
Automatic Prefabricated Construction Simulation using Deep
Reinforcement Learning

Aiyu Zhu, a.zhu@tue.nl
Eindhoven University of Technology, Eindhoven, Netherlands

Pieter Pauwels, p.pauwels@tue.nl
Eindhoven University of Technology, Eindhoven, Netherlands

Bauke de Vries, b.d.vries@tue.nl
Eindhoven University of Technology, Eindhoven, Netherlands

Abstract
The automation of prefabricated construction imposes higher demands on construction process
planning. To enable the construction behavior to be reliably executed by construction robots, it
is necessary to plan the construction process more precisely. Simultaneously, to ensure
construction safety, the construction policy also needs to be updated in real-time according to the
construction environment changes to guarantee an optimized and collision-free construction
process. We propose a deep reinforcement learning-based near real-time construction process
planning framework for dynamic construction environments. As a test, we create a simple
construction simulated environment and design a single component simulation in a dynamic
construction environment.

Keywords: Construction automation, Construction planning, Deep reinforcement learning

1 Introduction
As prefabricated buildings are increasingly being used in various building types, such as factories,
housing, office, etc (Generalova, Generalov, & Kuznetsova, 2016), the construction method has
also changed from traditional cast-in-place construction to prefabricated construction, where the
components are produced in a factory and assembled on site. Due to prefabricated construction's
modular and industrial features, robot-based construction has shown potential for the AEC
industry (Bock, 2015).
 In contrast to the factory environment, the on-site construction environment is complex and
variable. Therefore, one of the essential challenges in realizing automated robotic construction is
to allow the robots to independently adapt their construction tasks to the changing construction
environment (Davila Delgado et al., 2019). As the traditional construction is mostly executed
manually, on-site management is frequently done in terms of days or floors, with construction
operations planned at a macro level, while the project manager adjusts specific construction tasks
according to the specific construction circumstances (Jeong, Chang, Son, & Yi, 2016).
Consequently, on-site construction management relies on more coarse of (digital) control than
manufacturing assembly lines, which have much more fine-grained and automated construction
actions (e.g., transport paths and assembly methods for each component). Furthermore, the
precision required for robotic work is poorly satisfied by conventional on-site management.
There is a demand for a method that can plan construction processes in response to site changes,
thus providing construction robots with well-defined construction tasks.

21

Zhu et al. Automatic Prefabricated Construction Simulation using Deep Reinforcement Learning

Proc. of the Conference CIB W78 2021, 11-15 October 2021, Luxembourg

 Currently, the most relevant research for on-site construction action is crane-related lift
planning (Lin, Wu, Wang, Wang, & Gao, 2014). As one of the most important pieces of equipment
in on-site construction, when the crane can be unmanned, it can be considered as a construction
robot. Therefore, lift planning and optimization can be regarded as a problem of construction
planning for construction robots. The current leading research for on-site lift planning (Zhang &
Pan, 2020) is based on optimizing site layout, collision analysis in path planning and path
planning optimization, etc.
 However, the construction process often changes according to multiple factors (e.g., site
layout changes, site environment changes). These changes often occur simultaneously, and it is
difficult to achieve automation, because that requires a reasonable combination in real time
according to the changes in the site environment with different component layouts (Zhang & Pan,
2020). So we need a method that can flexiable adjust the robot's construction strategies (paths,
construction methods, etc.) in real time depending on the changes in the environment.
 As a type of AI-based method, reinforcement learning (RL) algorithms allow the agent to
explore and exploit the environment and, through the feedback (rewards) received from the
exploration and exploitation, accumulate experience to gain an optimal action policy. Deep
reinforcement learning (DRL), as an algorithm that combines RL and deep learning, has greatly
improved reinforcement learning algorithm's performance by computing the reinforcement
learning output through neural networks and has displayed surpassing human performance in
dealing with specific complex problems (Mnih et al., 2013). Thus, utilizing the features of DRL, we
can attempt to introduce the DRL into the dynamic construction processes, and as a result make
the robot better able to respond to its dynamic environment(s).
 This paper implements deep reinforcement learning algorithms into construction process
planning to achieve a framework for components’ self-organization with different site layouts in
a changing construction environment for prefabricated construction. The purpose of this paper
is to address the problem of the automatic construction process planning (path planning and
collision analysis currently) for automated construction equipment (construction robots, crane,
and etc.) in a dynamic site environment. The path obtained by self-organization of the
components can be used as a result to control the construction robot (e.g. crane). Meanwhile, we
designed a simple 3D construction simulation environment to test the framework's near real-
time adaptation in a changing environment for a single component.

