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DIGITAL TWINNING OF CONSTRUCTION OBJECTS: 
LESSONS LEARNED FROM POSE ESTIMATION 

METHODS 

Fan Xue1, Hongling Guo2 and Weisheng Lu3 

Abstract: Productivity and safety in the construction industry have long been 
hindered by the many uncertainties and lack of awareness in the semi-controlled 
site environment. The digital twinning of construction objects aims at offering 
digital replicas with real-time, trustable evidence for automated monitoring, human-
centric decision-making, or fully automatic cyber-physical systems. This paper 
revisits the pose estimation methods for the digital twinning of various on-site 
construction objects, including construction components, equipment, and humans. 
From a machine learning perspective, all the pose estimation methods can be 
categorized into four classes, i.e., filtering, supervised, reinforcement, and 
unsupervised. The inputs, processes, output, and target objects of each class are 
introduced with demonstrative cases. Comparisons on the pros and the cons of the 
methods reveal the best choices for digital twinning under different objectives, such 
as a safer site and more productive construction, as well as constraints such as pose 
accuracy, computational time, and overall cost. The complexities of digital twinning 
different construction objects are compared to explain the distribution of existing 
cases in the literature. Opportunities and possible research directions in the new era 
of AI and blockchain are recommended at the end.  

Keywords: Digital twin, Pose estimation, Machine learning, Digital construction site, 
Smart construction object. 

1 INTRODUCTION 
The construction industry has been encountering difficulties in its practices, such as 
endangered productivity and safety in semi-controlled site environments. Compared to 
other industries with controlled environments, such as manufacturing, the construction 
industry has seemed “backward” in the past decades (Woudhuysen and Abley 2003). 
Information and communication technology (ICT), such as the Internet of things (IoT), 
laser scanning, sensor network, and geographic information system (GIS), has been 
successfully applied to the monitoring and automation of construction objects, including 
construction components, equipment, and humans (Ahuja et al. 2009).  

A digital twin is “a virtual representation of a physical object or system across its 
lifecycle, using real-time data to enable understanding, learning, and reasoning,” 
according to the UK National Infrastructure Commission (2017). Digital twinning of 
construction objects, as shown in Figure 1, offers digital replicas with real-time 
information, which can improve the traceability and controllability of the construction 
objects. Digital twinning of construction objects will be promising and impactful, 
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according to its records for other sophisticated systems, such as aircraft, wind turbines, 
and smart trains (Tuegel et al. 2011). In this sense, digital twinning is the equivalent to 
the “physical-to-cyber” subsystem of a cyber-physical system (CPS) that aims to 
“monitor and control the physical processes” (Lee 2008). 

 
Figure 1: Digital twinning of construction objects and their positions in a cyber-

physical system. 

The 3D pose, as a synthesis of position, orientation, and potential purpose of a 
construction object, is a piece of key information for digital twinning. Pose estimation 
refers to the identification of such accurate position and orientation, as well as an 
understanding of potential purposes, from ICT sensor data for construction objects. Pose 
estimation methods have been investigated sporadically in construction scenarios, such 
as smart construction object (SCO), as-built building information model (BIM) 
reconstruction, construction virtual reality (VR), 4D city information model, and high-
definition 3D map (Niu et al. 2016; Schwarz 2010). However, the varieties of 
construction objects, data inputs, and application scenarios make a one-size-fits-all 
method impractical. Furthermore, digital twin applications demand higher performance, 
for example, in near-time responsiveness and pose accuracy. 

This paper aims to revisit the existing pose estimation methods in the new context of 
digital twinning of construction objects. In specific, a four-class taxonomy—filtering, 
supervised, reinforcement, and unsupervised—is borrowed from the domains of machine 
learning and signal processing. Section 2 briefs the research methodology. The 
representative methods in the four classes were demonstrated with empirical cases in 
Section 3. The discussion and recommendations appear in Section 4, and the conclusion 
is given at the end of this paper. 

2 RESEARCH METHODS 
This study employs a comparative study on the pose estimation of construction objects. 
First, four models are derived from the conceptual digital twinning model in Figure 1 
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based on the taxonomy of machine learning methods. Then, demonstrative cases are 
surveyed from the literature to cover the combinations of the four classes and the three 
types of construction objects, i.e., components, equipment, and humans. The pros and 
cons of the pose estimation methods are summarized, and recommendations are given 
based on the demands of digital twin applications. 

