes introduced at
these specializations is 1 (mean: 0.987, max: 9 for IfcReinforcingMesh). In most cases1 this is the
attribute named PredeϐinedType, an attribute that points to a speciϐic enumeration for an entity
that (by means of an attribute) establishes a more granular subtyping hierarchy. When ignoring
the PredeϐinedType attribute, the median number of attributes is 0, the mean 0.34. To put this
into perspective, there are 2661 property and 266 quantity deϐinitions distributed over 462
property and 96 quantity sets (although note that these are not necessarily unique as currently
there is no mechanism for inheritance among property sets).

1.3 New use-cases
The current IFC is optimized for file-based exchange. To facilitate current use-cases like working
with connected CDEs, and new business concepts like Digital Twins, connections to (streams of)
sensor information, automated (micro)services, and future Smart cities require an object-based
use of IFC data. IFC needs to become capable of transactional exchanges, allowing smaller discrete
exchanges.

Transforming IFC to be capable of being used in a transactional environment is a huge task,
and a drastic shift from the ϐile-based optimization modelling techniques that are used up until
now. Transactional capable IFCs can still be exchanged as ϐiles but also accessed, maintained, and
exchanged using an ‘Application Programming Interface’ (API). Partial (transactional) ϐile
exchange, or exchange of ‘changes’ (sometimes called ‘deltas’) is an industry need already. CDEs
and Digital Twins are strongly based on the interoperability of different systems via APIs. Thus,
API standardization is an activity buildingSMART should focus on in the coming years. Both use
IFCs through an API and partial ϐile exchange are difϐicult with the current structure of the ϐiles.

Changing the optimization objective for IFC from ϐile-based exchange to use in a transactional
environment is a big cultural change. It means the tech community of buildingSMART needs to
use other key performance indicators for the development of IFC than they have been used to for
the last 15 years.

1.4 Scope
The normalization of the IFC Geometry core and the IFC Resource layer have not been discussed
in the IFC 5 taskforce yet and therefore this paper cannot report any progress. The integrated
modernization and normalization of the IfcProduct tree got priority. Changes to the IfcProduct
tree are likely to influence the content in the resource layer. Standardized conformance levels will
certainly influence the publication of concept templates and the purpose of mvdXML. And the
changes in the specialization tree will most likely change the way material layers are defined and
modelled.

1 163 subtypes have at least one attribute, 37 subtypes have at least one attribute when disregarding
PredefinedType.

125

Berlo et al. 2021 Future of the Industry Foundation Classes: towards IFC 5

Proc. of the Conference CIB W78 2021, 11-15 October 2021, Luxembourg

 In parallel to the IFC 5 taskforce, work on IFC 4.3 alignment has also inspired the direction for
IFC 5. The split between geometry and semantics for IfcAlignment makes the schema more
predictable. This concept is likely to be used for other placement entities like IfcGrid as well.

1.5 Context and related initiatives
Amor (2015) presents an analysis of how the IFC schemas has evolved over time. He found
signiϐicant increases in number of entities and attributes for the transition from IFC 2x FINAL to
IFC 2x2 FINAL and from IFC 2x3 to IFC 4. He notes that the number of optional attributes has
increased in IFC 4 (for example owner history and the position placement on sweeps) and that
little of the schema semantics are expressed in formal rules.

Especially in the Semantic Web domain a lot of energy has been invested in transforming,
modularizing, and simplifying the IFC schema (or ontology; by the typical idiom in that ϐield).
Where this started as direct transformation of the IFC EXPRESS schema and modiϐications to
result in a more idiomatic ontology (Beetz et al. 2009) and analyses to introduce modularity
(Terkaj and Pauwels 2017). In later years effort has shifted more towards novel independent
ontologies such as presented in Pauwels et al. 2017 and Rasmussen et al. (2019). Not all this work
can be easily embedded back into the core IFC schema development. Some of the changes
recommended in this domain are speciϐic to work around limitations in their encodings such as
inefϐiciencies in ordered sequences or require the extensibility and ϐlexibility of subject-
predicate-object information representation mechanism. The aims are also slightly different, with
a central notion of empowering engineers to make ad-hoc links (Linked Data) as opposed to the
standardization of workϐlows and usage patterns for implementation by a wide set of software
vendors.

While IFC is developed outside of the ISO 10303 community, it shares the main technologic
foundations with the STEP standards: the IFC schema is predominantly deϐined in EXPRESS (part
11), the most prevalent encoding of instance models is the Step Physical File (part 21) and the
majority of geometry deϐinitions in the IFC schema are derived from part 42. The committee
behind STEP, ISO/TC 184/SC 4, is in the process of adopting SysML for parts of their schema
management, although it is not entirely clear to the authors to what extent, as there is little
information published publicly. From conversations with people in this community the authors
have heard that one of the main drivers behind this transition is to be able to apply model-based
engineering to the schema development itself. In this approach, every schema component (entity,
attribute, rule, …) is an object in a model that has a unique identiϐier and can be annotated and
formally checked. This is different from the primarily text-based EXPRESS modelling language.
Since ISO 10303 is a network of standards with complex relationships between the parts and
application protocols a model-based approach is deemed necessary.

