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Abstract

Crane cameras are emerging as a cost-effective technology for enhancing situational awareness at
construction sites. Crane camera images in combination with point clouds can facilitate automated
progress monitoring of sites, which can lead to significant time and cost savings in comparison to
manual inspection methods. In this work, we focus on preparing crane camera images for monitoring
the progress of formwork and rebar used for laying concrete slabs. Preparation is needed, because the
view angle and position of the target slab are changing between images because of crane boom rotation.
Furthermore, vertical distance from the camera to the topmost slab changes as the building rises. Our
target is to rotate, crop and rescale the original images in such a deterministic way that the slab under
construction is always shown in the result images at the same position, orientation and scale. In order
to achieve that, we need to know the view angle and the positions of both the camera and the slab.
Camera positions can be read from image metadata and, because the crane rotation axis position is
known, the boom angle can also be calculated. We noted that the GPS information extracted from the
image metadata typically has deviations that could adversely affect the transformation, and that
occasionally GPS values are too erroneous to be used at all. We present experimental results from data
collected at a large construction site in Helsinki, Finland.
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1. Introduction

Effective control of construction site activities requires frequent monitoring of the site. Many
methods have been proposed to monitor construction sites, including handheld cameras Golparvar-Fard
et al., 2015, Unmanned Aerial Vehicles (UAVs) and laser scanners. Recently, a new technique to
acquire as-built data has emerged, which is the use of crane cameras. The major advantage of crane
cameras over other methods is that the data acquisition can be fully automated with minimum cost and
effort. Furthermore, crane cameras are non-intrusive to site operations. The photogrammetry software
provider Pix4D has developed a crane camera solution for automatically taking and storing 2D overview
images, uploading images into a cloud service and generating daily georeferenced 3D point clouds.
Although the 3D point clouds can provide the current floor under construction, it is the 2D images that
provide the richest information about the state of the slab. Additionally, although there is only one 3D
point cloud generated per day, there are multiple 2D images. Thus, construction progress can be
monitored with higher temporal granularity using 2D images, and we will focus in this paper on the
analysis of 2D images.

One useful type of information that can be inferred from crane camera images is the progress of
formwork and rebar. However, in order to effectively perform progress analysis, crane camera images
need substantial preprocessing. Two key issues need to be addressed by the preprocessing step: first,
the changing scale of images as the building is built and increases in proximity to the crane camera and
second, the changing orientation of the images as the crane rotates about its axis. Both issues can
adversely affect the detection of slab edges, which can in turn degrade the formwork and rebar analysis.
Additionally, keeping track of the correct scale can allow us to leverage size features (such as thickness)
to distinguish rebar from formwork, while knowing that the correct orientation can allow us to leverage
the vertical orientation of rebar.

In this paper, we present our method of executing the preprocessing step, including the assumptions
we make about the data. We also explore the most important factors for successful preprocessing,
evaluate the quality of our preprocessing and discuss possible ways of improving the task. This paper
is organized as follows: Section 2 discusses related work over image-based formwork and rebar
progress monitoring. Section 3 describes image and other data available for the preprocessing and our
preprocessing method. Section 4 presents the results and discussion, quality of input data and
evaluations of area detection. Section 5 lays out the conclusions and future work.

2. Related Work

Tuttas et al. (2016) presented a comparative analysis of data acquisition using crane cameras,
UAVs and hand-held cameras. They pointed out that crane cameras are the best solution when daily
images of building slabs are required, since the data acquisition can be fully automated and the cameras
provide a nadir view of buildings. Turkan et al. (2014) presented a method to label column, floor and
wall objects in the as-designed model as being in either “built”, “formwork™ or “rebar” state. Taking a
Terrestial Laser Scanned (TLS) point cloud registered with the BIM model, they noted that the
percentage of object recognition varied differently with respect to a Euclidean distance threshold for
different states of construction. This method does not capture the percentage completion of formwork
and rebar, which is better done using 2D images.