This study proposes a four-class taxonomy for pose estimation methods in 
construction, as shown in Figure 2. Due to the ‘mapping-A-to-B’ nature of the 
identification of pose information from ICT data, three classes (supervised, 
reinforcement, and unsupervised) are borrowed from machine learning theories. Those 
methods without any learning characteristics are classified as ‘filtering’ methods. 
Meanwhile, each class of method requires unique domain-specific knowledge. 

 
Figure 2: The four proposed classes of pose estimation methods in construction. 

A literature search was conducted on Google Scholar, with the query term ‘(pose 
estimation) (construction) (human OR equipment OR facility)’ and a publication date in 
or after 2011. The top 500 results were initially screened for the most representative 
cases according to the titles and abstracts within the two focused domains of 
construction management and computer-aided technologies (CAx). Then, the 
publications were furthered filtered according to the richness of information they 
contained on poses (e.g., position, orientation, and shreds of evidence of purposes) and 
ordered descending according to the average number of citations per year. A 
snowballing process was then executed for the top candidate papers to include the 
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missing query keywords. The process produced nine representative cases, as listed in 
Table 1, of existing pose estimation in construction.  

Table 1: Representative cases of pose estimation of various construction objects. 

 Components Equipment Human 

Filtering Niu et al. (2019) Zhang et al. (2012) Yan et al. (2017) 

Supervised Jin and Lee (2019) Golparvar-Fard et al. 
(2013) Han and Lee (2013) 

Reinforcement Xue et al. (2019) – – 

Unsupervised Kashani and Graettinger 
(2015) 

Chen et al. (2017) – 

 
The cases in Table 1 covered nine out of the 12 combinations of the four classes of 

methods and the three types of construction objects. The missing three entries were 
related to the reinforcement methods for estimating equipment and human poses and 
unsupervised methods for human poses. Three amidst the nine papers, i.e., Zhang et al. 
(2012), Golparvar-Fard et al. (2013), and Han and Lee (2013), were published between 
2012 and 2013, which indicated that quite a portion of pose estimation studies was 
established in construction before the advent of the concepts of digital twin and cyber-
physical systems. Besides, many supervised learning methods that apply to construction 
were excluded from this study if they oversimplified the target pose information such as 
a ‘yes/no’ estimation of whether a 2D image is a worker or a truck. 

3 POSE ESTIMATION OF CONSTRUCTION OBJECTS 

3.1 Filtering methods 
A filtering method applies fixed rules and processes, often in the form of definite rules 
and equations, as shown in Figure 2a. The input data contains the pose data, yet with 
noise and uncertainty. Based on the filter patterns or rules, the processing can result in 
more accurate and stable pose data. Zhang et al. (2012) developed an early real-time 
positioning system in 2012 based on the ultra-wideband (UWB) technology. The method, 
as shown in Figure 3a, employed eight sensors to measure a mobile crane’s pose changes 
in distances of a few meters. The results showed that errors up to two meters were 
corrected by a 3D velocity filtering method from the raw sensor data. 

Yan et al. (2017) integrated two inertial measurement unit (IMU) sensors in for 
estimating a construction worker’s poses of head, neck, and trunk, as shown in Figure 3b. 
They cross-referenced the sensor data via a human backbone model and filtered and 
warned the ‘Not Recommended’ poses in real-time. For example, once the angle of trunk 
inclination is over 60° during manual operations, there would be a high risk of lower 
back pains. 

Niu et al. (2019) integrated more types of sensors, including IMU, altimeter, and 
global positioning system (GPS) on an IoT device, for monitoring precast beam hoisting. 
They also applied a 3D velocity filter and identified the beam’s poses and motions, 
including swings and rotations in the air, in real-time. The estimated poses were utilized 
for analyzing the near-miss safety issues as well as productivity. The 4D pose traces of 
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the hoisted beams were visualized online in near real-time on an open GIS engine called 
Cesium. 

 

 
Figure 3: Filtering methods of pose estimation. (a) Sensor settings for a crane in 

Zhang et al. (2012); (b) Sensors (as circled) and real-time pose warnings (Yan et al. 
2017); (c) Multi-sensor fusion and pose trace (as circled) in hoisting (Niu et al. 

2019). 

3.2 Supervised methods 
A supervised method first summarizes the pose patterns or learns a meta-model from the 
given training data, then applies the learned patterns or models to the input data, as 
shown in Figure 2b. The input data table does not contain the pose data, but a list of 
relevant data columns called ‘attributes.’ Meanwhile, the training data is a table 
comprised of all the attributes and annotated label columns about the target pose. That is 
why the learned patterns or models are applicable to the input data for pose estimation. 
Golparvar-Fard et al. (2013) investigated the pixels’ gradient-based movements and 
orientations in a crane video, and applied a multiple binary SVM classifiers to estimate 
the poses and activities, as shown in Figure 4a. They reported average accuracies at 
86.33% and 98.33% for categorical actions of excavators and trucks, respectively. 