Model-driven architectures (MDE) and engineering (MDE) have advanced to mature
technologies with wide-spread application during the last decades. With the Meta-Object Facility
(MOF) the OMG has lifted the Uniϐied Modelling Language (UML) from a visual language for
diagrammatic representation of object-oriented software systems to a full-grown modelling
language. This forms the base for early and recent works to apply MDA/MDE to STEP or IFC and
leverage its potential for schema and data integration (for example Combemale 2017, Jetlund
2020, Tauscher 2020).

2 Modularization
IFC originally focused on the standardization of data definitions in the building industry. In recent
years it expanded into other domains and covers the whole built environment. IFC ‘Model View
Definitions’ (MVDs) are a layer on top of IFC to define additional restrictions. Interoperability is
only guaranteed within a single MVD, not between different MVDs.

 To solve these issues, the IFC schema needs to become modular. Modularization of the
schema makes it easier to separate responsibilities, distribute the maintenance of the entities,
and possibly even have separate release cycles per module. The three functionalities that are
currently provided by the MVDs need to be further developed in separate, coordinated initiatives.
Modularization will facilitate this by creating a shared (interoperability) layer in the schema as a

126

Berlo et al. 2021 Future of the Industry Foundation Classes: towards IFC 5

Proc. of the Conference CIB W78 2021, 11-15 October 2021, Luxembourg

base for the modules. The specialization structure of IFC allows for dynamic (‘late binding’)
modules that extend the base layer.

	������ͳ: Modules (yellow) on a shared base (red layers) for interoperability between domains.

This will make the implementation in software more predictable. A conceptual representation of
modularization is provided in Figure 1. It shows the Interoperability layer, comprised of the three
red layers in the picture. The dark red layer represents the IFC resource layer.

When the shared base is implemented, the modules are extensions to define additional
classification and properties on top of the shared layer. The split could be done on all
specializations from IfcBuiltElement, or possibly on IfcProduct when the implications are not too
drastic. Other branches like the tree below IfcControl and IfcProcess need to be reconsidered as
well. When the red interoperability layers are implemented in full, no matter what module the
software supports, interoperability between domains will be guaranteed. Strict implementation
of this shared base is crucial. Therefore, this part of the schema needs to be revised to create a
base that is straight-forward, with minimal modelling complexity to make it stable and
predictable to implement. When the shared base is implemented in software according to a
strictly defined conformance level, every export from any software will provide a dataset that can
be imported in any other software tool with the same conformance level. In other words, a ‘one
star’ export from ‘module A’ can always be imported in any other software tool that implemented
‘one star’ IFC, no matter what module is supported or certified. This creates the predictability for
IFC to be the base for Digital Twins, and the ability to support use cases where data is exchanged
through APIs instead of files.

Depending on how software vendors implement the modules (extensions with classifications
and properties), new modules or updates could potentially be supported instantly. Even when
this is not immediate, the time between the publication of a new version of an IFC module (i.e.,
extension), and the availability in software would decrease drastically.

2.1 Current situation: Static schema with PSets
In IFC 4.x the deϐinitions are published in the form of a static schema deϐined in EXPRESS and
additional deϐinitions stored in property set deϐinitions (PSD). From the viewpoint of
management of the standard, the distinction is that, on the one hand, there are resources in the
schema that have an unambiguous clear meaning: e.g., the dimensions of a rectangular proϐile
govern the exact geometric form, but the semantic distinction between major element categories
such as walls and columns are less precise, their properties often do not affect processing in
software but are mostly for human inspection or ϐiltering.

Currently, the separation between these two major forces in the IFC schema development,
well-established foundational resources and domain speciϐic taxonomies and properties, is not
clearly articulated. As a result, the support of new domain-speciϐic use cases is hindered by slower
moving forces of the schema development, software implementation and release cycles. On top
of that, the semantic link between property sets and elements is weak, it consists of ad-hoc XML
ϐiles of which the exact semantics are underspeciϐied. These things considered, one of the main
objectives outlined in this document is to unify these principles of fast and slow evolution into a

127

Berlo et al. 2021 Future of the Industry Foundation Classes: towards IFC 5

Proc. of the Conference CIB W78 2021, 11-15 October 2021, Luxembourg

well-understood meta-modelling approach. This will enable model-based engineering and
development in a cohesive modeling environment so that the implication of changes on all layers
is clear. This paper will not introduce a new approach into the IFC speciϐication, but rather rectify
the distinction between schema and standardized meta-data to also include the taxonomy in the
latter.

2.2 Late-binding implementations and the “late-bound portion” of IFC
The following paragraphs provide a brief informal introduction to the idea of late-binding

implementations. We then highlight the use cases that beneϐit from a full or partial late-binding
implementation and show how the approach has been adopted in IFC as so-called “late-bound”
portion of the schema. In Section 2.3, we describe and discuss the planned changes and
improvements for IFC 5.