2 Background
In this section, we brieϐly review the related work to lift planning and introduce the Q-learning
algorithm which is the core algorithm in deep q networks (DQN) (Mnih et al., 2013).

2.1 Lift planning and optimization
Cranes, as one of the most important pieces of equipment on-site, achieves component
transportation. So, most research of on-site construction planning for construction action is based
on crane lift path planning.

In 2002, Soltani (Soltani, Tawϐik, Goulermas, & Fernando, 2002) evaluated the feasibility of
heuristic search algorithms in construction path planning. In the same year, based on the heuristic
depth method, Reddy (Safouhi, Mouattamid, Hermann, & Hendi, 2011) proposed obstacle-free lift
path planning. With the development of artiϐicial intelligence techniques, genetic algorithm-based
methods (Cai, Cai, Chandrasekaran, & Zheng, 2016; Dutta, Cai, Huang, & Zheng, 2020), simulated
annealing (K. Wu, Garcı́a de Soto, & Zhang, 2020) were applied in lift path planning. Heuristic-
based algorithms can optimize the motion path by exploring the global environment, but when
the layout is changed, the path needs to be re-planned every time.

Zhang (Zhang, Pan, & Zheng, 2019) proposed the construction process planning of tower
cranes based on transfer learning in 2019. By creating a recognition model for the lifting process
and training the neural networks, the corresponding lift planning can be derived according to the
actual construction situation. However, the main limitation is that it requires a large amount of
historical data for learning. Similarly, as a machine learning method, reinforcement learning has

22

Zhu et al. Automatic Prefabricated Construction Simulation using Deep Reinforcement Learning

Proc. of the Conference CIB W78 2021, 11-15 October 2021, Luxembourg

been attempted to introduce component-based robot construction with a simple 2D environment
(Zhu, Pauwels, & de Vries, 2020).

The main limitation of the above described commonly-used intelligent algorithms in the ϐield
of construction path planning is that when the layout of the yard or the construction environment
changes, it is necessary to re-plan based on global information, and the previous planning
information cannot be reused, which reduces the efϐiciency of planning.

2.2 Value-based method reinforcement learning – Q learning
Reinforcement learning is one of the machine learning methods, often expressed as Markov
Decision Process (MDP) (Vrabie & Lewis, 2010), to make decisions partially under the control of
a decision-maker in a partially random situation. As an extension of the MDP approach,
reinforcement learning relies on reward and punishment values for the agent to learn and
improve its actions in a deϐined environment. In reinforcement learning, the agent that needs to
learn a policy is set in a given environment and it learns the policy by exploring and exploiting
the environment through a certain number of episodes. At the beginning of each episode, the
current environment is observed as a state, after which the agent performs an action based on
the current environment that causes the agent to continue exploring or to fail. At the end of each
episode, the agent updates the action set policy for the previous episodes based on the feedback
from the reward, thus converging on the policy that makes the reward optimal.
 As a value-based model-free reinforcement learning method, Q-learning optimizes the
combination of actions that achieve the maximum reward by the method that updates the q-value
of the action set for each episode (Bertsekas & Yu, 2012). The q-value is used to evaluate the value
of each action under the current decision, where a larger q-value represents a higher value of the
action. As an off-policy algorithm, Q-learning is used to explore the environment by adapting for
the greedy algorithm. The agent is allowed to try actions without the maximum q-value while
learning the policy; when the policy is updated, the agent must perform the action with the
maximum q-value.

3 Methods
In prefabricated construction processes, we need the robot to accomplish a sequence work that
involves transportation, positioning, and assembly of the components. To achieve automated
construction, we need to provide the robot with explicit action instructions to execute. Thus, the
construction requirements and path planning of the components can be regarded as action
instructions for the robots. Here, we consider the automated robot construction as the self-
organization of the components. To realize the self-organization of components in a dynamic
environment, we have developed a framework based on the DRL algorithm to generate the
construction process of the components. Furthermore, we designed one experimental
environment to test the feasibility of the framework for a number of scenarios, which are
documented in Section 4.

