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Abstract: Geolocation information used to create ground survey maps is critical in 
many domains including construction, transportation, urban planning, disaster 
response, agriculture, forestry, ecology, mining, and defence. Rapid development of 
the UAV technology due in part to better camera resolution, longer flight range, and 
higher data storage capacity, has enabled more efficient, less expensive remote 
sensing at lower altitudes. While UAV remote sensing requires uninterrupted access 
to on-board GPS data, such information may not be always available (e.g., in GPS-
denied environments). Also, UAV pilots and enthusiasts may not share location 
information due to privacy issues or lack of knowledge about geolocation meta-data. 
Advances in vision-based deep learning have created new opportunities in UAV 
data collection and navigation beyond the constraints of GPS-enabled environments. 
In particular, UAVs equipped with RGB cameras can be deployed to automatically 
recognize and map target objects and landmarks on the ground using deep learning 
methods. This paper presents a method for real-time aerial data collection and GPS-
free mapping. This is achieved by passing UAV visual data through a convolutional 
neural network (CNN) to identify and localize target objects, followed by applying 
geometric transformation to instantaneously project detected objects on an 
orthogonal map, all without GPS data. Particularly, the pixel coordinates of ground 
objects and four reference points are first detected by the CNN model. Next, 
viewpoint transformation is applied to project detected objects from the UAV’s 
perspective view onto an orthogonal view. Experiments conducted in an outdoor 
field yield a small average error of <2% along X and Y axes.  

Keywords: Convolutional Neural Network (CNN), GPS-Denied, Unmanned Aerial 
Vehicle (UAV). 

1 INTRODUCTION 

1.1 Object Mapping Using Geolocation Information 
Geolocation information are widely used by mapping platforms (e.g., Google Maps, 
OpenStreetMap, ArcGIS) to overlay objects on maps, and are critical components of 
decision support and research infrastructure in many fields including agriculture, 
forestry, ecology, marine industry, mining, commerce, construction, transportation, 
defense, disaster response, and urban planning. Existing methods of mapping data 
collection can be divided into two broad categories of ground survey and aerial remote 
                                                           
1 Ph.D. Candidate, Department of Construction Science, Texas A&M University, College Station, TX 
77843, USA, piyalong@tamu.edu 
2 Ph.D. Student, Zachry Department of Civil Engineering, Texas A&M University, College Station, TX 
77843, USA, nipundebnath@tamu.edu 
3 Clark Construction Endowed Associate Professor, Department of Construction Science, Texas A&M 
University, College Station, TX 77843, USA, abehzadan@tamu.edu 

mailto:piyalong@tamu.edu
mailto:nipundebnath@tamu.edu
mailto:abehzadan@tamu.edu


Deep neural networks for drone view localization and mapping in GPS-denied environments 

2 | Proceedings CIB W78, August 2020 | São Paulo, Brazil 

sensing. Ground survey methods involve using total stations and ground 
photogrammetry. A total station is used to measure the coordinates of ground control 
points (GCPs) to produce detailed vector maps, which can reach an accuracy of <1 
millimeter. However, processing data using this method is time consuming, and the 
range of data collection is relatively limited. Ground photogrammetry, on the other hand, 
involves using optical cameras, sonar, radar, and laser scanners to collect digital spatial 
information. This method can produce 3D models providing that high-accuracy GCP 
information is available (Adams et al. 2011). In contrast to ground survey methods, aerial 
remote sensing includes collecting rasterized images from satellites, airplanes, and 
unmanned aerial vehicles (UAVs). More recently, GPS-enabled light detection and 
ranging (LIDAR) equipment has been also used from low-altitude aircrafts for this 
purpose (Carter et al. 2012). 