Binding, in particular name-binding, denotes the resolution of names that point to data or
program execution instructions in computer memory. In a program, for example, a variable name
needs to be resolved to the memory address of the assigned value when reading the respective
variable or a method name needs to be resolved to the memory address of instructions derived
from the method's code when calling the respective method.

With regard to standardized conceptual models such as IFC, the notion of name-binding has
been extended from how names in a computer program are resolved to how names in the
conceptual model are resolved. Early-binding implementations consider a particular conceptual
model or schema at implementation/compile time by creating particular data structures (e.g.,
classes in object-oriented programming) following the standardized model or schema. They are
called early-binding, because the binding happens at compile time and cannot be changed at
runtime. Late-binding implementations, on the other hand, consider a particular conceptual
model or schema at runtime only and keep implementation and compilation based on names as
unbound string values.

While a late-binding implementation treats instances generically only based on the
serialization data structure and thus can handle unknown model elements, an early-binding
implementation is better able to actually interpret model elements and implement operations
according to model semantics. However, not all use cases need full domain model semantic
support. The following use cases can be distinguished in the AEC context with regard to the
necessity of interpreting of domain model semantics:

x Plain	viewers: There are no native concepts that correspond to domain concepts and no

interpretation is necessary.
x Cross-discipline	import	for	reference	in	an	authoring	tool: This is similar to the case of plain

viewers.
x Import	 for	 processing	 in	 same-discipline	 authoring	 tool: Only domain concepts

corresponding to native concepts of the importing software need interpretation, others
may only need to be retained for export or for generic display.

x Analysis	and	model	checking: This use case is similar to authoring tools, but no export
involved.

None of the use cases requires interpretation and thus direct early-binding implementation of the
entire schema. All cases, however, require a way to ignore unknown semantics or to handle it in
a generic way – for all or large parts of the domain-speciϐic part of the schema. Yet, the core and
in some cases a particular use-case relevant portion of the domain module would beneϐit from
more rigid treatment as in early-binding implementations. The question arises how to achieve
forward-compatibility, partial and reference-only coverage in otherwise early-binding
implementations and thus how to bring some of the ϐlexibilities of late-binding implementations
into early-binding implementations. In other words: How to combine the best of both worlds?

The IFC-answer to this question was to embed an approach into the schema that is inspired
by late-binding implementations. Instead of instantiating domain-level entities and attributes as
per the mechanisms of the implementation method (for example SPF, XML, or source code),

128

Berlo et al. 2021 Future of the Industry Foundation Classes: towards IFC 5

Proc. of the Conference CIB W78 2021, 11-15 October 2021, Luxembourg

domain-level classes and attributes are referenced by name with dedicated String attributes. Only
generic entities and attributes from the core are instantiated properly, while entities and
attributes from the core are only marked as instances of a particular schema concept via reference
which can be resolved dynamically in applications. The essential IFC concepts to achieve these
name-based references are the attributes IfcObject.PredeϔinedType to represent class names2 and
IfcProperty.Name to represent attribute names.3 This way most attributes and many classes have
already been factored out of the core schema. With IFC 5 we attempt to strengthen and extend
this approach and apply it consistently.

2.3 A meta-model for the late-bound part

Figure 2. MOF metamodel levels and dynamic instantiation (“late binding”), core, domain, and meta packages.
Each package contains one model element for illustration purposes. Different options to represent the “late bound"
domain package is labelled (a) and (b), see also Figure 3.

First, in IFC 5, both the core and domain parts of the schema shall be speciϐied using the UML as
can be seen in Figure 2. The Figure shows a metamodel architecture with three metamodel layers
according to the Meta Object Facility (MOF)4 deϐined by the OMG. Level M1 comprises an IFC
population with a particular instance. Level M2 contains the IFC schema, divided into a core and
domain package. Entities in M1 are instances of the concepts in M2, with a dynamic (late-bound)
instancing mechanism for the domain module. Level M3 contains the metamodels used to specify
schemas in M2, the UML is used for both the core and domain package (a). In parallel, the domain
package is described using the property set meta concepts (b) introduced in IFC 4 as
IfcPropertyTemplateDeϔinition	and subclasses. We are extending and harmonizing this part of the
schema into a meta package that corresponds well with a subset of the UML. Figure 3 shows
excerpts of the UML and PSet meta models and how these relate to each other. Elements with the
same horizontal alignment (in one row) correspond and can be easily mapped.

2 This claim may seem counter intuitive because PredefinedType is not a “free” string attribute, but an
enumeration defined in the schema. However, keep in mind that an enumeration is basically just a
constraint on the possible values of a string attribute and all PredefinedType enumerations contain a value
“USERDEFINED” that allows to circumvent this constraint.
3 To be complete, we also must mention IfcPropertySet.Name to represent names for structured datatypes
consisting of multiple attributes.
4 Object Management Group (2019). Meta Object Facility (MOF) Core Speciϐication 2.5.1.

https://www.omg.org/spec/MOF/

129

Berlo et al. 2021 Future of the Industry Foundation Classes: towards IFC 5

Proc. of the Conference CIB W78 2021, 11-15 October 2021, Luxembourg

Figure 3. Samples from the metamodels of the domain module: (a) UML, (b) extended property set meta model.
Existing classes and associations are shown in grey, new classes/relations in black. Names provisional.