Braun, et al. (2015) proposed a method to combine temporal information of the construction state
with geometric matching of the as-built point cloud and as-planned model using precedence relationship
graphs. However, this method is also not capable of inferring the formwork and rebar progress of floor
slabs. Goldapar-Fard et al. (2015) showed how unordered images and time-labelled 3D plans can be
used in progress analysis. One important part in their method is the detection of occlusions. However,
the 3D voxel side length is 6 cm that is probably too coarse for detection of rebars which have a typical
thickness of only 1 cm. Analysing the percentage completion of formwork and rebar on floor slabs
requires a level of detail not present in 3D point clouds, to which previous works have typically limited
their progress analysis. However, the details like rebars are clearly visible in 2D images.
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The global positions of the crane cameras vary according to the horizontal angle of the crane jib
and the installation position of the camera in the jib (Pix4D, 2017). Furthermore, the height difference
between the camera in the jib and the target slab affects to the scale of the slab images (Tuttas, et. al,
2016). For the work progress analysis of the slab work, it is desirable to get the nadir view images with
fixed orientation and scale that allows direct comparison of the slab area in the original images with the
corresponding 2D floor plan. Assuming that the position of the camera and slab are known, this image
preparation can be carried out with the geometric transformation using, for example, open source
OpenCV package (Bradski, et al., 2008). To the best of our knowledge, this is the first work that deals
with the preparation of crane camera images for formwork and rebar progress analysis.

3. Methodology

3.1 Data description

Images used for this analysis were provided by a crane camera solution by Pix4D implemented at
a large construction site in Finland. Two cameras were installed on the boom of a tower crane located
centrally on the site. The cameras were located approximately 13 and 37 meters from the rotation axis
of the crane, respectively and their viewing direction was towards the ground. The vertical height of the
crane boom, and thus of the cameras, was about 100 meters from sea level. Images used for this work
were taken between 5th July and 2nd November 2018, in total 5361 images from 39 working days. In
addition to the 2D images, georeferenced daily 3D point clouds were available on the cloud. The height
of the building could be inferred from these point clouds.

The areas of interest were two horizontal floor slabs from a residential building. We labelled the
slabs A and B as shown in Figure 1. The two slabs were built at a different pace, so the floor number
being built was different for each slab. Selection of the areas of interest was based on visibility of the
areas in the pictures, because these areas were closest to the crane and were thus viewed relatively often
by the crane cameras. The images contained some useful metainformation for the analysis, such as time,
GPS position and camera number. On the other hand, we knew from the BIM model and site plans the
positions of the slabs and the crane. Figure 1 illustrates the north direction, positions of the crane, camera
movement lines and areas of interest (slabs A and B) on a map that has been rotated in the orientation
of the local site coordinate system.
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Figure 1. Background map in the local site coordinate system and the key elements for the
analysis
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Since the cameras were in nadir orientation, the viewing directions of the camera did not change
when the crane moved. This simplified the processing, because the sensor could be assumed to be
parallel to the horizontal slab plane. Only the positions and yaw angles of the cameras changed
according to the rotation of the crane boom. Additionally, it was assumed that the GPS values in the
image metainformation were reasonably accurate. Furthermore, we assumed the images were
undistorted, since no distortion was visually discernible. For the distorted case, calibration would be
needed. The focal length per detector width was approximately 28 mm for 35 mm film.

3.2 Preprocessing algorithm

The preprocessing algorithm selects the desired slab area from the crane camera images. It uses
camera and area positions to determine where in the original image pixel area is the area of interest.

A simplified flowchart of the preprocessing algorithm is presented in Figure 2. The inputs are
shown on the left side of the flowchart. Inputs are grouped into Static and Varying data. Static data
contains inputs which can be set when the system is set up at the beginning of the construction process.
Varying data depends on the target area and the image to be converted, its time value, the actual camera
position and the pixel values of the image. Subfunctions are shown as yellow circles. Each subfunction
provides one main result, shown in the text box next to the function. The final result of this algorithm
is a transformed image. In the flowchart, the lines show data flows. All inputs of one function have the
same colour.

INPUTS FUNCTIONS AND THE RESULTS
Static:

Camera properties
Local zero point position
Local coordinateangle
Camera height, Z

Crane midpoint, local XY
Camera vs. boom angle
BIM positions, local XYZ:
-floors 1, 2, ...