Han and Lee (2013) was another early vision-based supervised method using dual 
cameras. The two cameras were set up to cover a target area from different view angles. 
First, the cameras estimated 2D poses independently through a pre-trained supervised 
learning model based on the Histogram of Oriented Gradient (HOG) descriptor. Then, 
the two 2D poses were matched into a 3D pose, as shown in Figure 4c. The recall of 
unsafe action detection was 88%, and the precision was also 88%. 

Figure 4b shows the 3D reconstruction process of a pipeline system from a laser-
scanned point cloud in Jin and Lee (2019). They applied the random sample consensus 
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(RANSAC) to estimate the cylinder axes and employed principal component analysis 
(PCA) eigenvalues for distinguishing linear and curved regions based on the Catmull–
Rom spline. The recall rates of the pipes were around 85% to 90%, while the 
computational time was about 30s for 60-90 pipes (i.e., less than 0.5s per pipe on 
average). 

 
Figure 4: Supervised methods of pose estimation. (a) Learned motion features of 
equipment (Golparvar-Fard et al. 2013); (b) Pipelines 3D reconstruction (Jin and 
Lee 2019); (c) Dual-camera worker pose estimation process (Han and Lee 2013). 

3.3 Reinforcement methods 
In contrast, reinforcement methods were mentioned the least often in the literature. 
Reinforcement methods in machine learning aim to understand and automate goal-
directed learning and decision-making by learning from interaction with an environment 
(Sutton 2018). In pose estimation, it involves repeated iterations of trial-and-error 
searching for the best pose, as shown in Figure 2c. Thus, a reward or penalty function is 
required, rather than the filters and annotated training pose data, is necessary for 
reinforcement methods. Xue et al. (2019) presented a reinforcement method named 
semantic registration based on an error function and explicit optimization algorithms, as 
shown in Figure 5. The test results on a 293 auditorium chairs case showed the recall and 
precision were around 85%, at 5.3s average computational time for each chair. 
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Figure 5: A reinforcement method of pose estimation in Xue et al. (2019). 

3.4 Unsupervised methods 
The unsupervised methods, or clustering, require the least domain knowledge in the four 
classes. Instead, once some non-pose attributes in the input data table are measurable, 
e.g., float or integer numbers, the input data records can be clustered to a few sets or a 
closeness-based hierarchy, as shown in Figure 2d. Although the output clusters are often 
not able to predict the poses directly, they are effective descriptors that recap and 
conceptualize a large volume of data. Thus, unsupervised methods are popular in the 
automated pre-processing of 3D point clouds (Chen et al. 2017; Jin and Lee 2019). 
Kashani and Graettinger (2015) present a direct use of the clusters for detecting rooftop 
damages from ground-based LiDAR data, as shown in Figure 6a. They tested the 
combinations of unsupervised methods and evaluation criteria and found that the Elbow 
method and the Calinski-Harabasz criterion resulted in an 82% correct estimation. The 
resulting clusters also reflected the poses of the roof elements. 

Chen et al. (2017) developed a principal axes descriptor (PAD) of the cluster of points 
for the recognition of construction equipment. Figure 6b shows the unsupervised part. 
The input points were pre-processed for background removal using ground erosion. 
Then, Chen et al. applied an unsupervised Euclidean clustering method, where the 
nearest points were grouped, and isolated noise points were removed. The experimental 
results showed the new PAD was robust against various equipment poses. Next, after a 
round of supervised recognition, the precision and recall of recognizing excavators 
achieved over 90%, but the recall for backhoe and front loaders was no more than 75%, 
while the precision for bulldozers and dump trucks was no more than 60%.  
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Figure 6: Unsupervised methods of pose estimation. (a) Point clusters of rooftop 
damages (Kashani and Graettinger 2015); (b) 3D point clusters of construction 

equipment (Chen et al. 2017). 

4 DISCUSSION 
Pose estimation of construction objects, as well as the digital twinning, can reflect the 
accurate position, orientation, and potential purposes or uses. With such information 
being updated in a real-time fashion, the construction site environment becomes more 
controllable. This is, in essence, the enabler of a smart and digital construction site. 
Nevertheless, each class of methods discussed above has strengths and drawbacks. Table 
2 summarizes the four classes of methods in terms of pose accuracy (aggregated from 
precision and recall), processing time, and overall cost (including hardware and staffing 
cost). An ideal pose estimation method should work out a high accuracy in a short time 
and at a low cost. However, the reality is that there is no such method.  