Further changes in IFC 5 include the relocation of more elements from the core into the late-
bound portion of the schema, in particular predeϐined types and potentially some of the leaf and
low level IfcObject	subtypes. With larger part of the taxonomy moved to the late-bound part, the
domain metamodel will have to include concepts to express subclassing. Remaining direct
attributes in the core, such as IfcDoor.OverallHeight are moved to late-bound part. There is still
an ongoing discussion as to whether relationships must be included in the late-bound part.

The late-bound portion of the IFC schema will ease implementation of software
implementation of reading IFC, since it can be applied runtime, as opposed to the early binding
part that is typically applied compile time. An instance in an IFC ϐile will reference a late-bound
concept by name and importing software can use that reference as a key to read more information
about the component, such as its display name in a local language. This way, the software does
not need to be aware of the late bound concepts and still its users will be presented with
meaningful information. For concepts that a software has native support for, the reference to the
late-bound concept can be used as a key to retrieve information from the schema such as allowed
attribute names and types and process those instances in more detail. With the more formal
deϐinition of the late-bound portion (continued from the IFC 4 attempts), this will foster schema
validation of instances.

It must be noted that the so-called late-bound approach comes at a price: 1. Population sizes
increase for generic instances, for example because schema implementation methods with
positional assignment of attributes turn into named assignment and implementation methods
with named assignment introduce redundant name attributes. 2. Mixing different meta-levels and
modelling languages increases complexity and may make it more difϐicult to understand the
speciϐication. There are, for example, two different ways of how instances relate to the deϐining
classes for the core and domain extension modules. 3. There is less ϐlexibility in choosing early-
or late-binding approaches on the implementation side, as the scopes are prescribed by schema.
Even though this is done in the most reasonable way with existing and future software
implementations in mind, implementation of only parts of the late-bound schema in early-binding
fashion may be attempted and will be more difϐicult. For interpretation of the semantics of
concepts in the late-bound part, instances must be bound twice, at compile time for the core
schema, and at runtime for the domain schema. 4. Domain package may get large and need further
internal differentiation, e.g., to distinguish essential (mandatory) from standardized and user-
deϐined domain-speciϐic attributes or properties.

130

Berlo et al. 2021 Future of the Industry Foundation Classes: towards IFC 5

Proc. of the Conference CIB W78 2021, 11-15 October 2021, Luxembourg

3 IFC Product tree normalization

3.1 New hierarchy
One of the core parts of the IFC schema is the taxonomy of “rooted” elements, a single-inheritance
hierarchy of all entities outside of the resource layers, shown in Figure 4. In this taxonomy, each
level follows a unique discriminator to iteratively reϐine the classiϐication of entities. Level 1
contains the root of this hierarchy, conveniently named IfcRoot. It has a mechanism for a stable
instance identity (an attribute called GlobalId, optional at this level), a mechanism for tracking
changes and status (made optional in IFC 4, named OwnerHistory) and a textual name and
description. Level 2 provides the main differentiation between elements, their attributes, and
relations with three subtypes of IfcRoot: IfcObjectDeϔinition for things and processes,
IfcPropertyDeϔinition (renamed) for characteristics, and IfcRelationshipDeϔinition for
relationships. The attribute GlobalId becomes mandatory for object deϐinitions. These two levels
are in the main unchanged from the current schema. Level 3 introduces occurrence and type for
object and property deϐinitions. Changes for this level are discussed in Section 11. Level 4 adds
classiϐication regarding shape and location.

To prevent unnecessary incompatibilities between IFC versions, the taskforce has been
careful applying changes to this hierarchy. One of the main changes, that is necessitated by the
shift to a partial late-bound representation of this hierarchy is a clear demarcation for the
subtypes of IfcProduct in Level 5 to distinguish between all things physical (IfcElement), all
elements that pertain to the spatial subdivision structure (IfcSpatial[Element]) and all constructs
that affect appearance of other elements (IfcFeature[Element]). The practical advantage of this is
that implementations of older versions of the early-bound schema can function well on newer
versions of the late-bound schema. For example, most viewers hide IfcSpace elements when the
model is initially loaded, and, depending on model view, need to subtract opening elements from
their hosts. In this late-bound subtypes for spaces and openings can be introduced inheriting their
implied semantics from early-bound types.

The placement and speciϐication of IfcOwnerHistory and IfcContext are still subject of
discussion.

Figure 4. Overview of the new taxonomy. Note that the subtypes in this overview are not exhaustive.