Using satellite imagery for real-time applications at micro-urban level of detail may 
pose certain challenges. In addition to high cost of acquiring and processing large 
volumes of satellite data, accessing such data in some locations or during certain times 
may be restricted, data could be interrupted due to cloud blocking (Adams et al. 2011), 
and update rate could be too slow (e.g., once every 24 hours) (NASA 2020). Moreover, 
majority of existing remote sensing data analysis techniques rely on the availability of 
GPS data, which may hinder their applications in GPS-denied environments (locations 
and times where GPS signal is weak or non-existent) for timely status monitoring, 
decision-making, resource deployment, and emergency management. Examples include 
locations inside heavily urbanized areas or surrounded by dense vegetation, indoor 
facilities (e.g., tunnels, sheltered spaces, underground, underwater), GPS-jammed 
locations (i.e., presence of radio signal interference impacting GPS signal reliability), 
unknown territories (e.g., battlefield, extraterrestrial exploration), or during severe 
weather.  

In the past decade, rapid development of the UAV technology due in part to better 
camera resolution, longer flight range, and higher data storage capacity, has enabled 
more efficient, less expensive remote sensing methods at lower altitudes (Adams et al. 
2011). Despite their affordability and ease of use, UAV remote sensing is still not a trivial 
task since it requires uninterrupted access to on-board GPS data to calculate location 
information and generate ground survey maps. However, in some cases, such 
information may not be readily available (e.g., in GPS-denied environments), and 
sometimes, UAV pilots and enthusiasts may not share location information due to 
privacy issues or the lack of knowledge about how to create and exchange geolocation 
meta-data. In light of these limitations, advances in computer vision (CV) and machine 
learning (ML) have created new opportunities for pushing the boundaries of UAV data 
collection and navigation beyond the constraints of GPS-enabled environments. 

In particular, UAVs equipped with standard RGB cameras can be deployed to 
automatically recognize landmarks (both manmade and natural) and targets of interest 
(ToIs) on the ground using deep learning methods such as convolutional neural networks 
(CNNs) (Adams 2011). This research aims at developing a method for GPS-free aerial 
data collection and mapping in real-time. This is achieved by passing the collected visual 
data through a CNN architecture, namely, RetinaNet (Lin et al. 2017) to identify and 
localize ToIs in each video frame, followed by applying geometric transformation to 
instantaneously project detected ToIs on an orthogonal map, all without involving GPS 
data. In this paper, current research progress on the relevant topics, as well as two 
approaches for collecting, analyzing, and mapping UAV visual data using ground 
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reference points are introduced and validated in real-world experiments. Potential 
applications of the proposed methods are also discussed. 

1.2 Previous Work 
CNNs have been used in recent years for image classification, recognition, and semantic 
segmentation (i.e., extracting semantic information from images). For example, 
Krizhevsky et al. (2017) proposed AlexNet, a CNN with 8 layers, which accomplished 
top-5 error of 15.3% on ImageNet dataset. Later, Simonyan and Zisserman (2016) 
introduced VGGNet with up to 19 layers and achieved higher accuracy. He et al. (2017) 
designed a network with residual blocks, namely ResNet, that outperformed human by 
3.57% on ImageNet.  

Object detection further expands upon object classification by localizing the pixel-
level position of target classes in the image. Examples of state-of-the art algorithms for 
object detection include R-CNN (Girshick 2014) and Fast R-CNN (Girshick et al. 2015) 
that use region of interest (RoI) to improve prediction speed compared to the traditional 
sliding box methods. To further reduce the processing time, Ren et al. (2017) proposed 
Faster R-CNN by adopting region proposal network (RPN) that achieved mean average 
precision (mAP) of 73.2% on PASCAL dataset (Russakovsky et al. 2015) (containing 
everyday objects such as people and cars). These methods involve two stages, i.e., 
proposing candidate regions and classifying proposed regions, and can produce 
significantly accurate predictions. There are also one-stage detectors that are specifically 
designed to compute faster, but with smaller accuracy loss (Lin et al. 2017). For example, 
Redmon et al. (2018) introduced You-Only-Look-Once (YOLO) version 3, which is the 
latest version of YOLO (Redmon et al. 2016) and YOLO version 2 (Redmon et al. 2017) 
algorithms. In particular, YOLO adopts feature pyramid network (FPN) and anchor boxes 
in the gridded image to predict class and location simultaneously. Liu et al. (2016) 
introduced single shot detector (SSD) using pre-defined boxes and scaled feature maps, 
and achieved 76.8% mAP on the VOC dataset (Everingham et al. 2010). Recently, Lin et 
al. (2017) presented RetinaNet with a novel focal loss integrated with FPN to better learn 
hard examples, resulting in 37.8% average precision (AP) on the COCO dataset (Lin et al. 
2014). 