-stairway slabs A, B, ...
-corner points (ordered)

! Pixel size in slab plane

Target points XYZ

{ m I Delta XY in cam rotation

: e Cam - Crane DXY i Delta pixels in image
GOE | i3
= — Transformed image

Camera angle

Target area (A, B, ..)
Current point cloud
Camera latlon T
Image RGB matrix

Figure 2. Flowchart diagram for automatic 2D image rotation and cropping.

The inputs to the algorithm are explained in the following. Camera properties define the camera’s
focal length for 35mm film and the number of pixels. Local zero point position and local coordinate
angle are used for coordinate changes from Latitude and Longitude values to local coordinate XY
values. For example, in our test case, the site coordinate zero point position and the angle between
coordinate systems can be seen from Figure 1. The angle was 11.5 degrees and the local zero point was
in Graus-Krueger (ETRS-GK25) coordinates, which we converted to latitude-longitude values
(60.1971945, 24.9282963). Camera vs. boom angle is the angle between the direction of the boom and
the rotation of camera. Since the camera installation was fixed, this value is constant and was estimated
from the images to be 180°. Positions of the areas of interest were extracted from the design model
(BIM model) and stored as a table; each floor slab has multiple corner points in the form of X and Y
values. Heights, i.e. Z values, were also read from the BIM model and specified for each floor
separately.

Varying inputs are defined by the area of interest under consideration and the particular image
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being converted. In addition to the actual image data matrix of colour pixel values, each image has some
metainformation such as time, GPS position, camera index value, etc. With the time value, we could
refer to the correct point cloud in order to obtain the current height of the slab being analysed.

We now define the functions depicted in the flowchart:

Function A uses the BIM model to determine the area of interest corner point locations in local
coordinates. Function B converts image latitude and longitude GPS values to local (X, Y) coordinates.
It first converts all latitude and longitude coordinates to UTM easting and northing coordinates (E and
N), then it subtracts the local zero point position from the image coordinates and rotates the difference
values in order to obtain the image position in local coordinates (XY qge):

cosa —sina

sina cos a X (ENImage - ENzero position) (1)

XYImage = [

where « is the angle between local Y direction and global North, ENjpaee is the image’s global (%
N) position and ENyero position 15 the global position of the local zero point (X =0, Y= 0).

Functions C and D calculate the vertical difference and horizontal differences between the slab’s
corner points and the camera. Function E estimates the size of one pixel in the slab (formula 2), which
is needed for scaling real world metric differences to differences expressed as pixels. It uses vertical
difference from camera to slab and camera properties, such as focal length, sensor width and
corresponding number of pixels. Note that we have square pixels, but lengths were calculated for both
dimensions, image height and width, separately, allowing the method also to be used with special sensor

types.

_ Z * Lsensor

Lpy = FeN,. ()

where L, is the slab surface length of one pixel, Zis the vertical difference between camera and
slab, Lgensor is the length of the sensor in the direction of .y, fis the focal length and N,y is the number
of pixels in the sensor in the direction of L.

Final conversion from metric value differences to pixel index difference can be made when the
rotation of the image is known. Function F calculates the horizontal difference from the crane boom’s
rotation point to the camera and Function G calculates the boom rotation angle in the XY plane, which
has a value of 0 when the boom is in direction X from the crane. Function H gives the camera image
rotation in the XY plane. Function I uses camera rotation information and changes horizontal
differences from the local XY coordinate directions to directions of the camera sensor. Then Function
J scales metric differences to pixel differences.

Function K combines corner point differences in pixels to the East and North directions and the
rotation of the camera, and returns corner point pixel differences as image index values. Note that the
camera centre point is always in the middle of the image, for the nadir orientation. Finally, Function L
uses corner point indices to generate the final image. The scaling of the transformed image can be fixed
when the original slab size is known. This size is calculated from the slab corner XY coordinate
positions. The result of function L is a rotated, cropped and rescaled image.