3.2 Occurrence and type
In IFC nearly all elements can be of a type. Elements can reuse information stored at the element
type. Every property that is not speciϐic for a particular instance can be stored in an element type,
including the geometry. Even spatial elements can have a type, but in the current IFC version, this
is only true for IfcSpace. The IfcSite, IfcBuilding and IfcBuildingStorey do not have a corresponding

131

Berlo et al. 2021 Future of the Industry Foundation Classes: towards IFC 5

Proc. of the Conference CIB W78 2021, 11-15 October 2021, Luxembourg

type, which can be seen as an omission. The relation between an element and its type is currently
deϐined with the objectiϐied relation IfcRelDeϔinesByType, which is a 1: N relation between a single
element type and multiple elements.

Elements can be of a type. There can be elements without a corresponding type. As a result,
in current schemas there are not only the entities IfcElement and IfcElementType, but also an
IfcDoor and an IfcDoorType. The full specialization of IfcElement is mirrored at the side of
IfcElementType. These two taxonomies are not always synchronized, neither at the entity level,
nor on the attribute level. For example, there is an IfcFeatureElement, but no
IfcFeatureElementType. IfcDoor has attributes OverallHeight and OverallWidth, but they are
missing for IfcDoorType, where they would belong instead.

Both IfcElement and IfcElementType carry an attribute PredeϔinedType, which contains for
every kind of element a value out of a domain of subtypes of that kind. The current IFC schema
already contains a constraint for element is of a type to have their PredeϔinedType attribute set on
the type side. For example, for an IfcWindow the values of PredeϔinedType can be Window, Skylight
or Lightdome. The value Window can be seen as "usual" or "normal" window. Instead of the usage
of the attribute PredeϐinedType there could be the possibility to deϐine real subtypes as IfcSkylight
and IfcSkylightType. But that will lead to an explosion of entities. And changing the domain of an
enumeration is far easier than introducing new entities. We propose to make the element type
mandatory, such that the specialization of IfcElement is no longer necessary. A door will become
an IfcElement of an IfcDoorType. As a result, more than hundred entities can be removed from the
schema. But also, the attributes ObjectType and PredeϔinedType can be removed from the
remaining IfcElement. Until now it is possible, but invalid, that a window is of a door type. This
check is now made in the receiving application but is not supported by the schema. Therefore, is
it not certain if this situation is recognized by the software. It is possible that one application says
interprets it is a window and another as a door.

Applications which will export elements without the corresponding element type have to
introduce the usage of element types, even if there is no reuse of the type. And if there are
subtypes of IfcElement in the schema without a corresponding type, that type must be added to
the schema. Example of this is the already mentioned IfcFeatureElementType. When combined
with moving all the subtypes out of the core, the advantage becomes even more evident. An
IfcElement will be of the type IfcElementType. The IfcElementType will have a single attribute
which have a value that deϐines that the element type is "door", or one of its subtypes. Even the
user deϐined subtypes will move to the "late binding". Figure 5 shows an example with an entity
instance (ET2) of class IfcElementType and dynamic domain class SolidWall. As a result, the
current "double tree" at the "early binding" will change into a "single tree" in the "late binding".
The attribute PredeϔinedType can disappear, because it will be replaced by real subtyping at the
"late-bound" side.

Figure 5. Provisional UML diagram showing excerpts of the core (left) and domain (right) taxonomies, classes, and
associations for the occurrence-object type relationship (DefinesElementByType) as well as for instance-level
“inheritance” (DefinesTypeByType). Besides elements from the core and domain, the diagram contains a
metamodel element (Class) and a population element (ET2).

132

Berlo et al. 2021 Future of the Industry Foundation Classes: towards IFC 5

Proc. of the Conference CIB W78 2021, 11-15 October 2021, Luxembourg

In the current version of IFC, element types themselves cannot have types. If there are two
different product type instances that only have a different color (as a property) and because of
that, a different article number, then there will be two different element types. There will be two
different property sets as well, only differing in values for the Color and ArticleNumber property,
and all other property values duplicated in both property sets.

In Figure 5, this kind of instance-level “inheritance” is shown as association
DeϔinesTypesByType. With the inheritance of an element type, all shared properties can be
collected at the higher-level element type. Then there will be two subtypes of that element type,
an A version, and a B version. They have the speciϐic properties for that speciϐic type, all others
will be connected to the supertype. An element instance should be of one of the speciϐic types.

There is no consensus yet as to whether the object-level inheritance of values can freely follow
class-level inheritance or there are stronger restrictions to either the most speciϐic or
resemblance of the full class-level taxonomy.

4 Relations
Relations between entities make up substantial part of the schema. There are various suggestions
to simplify relationships, which can be discussed and analyzed along the following independent
aspects: Semantics, Reiϐication, Cardinality, Tree, Navigability.

The taskforce analyzed relationships in the IFC 4.3 RC2 and RC3 schemas thoroughly to
answer the corresponding questions. For every objectiϐied relationship type, the entity types and
cardinalities of the relationship ends have been listed together with the number of additional
explicit attributes (excluding binary relationship ends5), further subdivided into number of direct
and inverse, mandatory and optional, simple (deϐined) and entity type attributes.