3.1 Simulated environment for construction processes
To realize the simulation and visualization of the construction process, we built a simpliϐied 3D
construction simulated environment using pygame and pyOpenGL (Figure 1), based on the 2D
version in Zhu et al. (2020). The environment consists of a site, components and obstructions,
allowing to customize the size of the site, the length of the obstructions and components, and the
number of components. At the same time, we have established simple construction rules that the
construction process must obey. The following two sections describe the setup of the simulated
environment and the simpliϐied construction rules.
3.1.1 Setup of the Simulation Environment
The created simulation environment is shown in Figure 1. The basic units of this environment are
voxels with length (X), width (Y) and height (Z) of one unit. Voxels can be combined to create
three types of construction objects: sites, obstructions, and components. We also need to set the
boundary of the environment and the construction objects are given spatial coordinates in the
environment within the set boundary.

23

Zhu et al. Automatic Prefabricated Construction Simulation using Deep Reinforcement Learning

Proc. of the Conference CIB W78 2021, 11-15 October 2021, Luxembourg

For the construction site itself, we deϐined a number of voxels in a horizontal slab with height
one. Their type properties are set to "ground" and shown in gray to represent the site. The type
properties of the other non-construction objects voxels are set to "air" and shown in wireframe
(white) boxes (optionally not displayed) to represent the free building space. To distinguish the
construction area from the yard area, we set the construction area in the site to 'construction
area', which is displayed in blue. The obstructions and components must be placed above the site.

We set the obstruction to black, which consists of a combination of multiple voxels.
Obstructions are used to abstract all objects other than non-components that need to be avoided
during component movement (e.g., equipment in the ϐield, vehicles, etc.). Obstructions are
dynamic, which means that they can appear at any of the initial and target positions of the non-
objects within the boundaries of the site.

The component is a combination of multiple voxels that are connected in an unidirectional
manner (linear sequence of voxels). So in the environment, the length of the component can be
customized and the section size is always 1x1 at the moment. The attributes of the component
are id, type, initial position, target position, and construction state. The id is used to identify the
uniqueness of the component. The type is used to describe the type of the component (e.g. site,
obstruction, etc.). The initial position is the position of the component in the yard and is displayed
as an orange line box. The target position is the ϐinal position of the component in the structure
and is displayed as a pink wireframe box. The construction states are 'unbuilt', 'in transit',
'arrived', and 'assembled'. In this environment, we simplify arrival and assembly as continuous
actions; assembly is executed immediately after arrival. Thus, arrival and assembly are
considered as one state. The 'unbuilt' state is represented by orange, 'in transit' by blue, 'arrived'
by green, and 'assembled' by pink (see Figure 1(a-c).

3.1.2 Simplified Construction Rules for Prefabrication
To simulate the prefabricated construction, we deϐined the simulation environment as simpliϐied
construction rules in three aspects: construction safety, construction behavior and construction
process. We propose three rules for construction safety: 1. construction objects can not collide
with each other, 2. components cannot move out of the construction area, 3. the initial position of
components must be set in the yard area.

During the construction process, we assign six actions to the component: up, down, left, right,
front, and back. The component can execute only one of the six actions at one time, and each action
moves the component by one base unit (one voxel in the environment) based on assigned action.
Meanwhile, before the components enter 'in transit', to simulate the movements of the crane
during construction, we will initialize the component positions. For example, the component will
be erected for the column and moved up one basic unit in the Z direction.

Figure 1. The simulated construction environment

24

Zhu et al. Automatic Prefabricated Construction Simulation using Deep Reinforcement Learning

Proc. of the Conference CIB W78 2021, 11-15 October 2021, Luxembourg

Once each component is in 'assembled' state, the construction of that component is ϐinished;
when all components are in 'assembled' state, the construction is ϐinished.