While the field of CV, and in particular, CNNs for object detection and segmentation 
is rapidly developing, few studies have focused on aerial object recognition using CNNs. 
For example, Han et al. (2014) proposed a new weakly supervised algorithm that 
achieved an overall 94.45% precision on Google Earth, and Landsat (dataset containing 
airplanes, vehicles, and airports). Cheng et al. (2016) introduced rotation-invariant CNN 
with a new objective function via enforcing training samples before and after rotating, 
resulting in 72.63% precision on the VHR dataset. Tang et al. (2014) used extreme 
learning machine (ELM) and deep neural network (DNN) to classify if satellite images 
contain boats, and reached 97.58% accuracy. However, these methods detect only pixel 
coordinates of objects in satellite images without providing any geographic coordinates. 

In the field of UAV-based remote sensing, researches have mostly focused on 
photogrammetry and 3D mapping. For example, Friedel et al. (2018) showed the 
possibility of mapping landscape soils and vegetation through self-organizing map (SOM) 
of the aerial spectral information. Chao et al. (2012) demonstrated the use of monocular 
cameras to build visual simultaneous localization and mapping (SLAM) tools to navigate 
a UAV without GPS. Suh and Choi (2017) explored using GCPs  and UAVs to produce 
maps with 14-cm error in a mining site. Ventuna et al. (2016) investigated 3D modeling 
of coastal fish nursery environment with drone cameras and GCPs with high accuracy 
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(89.1%). Cunliffe et al. (2016) used UAV-captured photos and structure-from-motion 
(SfM) to produce accurate grain biophysical data. While these approaches can produce 
local 3D maps of the topography and space, to obtain target information (quantity, 
coordination, and status), post-processing (e.g., map stitching and target marking) and 
GPS data are still needed. It is evident that in GPS-jammed sites (i.e., military sites or 
enemy territories), GPS-based mapping methods fail to provide instantaneous position, 
velocity, and time (PVT) information (Asher et al. 2011). 

Some researchers have tried to leverage other onboard sensors such as inertial 
measurement unit (IMU), stereo cameras, Wi-Fi, radio-frequency identification (RFID) 
(Balamurugan et al. 2016), and sonar to extract PVT information in GPS-denied 
environments. For example, Pestana et al. (2013) utilized OpenTLD tracker to follow 
moving objects such as humans and cars with UAV cameras without GPS. Rajeev et al. 
(2019) investigated the use of prior knowledge and augmented reality (AR) to navigate in 
indoor GPS-denied areas. Bachrach et al. (2012) equipped drones with RGB-D cameras 
to automatically plan complex 3D paths. Scaramuzza et al. (2014) designed a visual–
inertial multi UAV system with camera and IMU to autonomously fly and map the 
environment. While previous work has investigated sensor data fusion for GPS-denied 
UAV navigation, the problem of single monocular RGB camera-based UAV navigation 
using ToI recognition (locating, projection, counting) and mapping still remains 
unexplored. As previously discussed, the ability to locate and map objects using ordinary 
RGB cameras mounted on lightweight UAVs could be of significant value in many 
applications, and reduce the cost of data collection. Therefore, this research is geared 
toward the introduction and validation of a robust, computationally efficient method for 
identifying, locating, and mapping ToIs from UAV cameras in GPS-denied environments. 