4.1 Semantics: Can we remove the semantics and merge this relationship with others?
Some relationship classes are identical in terms of additional attributes, do not carry any
individual semantics and are only differentiated by the type of relation ends. As an example, this
applies to three subclasses of IfcRelAssigns, namely IfcRelAssignsToProduct,
IfcRelAssignsToResource, and IfcRelAssignsToControl. They do not have any additional attributes
and do not carry any individual semantics beyond the type of one association end.

We are going through all existing relationships individually and question ϐirst the dynamic
semantics (interpretation at runtime). If the relationship does not establish a necessary semantic
distinction from other relationships, it can be removed. If it does, it could still be removed or
merged as long as the semantics are uniquely deϐined by the types of the relation endpoints (like
in the example above). This restriction is necessary to avoid potential shadowing issues.

There are cases where dynamic semantics seem similar at ϐirst glance, but on closer
observation appear to have subtle differences in static semantics (characteristics deϐined in the
schema, such as additional attributes). For example, the subclasses IfcRelAssignsToActor,
IfcRelAssignsToGroupByFactor, and IfcRelAssignsToProcess	of IfcRelAssigns	each carry different
additional attributes as opposed to the subclasses mentioned earlier. Those they cannot simply
be merged. Likewise, relationships with different cardinalities cannot be merged. In these cases,
we consider to ϐirst harmonize the static semantics where appropriate before attempting merge
with other relationship classes. Some relationships do not need this conditioning, because they
fall under transformations described in the next sections anyhow.

4.2 Reification: Can we turn this relationship from an objectified relation into a direct
attribute?
In IFC, references between entities of the core and higher layers are modelled as objectiϐied
relationships - independent identiϐiable entities (subclasses of IfcRelationship) referring to the
relationship ends instead of direct attributes of a relating entity referencing the related entities.
Direct relationships are conϐined to the resource layer, which also contains a few objectiϐied
relationships (subtypes of IfcResourceLevelRelationship).

5 These are the ones that are mostly called Relating and Related.

133

Berlo et al. 2021 Future of the Industry Foundation Classes: towards IFC 5

Proc. of the Conference CIB W78 2021, 11-15 October 2021, Luxembourg

There is consensus that where possible, objectiϐied relationships should be replaced with
direct attributes. However, there are restrictions to this effort. First, arity: Only binary
relationships can be turned into direct attributes. If the relationship is non-binary (meaning,
there are additional attributes beyond the relating and related ends) it cannot be de-objectiϐied.
This applies to many of the IfcRelConnect subclasses, including the most prominent
representative IfcRelSpaceBoundary. In this case, either the additional attributes can be removed
via harmonization of static semantics, or we consider changing the class from a relationship class
(subclass of IfcRelationship) into an object in its own right (subclass of IfcObject).	Depending on
whether the additional attributes are of simple or complex type, and on the decision regarding
relationships in the late-bound IFC part, the attribute can then be moved to the domain-speciϐic
module. For simple attributes, it would be integrated into an attribute or property set.

It must be noted that conversion to an IfcObject	subclass goes hand in hand with object-
speciϐic attributes and inclusion in the typing mechanism described in Sections 11 and 12. There
is also an impact on modularity and extensibility, which should not be underestimated and needs
thorough consideration.

4.3 Cardinality: Which cardinality class does this relationship belong to?
We have subjected cardinality ranges in IFC 4 to a thorough analysis. The results are shown in
Table 1. Cardinalities of objectiϐied relationships consist of 4 cardinality constraints, taken from
the EXPRESS schema, the cardinality constraints of the Relating	 and Related	 attribute of the
IfcRelationship	entity class as well as their respective inverses (columns 1-4)6. From those we can
derive overall cardinalities for the Relating	and Related	side and ϐinally for the relationship as
such (columns 5-7).

Table 1. Cardinalities of objectified relationships in IFC 4: EXPRESS constraints in columns 1-4, derivation of overall
cardinality in column 5-7, number of relationships in IFC 4 in column 8

Relating Relating

inverse
Related
inverse

Related Relating
overall

Related
overall

Result Number

1..1 0/1..* 0/1..* 1..* 1:N N:M N:M 23
1..1 0..* 0/1..* 1..1 1:N N:1 N:M 12
1..1 0..* 0..1 1..* 1:N 1:N 1:N 8
1..1 0..* 0/1..1 1..1 1:N 1:1 1:N 4
1..1 0..1 0..* 1..* 1:1 N:M N:M 3
1..1 0..1 0..* 1..1 1:1 N:1 N:1 1
1..1 0..1 0..1 1..* 1:1 1:N 1:N 2
1..1 0..1 0..1 1..1 1:1 1:1 1:1 1

The table shows that most of the relationships (38) have a cardinality of N:M, a good deal (14)
has 1: N and only a single relationship is a 1:1 relationship. There is one anomaly with seemingly
inverted Related	and Relating	side, but this entity is already deprecated. The lower bounds of
inverse cardinality ranges indicate whether the relationship in a particular direction is
mandatory or optional. Most are optional with a few exceptions.

Given the variety of how 1: N and N:M relationships are modelled in current EXPRESS, we are
investigating to which extent these reϐlect semantic distinctions and need to be kept or can be
simpliϐied to less variants.