3.2 Link Simulated environment to DRL
In order to make the DRL algorithm embeddable in our simulation environment, we need to
design the interface between prefabricated construction simulations and deep reinforcement
learning. In this interface, the agent will learn the construction strategies by simulating the
effective features in the environment. Therefore, we will design observations, actions, rewards
and signals based on construction rules.
3.2.1 Observation Space
To transform the simulated environment information into valid features that can be used in DRL,
we divide the original simulated environment information into two types: spatial information and
object information and assign them to each basic unit (voxel). The spatial information includes
the spatial coordinates (X, Y, Z) of each voxel in the environment. When the basic unit is 'air', the
spatial coordinates are only (X, Y), and when construction objects appear, Z values are given to
describe their height in space with states in object information. The object's information is a tuple
with ϐive elements, which contains the features of the construction object. When the base unit is
of type 'air', there are no construction objects at that position, and the object's information is a
tuple of zeros. When the base unit is deϐined as 'site' or 'obstruction', only the initial position of
the ϐive features is used to describe its height in space. When the base unit is of type 'component',
it contains all ϐive features in its tuple. The elements are as follows:

z Initial position: A scalar indicates the height (Zi) of the construction object in the
environment. If the construction object is 'site' or 'obstruction', the position is ϐixed. If the
construction object is 'component', the scalar includes the initial position for the 'unbuilt'
state (Figure 1(a)).

z Position in transit: A binary tensor represents the height (Zt) changes during the
component in transportation. To avoid unnecessary over-exploration and to allow the
policy to converge faster, we limited the actions. We set a feature to distinguish the
number of actions of a component. The component must reach the target location in the
environment with several steps less than X+Y+Z. Therefore, the maximum number of
restricted steps of the component is X+Y+Z. When the number of steps of the component
is less than this number, the tensor is [0, (Zt)] (Figure 1(b)(1)). When the number of steps
of the component is greater than this number, the component is [1, (Zt)] (Figure 1(b)(2)).

z Target position: A scalar indicates the height (Ztar) of the component's target position of
height.

z Arrived index: A booelan scalar is used to determine if the component has reached the
target position or not. The scalar has value zero if the component has not reached the
target position, and one if the component has reached the target position.

z Assembled count index: This global index is used as a scalar that counts how many
components are ϐinalized and 'assembled' (at target position). Every time a component
is 'assembled' (arrived index = 1), this count index of assembled components is
incremented with value one and re-assigned to the scalar (Figure 1(c)).

3.2.2 Action Space
As in the simulation environment, the component can perform six actions. Here we consider these
six actions as six discrete choices, using six sequential independent integers (0-5) in an array to
deϐine these six actions for the agent. Correspondingly, 0, 1, 2, 3, 4, 5 represents the six actions:
forward, backward, left, right, up, and down. Each action moves a basic unit (voxel) in the
direction ordered by the action.
3.2.3 Reward and Done signal Design
Generally, we use the dense reward policy (Z. Wu, Lian, Unhelkar, Tomizuka, & Schaal, 2020) to
design our reward structure which means the agent will get a reward in each step. Only when the
agent completes the task, it can get a positive reward; otherwise, any other action will get a

25

Zhu et al. Automatic Prefabricated Construction Simulation using Deep Reinforcement Learning

Proc. of the Conference CIB W78 2021, 11-15 October 2021, Luxembourg

negative reward, and the agent's assignment is to ϐind the action policy that can get the maximum
reward.
 To converge the policy, we count the components so that the later the component is built, the
bigger the reward will get when 'assembled' and the lower the penalty in the movement. To avoid
over-exploration by the agent, we limit the maximum number of steps (𝑠) for the agent. When the
agent's exploration exceeds the maximum number of steps, a ‘done’ signal is transmitted with
value ‘True’, indicating that the episode is ϐinished and the ϐinal policy is not learned (no ϐinal
reward earned). When all components are assembled, the same ‘done’ signal is also set to True,
indicating that the episode is in the end and the ϐinal policy is learned (the ϐinal reward is earned).
The reward design (R) is provided in equation (1).

𝑅() = ቐ
∑ బ

ௌ
௦
 + ∑ 𝑛𝑆

ୀଵ , 𝑠 < 𝑙𝑖𝑚𝑖𝑡

∑ ଶబ
ௌ

௦
 + ∑ 𝑛𝑆

ୀଵ , 𝑠 < 𝑙𝑖𝑚𝑖𝑡
 (1)

Here, r0 represents the negative reward for each step and r0 �1 in practice; s represents the
steps of the current action of the component; S represents the number of components; Si indicates
the serial number of the current component being built (e.g., S3 for the third component being
built, S3=3); n indicates the number of components, and the limit is the set limit number of steps.