2 METHODOLOGY 

2.1 Transformation of Pixel Coordinates to Real-World Positions 
In this research, the process of mapping UAV-captured scenes is carried out in two 
phases: (i) identifying ToIs in aerial views and locating them within the image 
(perspective) coordinate system (a.k.a., pixel coordinates), followed by (ii) projecting ToI 
positions to the real-world (orthogonal) coordinate system (a.k.a., real-world positions). 
To obtain the real-world orthogonal position of a point from its perspective pixel 
coordinates, four reference points (where any three points are non-collinear) with known 
pixel coordinates and corresponding real-world positions are needed. 

Figure. 1 shows an example, where pixel coordinates of the reference points are 
       ,        ,        , and        , and corresponding real-world position are 
         ,          ,          , and          , respectively. Given  , the real-world 
position           of any point (i.e., ground ToI) can be calculated from its pixel 
coordinates         using Equations 6 and 7. In Equation 6, (             represents the 
point’s position in a homogenous coordinate system where     is the distance of the 
point from camera (i.e.,     represents that point is at infinite distance). 
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Figure 1. Perspective to orthogonal transformation. 

 

 
      

      

   
   

  

  

  

   
  

  

 
      

 

   

               

               

      

      

 

 
         
         
   

   

  

  

  

   
   
   
 

      

 

   

                  
                  
      

      

 

            
 

 
    
    
 

     
  

  

 
      

 

  
  

  
  

 
   

  
  

  

 
     

 



Deep neural networks for drone view localization and mapping in GPS-denied environments 

6 | Proceedings CIB W78, August 2020 | São Paulo, Brazil 

2.2 Object Detection Framework 
CNN models, trained on relevant datasets, can effectively detect objects based on visual 
features and output the pixel coordinates of detected objects. With proper training data, 
UAVs equipped with cameras can also detect objects on the ground (e.g., parking lots, 
people, landmarks, trees, buildings) from the perspective view. These objects can serve as 
reference points (Figure 1). The pixel coordinates of any ToI is also produced by the 
same CNN model. However, there is a trade-off between speed and accuracy of different 
CNN architectures, as shown in Table 1. In this research, the goal is to process images in 
real-time with high accuracy. Therefore, RetinaNet-50-500 (4) is selected since its focal 
loss function emphasizes on learning hard examples, leading to high accuracy without 
compromising real-time speed. 

Table 1. Average precision (AP) vs. time on COCO test-dev dataset. 

CNN model AP (%) Time (milliseconds) 

YOLOv2 (Redmon et al. 2016)  21.6  25 

SSD321 (Liu et al. 2016)  28.0  61 

R-FCN (Dai et al. 2016)  29.9  85 

RetinaNet-50-500 (Lin et al. 2017)  32.5  73 

DSSD513 (Liu et al. 2016)  33.2 156 

FRCN (Dai et al. 2016)  36.2 172 

RetinaNet-101-800 (Lin et al. 2017)  37.8 198 

2.3 Viewpoint Transformation 
Once the CNN model identifies the pixel coordinates of the reference points and ToIs, 
the next step is to obtain each ToI’s real-world position given the real-world positions of 
the reference points. The real-world positions of the reference points can be obtained 
either from prior-knowledge (e.g., using on-site measurements) or from a plan-view 
image (using the ratio between detected size of an object and its known actual physical 
size). In this Section, the problem of calculating the real-world position and orthogonal 
mapping of ToIs is approached from two angles: (i) projection from perspective to 
orthogonal based on reference objects’ coordinates (PROC), and (ii) projection from 
perspective to orthogonal based on reference objects’ size (PROS).  