Table 2: Comparisons of pose estimation methods for digital twinning of 
construction objects. 

Class Pose accuracy Processing time Overall cost Example  

Filtering High Very fast High Crane hoisting 

Supervised Medium Fast Medium Safety supervision 

Reinforcement Medium Slow Low 3D reconstruction 

Unsupervised Low Fast Low Data pre-processing  

 
Table 2 shows that the filtering methods are the best in terms of accuracy and 

computational time, but they cost a fortune on hardware and communications. For 
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example, an IMU-enabled IoT device costs more than US$50, and a UWB system is even 
higher. The reinforcement and unsupervised methods are the cheapest. However, 
reinforcement learning requires an in-house developed exact guiding reword function, 
while the unsupervised clustering results still need further processing. The supervised 
methods seem a balanced option. However, it requires manual labeling of the poses in 
the training data—which incurs additional cost. The accuracy and processing time are 
not acceptable in many application scenarios. 

Therefore, one has to select the pose estimation methods based on their application 
and one’s budget. It is also true for other digital twin applications in construction. If the 
target object is critical to the construction productivity and project delivery, for example, 
a tower crane or volumetric prefabricated room, then advanced sensors and filtering 
methods are recommended. Besides, a supervised artificial intelligence (AI) method’s 
success should be primarily attributed not to the ‘intelligence’ part but to the ‘artificial’ 
part, which incurs a cost. 

Furthermore, there exist three void combinations of methods and objects in Table 2. 
One reason is that construction equipment usually has more degrees of freedom (DoFs) 
than building components. For example, a mobile crane has 6 DoFs: a 3D position (x, y, z) 
and a 3D rotation from its chassis and the center position (x, y, z) or the equivalent (pan, 
tilt, length) from the jib. Human objects have even more DoFs; for instance, the human 
skeletal motion model in Guo et al. (2018) has 10 DoFs from the angles of the limbs, 
regardless of height and length. As a result, the estimation of equipment and human 
poses is considerably more complicated than that of building components. Plus, 
reinforcement and unsupervised methods are highly associated with, and thus confined 
to, the application scenarios, which leads to less available software libraries for the 
construction industry. 

In the new era of AI and blockchain, new hardware and software technologies are 
flourishing. Some of them can be very helpful for pose estimation and the digital 
twinning of construction objects. For example, Birdal et al. (2018) proposed a new 
uniform model for detecting all quadrics, including planes, spheres, cylinders, cones, 
ellipsoids, and more. Novel deep learning methods, such as Luo et al. (2019), were also 
efficient for pose estimation and other applications such as productivity estimation with 
implicit poses involved. Besides, the well-known application scenarios can also be 
expanded by the latest means. For example, Xue et al. (2019) applied an unsupervised 
method to generate a similar hierarchy of point-driven urban objects, after clustering the 
objects’ points from aerial LiDAR data like Kashani and Graettinger (2015) and Chen et 
al. (2017). Penzes (2018) projected multiple application scenarios of blockchain in 
construction, which introduced novel distributed paradigms, real-time data exchange, 
transparency, and trust for general applications. It can be another direction to integrate 
pose estimation and digital twinning for the prospect of a smart and digital construction 
site. 

5 CONCLUSION 
Digital twinning of construction objects is a promising research field because it is the 
informational foundation for smart and digital construction site and cyber-physical 
construction systems that can mitigate much uncertainty and ignorance in terms of 
construction safety and productivity. However, it is not clear to what extent many 
methods fit digital twinning’s purposes, such as near-time responsiveness and accuracy. 
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This paper focuses on the pose estimation task of digital twinning and compares the pros 
and cons of each class of methods.  

Of the proposed four-class taxonomy in this study, filtering and supervised methods 
are most frequently seen in the literature. The filtering methods have the best quality but 
also the highest cost. Although supervised methods have been significantly leveraged by 
recent endeavors in deep learning and big data, they can handle certain types of 
application scenarios. Meanwhile, reinforcement and unsupervised methods are among 
the cheapest, but they are complicated, closely associated with application scenarios, and 
sometimes require deep domain insights. Thus, the reinforcement and unsupervised 
methods are rarely applied to complicated (more DoFs) objects in literature. One 
recommended direction is to adopt the latest methods from mathematics and computer 
science. The other possible direction relates to the distributed paradigms, real-time data 
exchange, transparency, and trust that are enabled by blockchain technology. 
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