3.3 Deep Q Network (DQN)-based framework in a dynamic construction
Based on the algorithm of DQN, we design a framework that can be used for near real-time
construction simulation of dynamic construction environments.
3.3.1 Deep Q Network
DQN is a value-based deep reinforcement learning algorithm that combines deep neural networks
and Q-learning. Q-learning algorithm is based on the markov decision process (MDP), which can
select the action with a large q-value as the output according to the reward of the decision made
by the agent to achieve the optimization of sequential actions. By combining with the deep neural
network, instead of the traditional Q-learning method of querying the table to obtain the output
of action, the q-value of each action is ϐitted by the neural network, which greatly improves the
decision efϐiciency of Q-learning. The representation of the Q-value (𝑄(𝑠, 𝑎)) is shown in equation
(2):

𝑄(𝑠, 𝑎) = 𝐸𝑠௧~𝜀[𝑟 + 𝛾𝑚𝑎𝑥𝑄(𝑠௧, 𝑎௧)|𝑠, 𝑎] (2)

where 𝑠௧ denotes the agent's state of the environment at time t; ε is the emulator which means
that when the agent makes a decision, there is a small positive number 𝜀 of probability to select
an unknown action randomly, leaving 1 - 𝜀 probability to select the action with the highest action
value among the existing actions; γ is the learning rate which is used to control the rate of gradient
descent; r is the reward obtained for that action, and 𝑄(𝑠௧, 𝑎௧) is the value of q for all possible
combinations of situations in the next step.

3.3.2 Structure of Framework
Our framework has two layers, as Figure 2 displays, the initialization layer and the application
layer, both of which use the same construction environment. We ϐirst enable the agent to learn
the construction policy in the initialization layer, and then implement the update of the
construction policy in the dynamic environment with obstructions through the application layer.

In the initialization layer, the initial location of the components is randomly set at any yard
location and no obstructions are arranged. This environment is used to train the components to
plan the construction process in any layout automatically. When the initialization layer is
completed, we save the trained neural network as the basic construction policy of the
construction environment. In the learning process, we save the policy learned in the current
episode every certain number of learning times, and test the success rate of the policy that can

26

Zhu et al. Automatic Prefabricated Construction Simulation using Deep Reinforcement Learning

Proc. of the Conference CIB W78 2021, 11-15 October 2021, Luxembourg

accomplish the construction, run the current policy in the current environment a certain number
of times, and end the learning when the success rate reaches the set requirement.

In the application layer, we assume that the site layout has been completed, so the initial
position of the components is designed. In order to simulate the possible site changes in the
construction environment, we add obstructions to the route of the components. When the
construction policy is not affected by the environment change, the results of the trained neural
network are maintained for simulation, and when the obstructions affect the construction policy
(collision occurred), the simulation is stopped and the trained neural network is re-trained with
the practice environment as an observation—training until the agent learns a construction policy
that meets the requirements and saves the updated neural network as the new policy. When the
trained neural network is run in the practice environment for the ϐirst time, we need a small trial
(10 times in practice) without obstructions to conϐirm the best policy for the practice layout. So,
we will record the rewards of each episode and use the policy of the episodes with the highest
reward to the simulation.

4 Experiments
We use Deep Q Network (DQN) with OpenAI's stable-baselines library as our DRL policy and
design one experimental environment to test the construction simulation of one single column
under our framework.

4.1 Experimental Environment
In our experimental environment, the site environment is X=15, Y=15, Z=6, the construction area
is the light blue area as displayed in Fig. 3, and the column's length is 4.
 In the initial environment (initialization layer), the initial positions of the components in each
episode are set randomly in an arbitrary non-construction area environment. As shown in Figure
3(a), the orange voxels represent the initial position of the column, and the pink wireframe voxels
represent the target position of the column.
 In the application environment, the initial positions of the components are set in a determined
non-construction area environment and one or multiple obstructions of height 2 and length 3 will
appear in the action path of the component. As shown in Figure 3(b), the column is set at a ϐixed
initial position and the trained neural network is imported into the current environment to get
the construction path planned by the agent. After that, the obstruction is set according to that

Figure 2. The framework of DQN-based construction process planning

27

Zhu et al. Automatic Prefabricated Construction Simulation using Deep Reinforcement Learning

Proc. of the Conference CIB W78 2021, 11-15 October 2021, Luxembourg

path. Figure 3(b)(1) displays the unchanged construction environment, Figure 3(b)(2) shows the
occurrence of one obstruction in the environment, Figure 3(b)(3) shows the occurrence of two
horizontal obstructions, Figure 3(b)(4) shows the occurrence of one obstruction close to the
target position. So, in short, 4 scenarios are tested within one and the same overall environment.