Figure 2 illustrates the workflows of PROC and PROS approaches. In this Figure, four 
traffic cones are used as reference objects, and the goal is to calculate the orthogonal 
position of a moving person (i.e., ToI) from UAV-captured perspective views. In the 
PROC approach, first, Model-P is trained on a perspective video (PV1) and tested on 
another perspective video (PV2) to predict the pixel coordinates of the reference objects 
and ToI in each video frame. Next, from the known real-world positions of the reference 
objects, the real-world position of the ToI (i.e.,    ,     ) is calculated in PV2 using 
Equations 1 through 7. While the PROC approach relies on the real-world positions of 
reference objects, the PROS approach uses the size of reference objects. The pixel 
coordinates of reference objects and ToI are obtained as before by using Model-P. 
However, the reference objects’ real-world positions are calculated differently. In essence, 
another CNN model, Model-O, is trained on an orthogonal video (OV1) and tested on 
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another orthogonal video (OV2) to predict the boxes of the reference objects. Since in the 
PROS approach, the actual sizes of reference objects are known, the ratio between the 
sizes of the predicted boxes in pixel and their real sizes is used to transform the pixel 
coordinates of these objects to real-world positions. Next, the real-world position of the 
ToI is calculated in PV2 using Equations 1 through 7. 

 

  
Figure 2. Reference objects in perspective and orthogonal views are used to 

calculate the real-world position of a walking person. 

3 APPLICATIONS 
The large volume of available geocoded data (e.g., 3D building models with geographic 
information) and crowd-sourced video data, especially in urban areas, enables the 
training of CNN models to effectively recognize natural and manmade landmarks as 
ground reference objects. In some cases, where a sufficient number of references objects 
does not exist, manually placed markers (e.g., GCPs) can be also used. Nonetheless, with 
CNN models capable of recognizing multiple reference objects in perspective views and 
given information about the real-world positions of these objects, the PROC approach 
can be used to map multiple ToIs (both stationary and moving) in real-time. 

In some scenarios, however, it might not be possible to obtain accurate real-world 
positions of the reference objects beforehand. In these cases, knowing the physical size of 
the reference objects, the PROS approach can be used to produce orthogonal maps of 
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ToIs. This approach requires (at least) one orthogonal image (e.g., from a second UAV 
camera, an airplane, or a passing satellite looking down vertically) to calculate the real-
world positions of the reference objects. The PROS approach is therefore more 
generalizable compared to the PROC approach since most of the prior knowledge in 
PROS can be obtained beforehand or with little dependency on the actual site. Table 2 is 
a summary of potential applications of both approaches. Examples listed in this Table 
can be implemented using the PROC approach if there are adequate reference objects (4 
or more). Examples marked with (*) indicate that the PROS approach is more suitable 
due to the potential of insufficient data about reference object positions (e.g., moving 
reference objects). 

Table 2. Potential applications of PROC and PROS mapping methods. 

Domain Reference Points   
(Landmarks) 

Potential TOIs Application 

Disaster 
management 

Parking lot, 
intersection, building 

People, car, debris, 
damaged roof 

Search and rescue, 
damage estimate 

Agriculture* Tractor, building, road 
post 

Livestock, crops, 
grass, vegetation 

Growth estimate, fleet 
control 

Forestry* Cliff, river, equipment Trees, animals Fire control, animal 
migration 

Marine systems* Lighthouse, pier, 
building, vessels 

Marine animals, 
corals, vessels, oil 

spill 

Navigation, marine 
ecology 

Construction 
management 

Building element (wall, 
column), equipment 

Material stocks, 
workers, equipment 

Safety, work monitoring, 
productivity estimate 

Transport systems Road sign, toll plaza, 
control tower 

Cars, trucks, trailers, 
planes 

Traffic monitoring and 
control 

Urban 
management 

Parking lot, 
intersection, building  

Buildings, trees, 
people 

Urban planning, land 
survey 

Military defence* Military post, tent, 
installation 

Adversary Surveillance, target 
inspection 

4 EXPERIMENTS 
To train and test CNN models that can automatically detect reference objects and ToIs, 
two experiments are conducted. Experiment 1 involves collecting perspective video PV1 
(Figure 3) and orthogonal video OV1 (Figure 4), which provide the training data for the 
perspective model (Model-P) and orthogonal model (Model-O). Experiment 2 contains 
two videos, PV2 (Figure 5) and OV2 (Figure 6), that serve as testing data. 