4. Results and Discussion

In this section, we will present an evaluation of the accuracy of the camera positions as the crane
rotates, which are simply the GPS values obtained from the camera every time an image is taken. Then,
we will evaluate the match between the slab area detected by our algorithm and the ground truth, which
is taken manually by selecting the slab area.
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4.1 Accuracy of camera GPS values

Ideally, as the crane rotates about its axis, the camera positions should trace a circle whose centre
point is in the crane midpoint and whose radius is the location of the camera on the crane boom as
measured from the crane mid-point. The crane position was given, but the camera location on the boom
was estimated as the median of Euclidean distances between the camera GPS values for multiple images
and the crane midpoint. Some images did not contain GPS values (we could not determine the reason
for this). Two images contained clearly false GPS values. However, reasonably accurate positional data
was available for 2086 images taken with camera 1 and 2009 images taken with camera 2 with positions
near the crane, which made it possible to estimate the GPS accuracy. Figure 3 shows camera 1 and 2
image positions in local coordinates. In addition, it shows the estimated paths of the real camera
locations. Estimated circle path radius values were 13.4 m for camera | and 37.2 m for camera 2.
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Figure 3. Crane camera image locations and cameras’ path on the background map

Camera 1 image position data indicates that the actual crane midpoint might be about 2 meters
away (in the X direction) from the crane coordinates available to us (which we assume to be the crane
midpoint). However, the possibility of this error is not discernible in the results for camera 2. With the
available crane midpoint, the standard deviations for image distance from the centre point are 2.4 and
2.9 meters for cameras 1 and 2, respectively. If we instead take the crane midpoint to be 1.8 meters
further in the X direction, the deviations would be 1.9 and 2.9 meters for cameras 1 and 2, respectively.
However, regardless of the crane midpoint, the camera position (GPS) values deviate significantly from
the reference circle, especially considering that the width of the area of interest is only 10 meters.
Furthermore, despite lying on the reference circle, the camera position values might still be offset from
the actual position of the camera. This type of error can lead to the calculation of an incorrect rotation
angle for the orientation-correction part of our algorithm.
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4.2 Evaluation of the slab area selection

(b)

Figure 4. (a) A sample image from our dataset (taken on 6" July 2018 with Camera 2). The red
box shows the estimated boundaries of the slab and the blue box shows the ground truth (selected
manually). (b) The detected area is selected, rotated and scaled according to local coordinates

Figure 4 shows the result of a complete implementation of the algorithm. Figure 4 (a) shows the
estimated slab boundaries. To evaluate the match between the estimated and ground truth boundaries,
we used the metric Intersection over Union (IoU) (Weidner, 2008), in which the intersection of the
estimated and reference areas is divided by their union. Thus, an IoU value of 1 means perfect overlap
and a value zero means no overlap. For the Figure 4 result, this value is 0.57. For the estimated area S
and the reference area R:

SNR
SUR

IoU = 3)

To evaluate ToU, we manually specified 33 images from slab A and 51 from slab B. Our main
selection criteria for the images was that the slab should be completely visible in the image. Histograms
of IoU values plotted against number of images are shown in Figure 5.
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Figure 5. Results of the algorithm for slabs A and B

The histograms show that average IoU values lie around 0.4. Considering that the IoU value of
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Figure 4a detection was 0.57, we can conclude that the results are not adequate as such. Thus, some
additional methods are needed to improve the results.

5. Conclusions and future work

In this paper, we presented a method for removing the rotation effect of crane camera images and
thus enhancing further analysis of the images. The idea was to use camera and area positions for
rotation, scaling and cropping of the input images. We compared the results of the algorithm with a
reference set and found that the IoU was on average 0.4. We noted that the error in image GPS positions
has a significant adverse influence on the slab detection accuracy. However, despite the error, the
algorithm is able to select and rotate the approximate area of interest, which can be expanded according
to a pre-specified threshold to ensure that the entire slab is selected.

If we acquire the accurate crane mid-point position and camera installation points in the boom, we
could accurately infer the camera’s circular path as the crane rotates. With this information, we could
adjust image positions to the nearest position in the path. This would decrease errors in the rotation
angle calculated by our algorithm. The algorithm could also be combined with a simple edge detection
technique, which could fine tune the rotation of the image and thus improve the slab detection accuracy.
Additionally, we intend to explore the use of 3D voxel traversing to identify occlusions and thus remove
regions in the image that are not part of the slab.
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