4.2 Setup DQN
For our experiments, we use the DQN policy and set the γ to 0.0005, the 𝜀 to 0.99. According to
the experimental setting, we assign a step limit of 15 (site width) for the component, and the
maximum number of steps for the agent in experiment 1 is 36. When the agent learning success
rate reaches 100% in the initialization layer, we output this policy as our trained neural network.
In the application layer, we select the episode with the largest reward in the 80% success rate
(based on this policy, eight times successful construction for every ten tests) sample as the ϐinal
construction policy. We test the success rate of the components every 2000 steps to determine
whether the construction policy achieves an 80% success rate.

4.3 Findings
Figure 4 shows the different construction policies given after the DQN algorithm update in the
changing environment. In deep reinforcement learning, the learning of policy by the agent is
usually monitored by recording the rewards and success rate during the learning process. Here,
we use the success rate to validate: 1. whether the agent can learn and update the construction

Figure 3. The experimental environment for a single column

Figure 4. Different construction policies in changing construction environments

28

Zhu et al. Automatic Prefabricated Construction Simulation using Deep Reinforcement Learning

Proc. of the Conference CIB W78 2021, 11-15 October 2021, Luxembourg

policy, 2. compare the required steps for policy updates in different obstruction scenarios.

4.4 Results
The results of the success rate of the agent by testing every 2000 steps are shown in Figure 5.
According to the success rate in Figure 5, we have the following results:
1. We ϐind that based on the DQN method, the agent learned an appropriate construction policy
in all scenarios,
2. By comparing Figure 5(b) and Figure 5(d), we observe that the agent can learn the
construction policy faster when the obstruction is closer to the target position,
3. Through Figure 5(c), we notice that the learning steps of the agent become longer when the
number of obstructions increases.

4.5 Discussion
Our framework implements near real-time construction process planning in the experimental
environment. For a single component, the trained neural network can achieve automatic
construction process planning under any layout within the environment, and when the
environment changes, the agent can still update the construction policy and complete the
construction autonomously.

5 Conclusion
In this paper, we propose an AI-based framework for construction process planning in dynamic
environments, and we validate our framework in a simple 3D environment to achieve near real-
time construction process planning for a single component in a dynamic environment. We
propose a framework based on the DRL algorithm that is introduced into the construction process.
In a simpliϐied simulation environment, we train a neural network oriented to the construction
process of a single component. With this trained neural network, the component’s transport path
can be planned under any initial site layouts. Meanwhile, during the construction process, when

Figure 5. The success rate of different environments

29

Zhu et al. Automatic Prefabricated Construction Simulation using Deep Reinforcement Learning

Proc. of the Conference CIB W78 2021, 11-15 October 2021, Luxembourg

the change of site environment affects the component's transport path, the component's trained
neural network will be updated according to the change of environment and a new transport path
will be planned in real time.
 While the research shows valuable preliminary results, the study suffers from the following
limitations: 1. currently, we have tested the framework in a simple 3D simulation environment
based on voxels, and further research is needed to extend the approach to BIM models
(voxelization); 2. this experiment was performed only for a single component and the number of
components needs to be increased; 3. the framework has high requirements for computational
power, since in realistic construction scenarios, the framework needs to perform real-time
calculations (within robot) on the changing environment and feedback the results. Therefore,
computing power within robotic devices is one of the primary considerations affecting the
efϐiciency of the framework.
 Our future research is based on the above limitations: 1. to extend the framework to the BIM
model; 2. to realize the construction process planning of multiple components and apply it to
small-scale prefabricated structures.