4.1 Data Collection and Description 
The objective of both experiments is to project a moving ToI captured in UAV’s 
perspective view into real-world (orthogonal) coordinates, using four reference points. 
Therefore, each experiment contains a continuously moving person (ToI) and four traffic 
cones (reference objects). The cones and the person are located on a turf (333 in × 426 in). 
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To obtain ground-truth information, one drone (Parrot Anafi) records the scene from an 
aerial angle pointing the camera vertically downward (videos OV1 and OV2). Another 
drone (Parrot Bebop 2) records the same scene from a perspective angle and an arbitrary 
altitude (videos PV1 and PV2). The cones’ positions in Experiment 1 (PV1 and OV1) are 
different from Experiment 2 (PV2 and OV2). Also, the person changes outfit between the 
two experiments. With the upper left corner of the turf designated as the origin of the 
real-world coordinate system, the real-world positions of the four cones are shown in 
Figure 3 through 6. For example, cones in Experiment 1 are placed at coordinates (0, 0), 
(0, 333), (426, 0), and (426, 333), whereas in Experiment 2, they are placed at coordinates 
(56, 263), (148, 138), (258, 95), and (356, 277). The timestamps of PV2 and OV2 videos are 
carefully synchronized, leaving a total of 4,149 frames for projection. To train and test 
the CNN models for detection of cones and person, all collected videos are manually 
annotated with DarkLabel (DarkLabel 2020), frame by frame, as shown in Figure 3 
through 6. 

 

 
Figure 3. Perspective video 1 (PV1) annotation sample and setup. 

 
Figure 4. Orthogonal video 1 (OV1) annotation sample and setup. 

 
Figure 5. Perspective video 2 (PV2) annotation sample and setup. 
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Figure 6. Orthogonal video 2 (OV2) annotation sample and setup. 

In these Figures, green rectangles represent cones, and red rectangle represents 
person. Description of the experimental data is shown in Table 3. The ground-truth real-
world positions of the person are retrieved from the manually annotated OV2 video. All 
frames within PV1 and OV1 are used for training while the frames in PV2 and OV2 are 
used for testing. For the training of Model-P and Model-O, the learning rate is set to 10-4 
and batch size is set as 4. 

Table 3. Data statistics for experiments 1 and 2. 

 Experiment 1 Experiment 2 

 PV1 OV1 PV2 OV2 

Total frames 8,873 9,915 5,261  5,814  

Person instances 8,813 8,223 4,492 4,773 

Cone instances 33,362 32,892 19,650 19,092 

4.2 Projection Based on Reference Objects’ Coordinates (PROC) 
Model-P is responsible for detecting the pixel coordinates of cones and person in PV2. 
Figure 7 shows an example of detection of cones (yellow boxes) and person (white box). 
All detected boxes are associated with a confidence level predicted by the model. The 
four cones and one person that are detected with the highest confidence levels are 
selected for further analyses. 

Next, pixel coordinates, i.e., the center point of the bottom edge of each detection box 
(marked with dots in Figure 7) are determined as input for projection calculation. From 
the calculated pixel coordinates of four cones and their corresponding real-world 
positions, the person’s real-world position is calculated (using Equations 1 through 7), 
and projected on the orthogonal map shown in Figure 8. Also, the annotated person’s 
position in OV2 is projected on the same coordinate system which serve as ground-truth. 
As expected, there may be situations when the PROC approach fails to project, e.g., 
when Model-P cannot detect at least four cones in the frame, because they are either not 
within the camera view or obstructed by other objects. In this work, such frames are 
removed from analysis. The number of skipped frames, presented as the percentage of 
total number of frames, is termed frame loss (Equation 8) which describes how efficiently 
the model utilizes the input video data. Moreover, due to the noise in data and/or 
detection error, sometimes the detected boxes of the same object (e.g., cone) in two 
consecutive video frames could appear in two considerably different locations. To 
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identify such statistical outliers, X- and Y- coordinates of each objects are treated as a 
timeseries data. Given, a timeseries data of the coordinates of an object,         
        , at frame    , we consider 15 previous consecutive data points,     
                 , and calculate its mean      

  and standard deviation     
 . If the 

current reading    is a statistical anomaly, defined as         
        

  (two cases 
with   = 2 and 3) we consider the detection as an outlier. After removing the outlier 
predictions, the average projection error is recalculated. 