4.4 Tree: Can/should this relationship be part of an overarching tree structure?
Trees are an intuitive and popular way to structure information hierarchically. As such trees are
used in many software applications that handle IFC data to provide an outline and navigation
capabilities. Even though the IFC conceptual model is not structured in a hierarchical fashion, it
contains hierarchical relationships, for example, spatial aggregation and containment which are

6 The order of columns corresponds to the order the cardinality ranges would appear in a UML diagram.
Readers familiar with EXPRESS-G are warned that this differs from the EXPRESS-G convention.

134

Berlo et al. 2021 Future of the Industry Foundation Classes: towards IFC 5

Proc. of the Conference CIB W78 2021, 11-15 October 2021, Luxembourg

predominantly used for outline and navigation. The tree generated this way, is made up of
different relationship classes such as IfcRelAggregates	and IfcRelContainedInSpatialStructure.	It
has been discussed whether other domains like infrastructure may use other relationships to
form this overarching tree structure. We are investigating whether this structure should be
represented conceptually as a dedicated and uniform relationship and if so, which current
relationship classes are candidates for such a structure. They would have to be of cardinality 1: N
and have a constraint to not contain any (undirected) circuits to form a tree. With suitable class
or interface structure and de-objectiϐied attributes owned at the child side, this constraint could
be modelled without additional constraints.

4.5 Navigability: Can/should this relation be navigated from one (which) or both ends?
A further question to be analyzed for every remaining relationship is: Does this relationship have
a main navigation direction and if so, which? If a relationship is not navigable in neither direction,
it should likely not be a relationship, but an object class. For analysis of navigability from either
side, we must look at the inverses of the binary ends (Related	 and Relating) of objectiϐied
relations.

5 Maintenance and quality control
 The maintenance of IFC has been a challenge in recent years. Custom made tools that have
high costs and risks do not perform as expected, and traceability and transparency of changes is
lacking. Some projects have been experimenting with modeling IFC as a UML class diagram. In
parallel, the STEP community has also shifted to a UML/SysML based maintenance setup.

IFC 5 will also be modelled as a UML Class diagram and published on a GitHub repository.
Relating documentation will be stored as Markdown pages in the same repository. Changes will
be done using pull requests and a custom buildingSMART Workflow for quality control and
validation.

For IFC 4.3 a similar ecosystem has been set up that gets input from UML as XMI, Markdown
and mvdXML to generate an EXPRESS Schema, Property set XML files, UML Diagram PNG pictures
and the HTML documentation package. This is done after every change (upload, accepted pull
request) and triggers automatic publication of the IFC entities and properties in the
buildingSMART Data Dictionary, update of the Translation Framework content and performs
automated quality controls.

With the normalization of IFC 5 it will be even more easy to model IFC as a class diagram in
UML. Experiments have been performed to transform the current IFC 4.3 Product Tree to the
intended IFC 5 product tree using scripts. This has also proven to work and could potentially be
used to document the transformation between IFC 4.3 and IFC 5.

It is the intent for IFC 5 to unlock the potential of community inputs for the improvements of
the IFC schema and documentation. The different IFC modules will be published as separate
documents on GitHub. Change suggestions (pull requests in GitHub) will trigger an automated
review workflow using GitHub actions. The required domains experts will review the suggestions
and the automatically generated quality checks. After acceptance it will be integrated in the latest
version on GitHub. When declined, there needs to be proper motivation of why the suggestion is
declined. This will also be part of the repository to build a traceable and transparent process for
IFC developments.

For updates or changes to the documentation, the process could be similar, or different
depending on the type of documentation. Additional clarifications could have a lighter review
process, compared to changes or fixes to semantic definitions.

After every change, GitHub triggers the execution of custom-built Python scripts for quality
control and consistency checks. After every accepted change, the deployment scripts generate
new output like an updated EXPRESS schema, HTML package, diagrams, etc.

6 Related and Future work
The described changes for IFC 5 will drive the ability to create object-based incremental

updates. To further facilitate this, some other elements are needed.