References
Bertsekas, D. P., & Yu, H. (2012). Q-learning and enhanced policy iteration in discounted

dynamic programming. Mathematics of Operations Research, 37(1), 66–94.
https://doi.org/10.1287/moor.1110.0532

Bock, T. (2015). The future of construction automation: Technological disruption and the
upcoming ubiquity of robotics. Automation in Construction, 59, 113–121.
https://doi.org/10.1016/j.autcon.2015.07.022

Cai, P., Cai, Y., Chandrasekaran, I., & Zheng, J. (2016, February 1). Parallel genetic algorithm
based automatic path planning for crane lifting in complex environments. Automation in
Construction, Vol. 62, pp. 133–147. https://doi.org/10.1016/j.autcon.2015.09.007

Davila Delgado, J. M., Oyedele, L., Ajayi, A., Akanbi, L., Akinade, O., Bilal, M., & Owolabi, H. (2019).
Robotics and automated systems in construction: Understanding industry-specific
challenges for adoption. Journal of Building Engineering, 26, 100868.
https://doi.org/10.1016/j.jobe.2019.100868

Dutta, S., Cai, Y., Huang, L., & Zheng, J. (2020). Automatic re-planning of lifting paths for
robotized tower cranes in dynamic BIM environments. Automation in Construction, 110,
102998. https://doi.org/10.1016/j.autcon.2019.102998

Generalova, E. M., Generalov, V. P., & Kuznetsova, A. A. (2016). Modular Buildings in Modern
Construction. Procedia Engineering, 153, 167–172.
https://doi.org/10.1016/j.proeng.2016.08.098

Jeong, W. S., Chang, S., Son, J. W., & Yi, J. S. (2016). BIM-integrated construction operation
simulation for just-in-time production management. Sustainability (Switzerland), 8(11), 1–
25. https://doi.org/10.3390/su8111106

Lin, Y., Wu, D., Wang, X., Wang, X., & Gao, S. (2014). Lift path planning for a nonholonomic
crawler crane. Automation in Construction, 44, 12–24.
https://doi.org/10.1016/j.autcon.2014.03.007

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., & Riedmiller, M.
(2013). Playing Atari with Deep Reinforcement Learning. 1–9. Retrieved from
http://arxiv.org/abs/1312.5602

Safouhi, H., Mouattamid, M., Hermann, U., & Hendi, A. (2011). An algorithm for the calculation of
feasible mobile crane position areas. Automation in Construction, 20(4), 360–367.
https://doi.org/10.1016/j.autcon.2010.11.006

Soltani, A. R., Tawfik, H., Goulermas, J. Y., & Fernando, T. (2002). Path planning in construction
sites: Performance evaluation of the dijkstra, a*, and GA search algorithms. Advanced
Engineering Informatics, 16(4), 291–303. https://doi.org/10.1016/S1474-0346(03)00018-
1

30

Zhu et al. Automatic Prefabricated Construction Simulation using Deep Reinforcement Learning

Proc. of the Conference CIB W78 2021, 11-15 October 2021, Luxembourg

Vrabie, D., & Lewis, F. L. (2010). Approximate dynamic programming. The Control Systems
Handbook: Control System Advanced Methods, Second Edition, II, 1385–1418.
https://doi.org/10.1201/b10384

Wu, K., García de Soto, B., & Zhang, F. (2020). Spatio-temporal planning for tower cranes in
construction projects with simulated annealing. Automation in Construction, 111, 103060.
https://doi.org/10.1016/j.autcon.2019.103060

Wu, Z., Lian, W., Unhelkar, V., Tomizuka, M., & Schaal, S. (2020). Learning dense rewards for
contact-rich manipulation tasks. ArXiv.

Zhang, Z., & Pan, W. (2020). Lift planning and optimization in construction: A thirty-year review.
Automation in Construction, 118(May), 103271.
https://doi.org/10.1016/j.autcon.2020.103271

Zhang, Z., Pan, W., & Zheng, Z.-J. (2019). Transfer Learning Enabled Process Recognition for
Module Installation of High-rise Modular Buildings. Modular and Offsite Construction (MOC)
Summit Proceedings, 268–275. https://doi.org/10.29173/mocs103

Zhu, A., Pauwels, P., & de Vries, B. (2020). Robot construction simulation using deep
reinforcement learning. EG-ICE 2020 Workshop on Intelligent Computing in Engineering,
Proceedings, 472–480.

31