 

                  
                    

                 
         

 

 
Figure 7. Example of detections of person and cones. 

    
Figure 8. Perspective to orthogonal projection. 

4.3 Projection Based on Reference Objects’ Size (PROS) 
As described earlier, the difference between PROC and PROS approaches is in the 
method for acquiring the reference objects’ real-world positions. In the PROS approach, 
it is assumed that the size of an object in pixel units in the orthogonal image will 
represent a constant physical size throughout the entire video. Based on this assumption, 
from the known physical size of the target object, its actual position (in inches) can be 
calculated solely based on the model’s predictions in the orthogonal view. In the 
experiments conducted, the actual dimensions of the traffic cone are known to be 10 
inches (both length and width). However, due to the noise in data and/or human error, 
the annotated training boxes are slightly bigger than the actual size of the cones. From 
the training data (OV1), the width of the detection boxes for cones is calculated to be 
14.56 inches on average. Therefore, it is assumed that the detected boxes for the same 
cones in the test data (OV2) would also have the same average physical size. During the 
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test, Model-O is applied to the first 30 frames (i.e., 1 second) of OV2 to obtain the sizes 
and coordinates of the boxes representing cones in pixel units. Next, knowing that the 
size of the boxes are 14.56 inches in real-world, coordinates are scaled accordingly to 
obtain the real-world positions of the boxes. The latter part (orthogonal projection) of the 
PROS approach is similar to the previously described PROC approach (Section 4.2). 

5 RESULTS 

5.1 RetinaNet Model Testing 
Model-P and Model-O are tested on PV2 and OV2 to evaluate their performance, as 
shown in Table 4. Overall, Model-O produces 51% mAP which is worse than 97% for 
Model-P. One reason for this disparity is that from orthogonal view (in Model-O), the 
person and cones appear less distinctive compared to perspective view (in Model-P). For 
individual classes, Model-P detects class person with 99.21% average precision (AP); 
however, Model-O produces only 45.89% AP. Similarly, for class cone, Model-P produces 
96.11% detection AP, compared to 51.97% AP for Model-O. 

Table 4. Comparison of Model-P and Model-O performance. 

Model mAP AP (Cone) AP (Person) 

P 97.66% 96.11% 99.21% 

O 48.93% 51.97% 45.89% 

5.2 Projection Results 
Projection results obtained from PROC and PROS approaches are summarized in Table 5, 
and illustrated in Figure 9. For both PROC and PROS, the remaining frames after 
removing non-projectable frames (because the Model-P detected less than four cones or 
one person while tested on PV2) is 3,735 with 9.98% frame loss for both projections. The 
Euclidian distance (in inches) between the person’s real-world and projected positions is 
reported as projection error in each frame. The average projection error (APE) is 
calculated as the mean of frame-by-frame errors in all projectable frames. As shown in 
Table 5, the PROS approach achieves an APE value of 15.39 inches, which is slightly 
better than PROC’s APE of 17.18 inches. Next, the projected person’s real-world X- and 
Y- coordinates are compared with the corresponding ground-truth coordinates, frame by 
frame, and the errors are divided by the total length along each axis (i.e., 426 inches for 
X-axis and 333 inches for Y-axis) to present the error as a percentage. The errors in 
PROC approach are 9.52 inch (2.23%) along X-axis and 11.79 (3.54%) along Y-axis, which 
is slightly outperformed by PROS approach with errors of 8.62 inches (2.02%) along X-
axis and 10.41 inches (3.12%) along Y-axis. 