135

Berlo et al. 2021 Future of the Industry Foundation Classes: towards IFC 5

Proc. of the Conference CIB W78 2021, 11-15 October 2021, Luxembourg

Development of a query language depends on the changes planned for IFC 5. There is a strong
relation between an IFC Query language and object-based API development. For an object-based
API there needs to be a stable foundation and established file-based API first. Therefore, the query
language development is probably out of scope for the next 2 to 3 years but mentioned as the
objective for the development of the overall API strategy, and the transformation of IFC.
 Since IFC only holds agreements that have found global international consensus, it will never
be a complete set of required agreements in everyday practice. Additional agreements,
classification systems or user defined property sets need to work seamlessly together with IFC
and IFC supporting software implementations. To facilitate this buildingSMART is providing the
buildingSMART Data Dictionary (bSDD). The bSDD was rebuild in 2020 and scheduled to launch
in the Summer of 2021. It supports the new ISO 12006-3 and ISO 23386. The bSDD hosts and
links agreements that users need in their projects or regions. Every class and property in the
bSDD have a unique URI that can be used by external tools. Data in the bSDD are published though
a JSON API, a GraphQL API and as Linked Data (RDF, possibly TTL in the future).
 The data requirements in day-to-day projects can be dynamic and very specific per use-case.
To support the definition of such ‘Information Delivery Specifications’ (IDS), buildingSMART has
developed an XML based IDS standard to define information requirements and how they should
be exchanged with IFC. The IDS standard is an integral effort to combine IFC with regional and
use-case specific agreements. It can link to URIs of classes and properties inside and outside the
bSDD. The IDS structure and content is compatible with Product Data Templates (PDTs).
 The ifcJSON project has been developing a JSON serialization for IFC 4.3 and have also
experimented with a STEP independent JSON serialization of IFC. The lessons learned from this
work have been used as input into the IFC 5 development discussions. In parallel an experiment
has been conducted to publish the full IFC content as JSON-LD context and taxonomy. This helps
digital twin developments to better use semantic agreements that are already available in IFC but
are out of sight because they are not part of a common use-case. Explorations have
also been done on representing IFC in an indexed binary format to reduce file size. The work of
Krijnen & Beetz (2017 and 2020) on HDF5 exchange of IFC and point cloud data has been used as
a base.
 All these topics will continue to be discussed and explored in separate subgroups that work on
parts of the IFC 5 development.

7 Conclusion and discussion
 The results so far have proven that the ideas and concepts published in the ‘Technical Roadmap’
in April 2020 are feasible and executable. After a year of intense collaboration, it can also be
concluded that the changes to IFC are serious but needed for future use and reliability of IFC. The
changes to IFC will keep the expressiveness and the related topics from the roadmap strengthen
the integral proposition of openBIM. There are still a couple of open issues that have not been
addressed. Moving the border between the IFC schema and the dynamic part has not been tested
in actual implementations. The proposed conformance levels in the Technical Roadmap might
require domain speciϐic adjustments, which would undermine the principle of interoperability
between software implementations and domains. These and other topics will be further
researched, and this paper is an open call for collaboration with the academic community.
 The work from the IFC 5 Taskforce has proven that intense collaboration between Software
Vendors and academia can deliver high quality and sustainable results.

Acknowledgements
BuildingSMART International would like to thank the authors and their organizations for their
commitment to contribute to this important work.

BuildingSMART and the authors would like to thank all the experts that have donated their
time and expertise to the progress of the IFC 5 work. We would also like to thank the openBIM
community for inputs on presentations, the buildingSMART forum and on GitHub.

136

Berlo et al. 2021 Future of the Industry Foundation Classes: towards IFC 5

Proc. of the Conference CIB W78 2021, 11-15 October 2021, Luxembourg

References
Amor, R. (2015). Analysis of the evolving IFC schema. In 32nd CIB W78 Information Technology for

Construction Conference (CIB W78 2015), Eindhoven, Netherlands.
Beetz, J., Leeuwen, J. van, Vries, B. de. (2009): IfcOWL: A case of transforming EXPRESS schemas into

ontologies. AI EDAM. 23. 89-101. 10.1017/S0890060409000122.
Berlo, L.A.H.M. van (2020). BuildingSMART Technical Roadmap. Published on buildingsmart.org. Version

30 April 2020.
Combemale, B., France R., Jézéquel J.-M., Rumpe B., Steel J., Vojtisek D. (2017): Engineering Modeling

Languages. Turning Domain Knowledge into Tools. Chapman; Hall/CRC, New York.
Jetlund, K., Onstein, E., Huang, L. (2021): IFC Schemas in ISO/TC 211Compliant UML for Improved

Interoperability Between BIM and GIS. ISPRS International Journal of Geo-Information, Vol. 9, No. 4,
p. 278.

Krijnen, T., Beetz, J. (2017): An IFC schema extension and binary serialization format to efϐiciently integrate
point cloud data into building models. Advanced Engineering Informatics. 33.
10.1016/j.aei.2017.03.008.

Krijnen, T., Beetz, J. (2020). An efϐicient binary storage format for IFC building models using HDF5
hierarchical data format. Automation in Construction. 113. 103134. 10.1016/j.autcon.2020.103134.

Pauwels, P., Krijnen, T., Terkaj, W., & Beetz, J. (2017). Enhancing the ifcOWL ontology with an alternative
representation for geometric data. Automation in Construction, 80, 77-94.

Rasmussen, M. H., Lefrançois, M., Schneider, G. F., & Pauwels, P. (2019). BOT: the building topology ontology
of the W3C linked building data group. Semantic Web, (Preprint), 1-19.

Tauscher, H. (2020): Towards a Generic Mapping for IFC-CityGML Data Integration. In: Proceedings of the
3rd BIM/GIS Integration Workshop and the 15th 3D GeoInfo Conference 2020, pp. 151–158, London,
UK (online), 2020.

Terkaj, W., & Pauwels, P. (2017). A method to generate a modular ifcOWL ontology. In 8th International
Workshop on Formal Ontologies meet Industry (Vol. 2050).

137