Furthermore, two scenarios are considered for removing the outliers: k = 2 and k = 3 
(Section 4.2). For k = 3, after removing outliers, a total of 1,493 (FL = 64.02%) and 1,488 
(FL = 64.14%) frames remain in PROC and PROS, respectively, and the overall APE is 
improved to 13.86 inches (for PROC) and 11.86 inches (for PROS). When removing 
outliers with k = 2, calculated APEs (overall, X-, and Y-) for both approaches are greater 
than the case of k = 3, but smaller FL (26.63% for PROC and 26.71% for PROS) is 
achieved. Errors along X- and Y-axis for individual frames are documented in Figure 9. 
In general, it is observed that removing outliers leads to higher frame loss but smaller 
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APE in both approaches. Nonetheless, for all cases, the average error along any 
dimension is less than 4% which indicates the robustness of the proposed methods. 

Table 5. Test results of  PROC and PROS mapping methods. 

 Method Direct Projection Outlier (k = 2) Outlier (k = 3) 

Remained Frame # (FL %) PROC 3,735 (9.98%) 3,044 (26.63%) 1,493 (64.02%) 

 PROS 3,735 (9.98%) 3,041 (26.71%) 1,488 (64.14%) 

Overall APE (inch) PROC 17.18 14.35 13.86 

 PROS 15.39 12.31 11.85 

X-axis APE    (inch and %) PROC 9.52 (2.23%) 7.11 (1.66%) 6.53 (1.53%) 

 PROS 8.62 (2.02%) 5.89 (1.38%) 5.37 (1.26%) 

Y-axis APE    (inch and %) PROC 11.79 (3.54%) 10.89 (3.27%) 10.87 (3.26%) 

 PROS 10.41 (3.12%) 9.55 (2.86%) 9.50 (2.85%) 

 

 
Figure 9. Frame-by-frame projection error in X- and Y- axes for PROC and PROS 

methods. 

6 CONCLUSION 
The research presented in this paper was motivated by the need for robust object 
detection and mapping from UAV-captured scenes in GPS-denied environments. By 
proposing a vision-based UAV localization and mapping framework, this work provided 
an alternative for GPS-denied target projection based on reference objects’ coordinates 
or sizes. In addition, potential applications of GPS-denied UAV mapping in various 
domains were discussed. Separate experiments were conducted to produce training 
dataset (PV1 and OV2) and testing dataset (PV2 and OV2) for CNN models, and two 
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mapping (perspective to orthogonal projection) approaches (namely PROC and PROS) 
were designed and validated. The PROC approach used the real-world coordinates of 
four reference points (e.g., natural or manmade objects on the ground) to project ToIs 
onto an orthogonal map. The PROS approach, on the other hand, was based on 
information about the physical size of reference objects (e.g., cars, land parcels, 
buildings). Based on this distinction, the PROS approach is deemed more suitable in 
scenarios with limited prior knowledge. Both approaches achieved APEs as small as 
11.85 inches (PROS) and 13.86 inches (PROC) (1.26% and 2.85% along X- and Y- axes in 
PROS, compared to 1.53% and 3.26% along X- and Y- axes in PROC) which makes them 
a feasible solution for real-time localization and mapping of ToIs solely from RGB 
camera’s inputs. 

The presented work poses some limitations. For example, the designed methods 
utilize video input from only one UAV for detection and mapping, and work best under 
adequate illumination (RGB camera provides little information in dark or not well-lit 
scenes). Also, while both mapping methods require reference objects on the ground, such 
objects may not be readily available in some circumstances such as UAV missions in 
unknown territories or remote locations. Future research will investigate solutions to 
these and other problems including the possibility of using other visual bandwidths (e.g., 
thermal imagery) as well as creating ad-hoc reference points using multiple cooperative 
UAVs. 
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