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Abstract

Bolts, nuts, and screws are widely used in the construction industry, so their quality is critical to
the success of a construction project. Inferior blots, nuts, and screws are prone to slippage, cracks or
breaks in roofs or walls, and ultimately post life-threatening risks for construction workers and building
users. To avoid these dangerous consequences, it is required to carefully inspect and control the quality
of each bolt, nut, and screw. Yet, unfortunately, manual inspection conducted by humans is a time-
consuming and labor-intensive task, hence, it results in poor detection accuracy and low detection
throughput. To address this challenge, in this work, we investigate the use of convolutional neural
networks (CNNs) based artificial intelligence to realize high-precision and high-throughput automatic
quality inspection. First, we take pictures for 8,200 screw surfaces from a screw manufacturer. After a
careful quality examination, each screw picture is marked as “defect-free” or “defective” in a dataset.
Then, we explore and propose a low-complexity and low-cost CNN-based neural network architecture.
These labeled screw images in the dataset are used to train parameters of the proposed neural network
architecture and to verify the resultant detection accuracy. Our experimental results show that the
quality detection accuracy reaches 95.13% at steady state, and the detection throughput is 2 or 3 orders

of magnitude higher than that of humans.
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1. Introduction

Bolts, nuts, and screws are essential elements of construction materials that hold multiple
mechanical parts together. As a result, their head defects (e.g., cracks, misalignments, damages) affect
the operation and safety of construction projects. Inferior blots, nuts, and screws are prone to slippage,
cracks or breaks in roofs or walls, and ultimately post life-threatening risks for construction workers
and building users. Hence, it is mandatory to carefully inspect all manufactured bolts, nuts and screws
before using them in construction projects (Zawada et al, 2018). Moreover, since a large number of
screws can be produced by manufacturing equipment in a short time, we envision that a fast and highly
accurate quality inspection method is required. In this way, once defective bolts, nuts, or screws are
identified, manufacturers can remove them immediately before packing and shipping them to
customers.

With the rapid advancement of computer vision technologies, particularly the emerging artificial
intelligence (Al) algorithms (LeCun et al, 2015), machine vision has great potential in inspection,
sorting, and quality control of construction materials at the manufacturing stages. Traditionally,
manufacturing equipment needs to be frequently stopped and idle for a certain period of time for human-
conducted onsite quality inspection. This intermittent manufacturing and inspection manner is
inefficient for achieving high-throughput automated production (Martinez et al, 2019). In addition,
onsite quality inspection personnel typically need years of working experiences. Furthermore, a human
inspector may take tens of seconds or even minutes to complete quality assessment of a screw. In
contrast, because Al algorithms have the unique ability to automatically extract and learn intrinsic
features from input raw data, the combination of computer vision technologies and Al algorithms is
expected to result in low cost, high efficiency, and high throughput quality monitoring and real-time
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inspection (Ahmed et al, 2012; Fathi et al, 2015). We believe that a screw head image captured by
cameras contains a lot of embedded information about its quality degree, which can be automatically
and implicitly derived using artificial intelligence algorithms. Therefore, this study plans to investigate
and develop effective Al algorithms for rapid and accurate screw quality inspection. The targeted Al
algorithm should be user-friendly, reliable, robust, and inexpensive to implement.
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Figure 1: An Example of Using Al Algorithms for Screw Quality Inspection

As illustrated in Figure 1, Al algorithms put a bunch of original data (i.e., each pixel value from a
captured screw head image) into a complex data processing network (e.g., a 3-layer fully-connected
network), and then check if the output result of this network meets requirements - if yes, the network
will be used as the target model; if not, the parameters in the network will be repeatedly updated until
the output result meets the requirements. Such data processing networks typically consist of several
data processing layers, and the network processing capability increases as the number of layers increase.

In this study, due to the high degree of variability in screw head defects (e.g., cracks,
misalignments, damages, broken edges at different locations) as shown in Figure 2, there are no clues
about how to effectively extract the intrinsic features of defective screw heads. Hence, it is difficult to
manually extrapolate useful features or patterns for quality judgment directly from input screw head
images. Note that the image capture position of the screw always changes slightly as the screw moves
under the camera. Therefore, as shown in Figure 2, the orientation of screw heads and the appearance
of the cross recess are not the same in different images. The detection algorithms to be developed in
this study should deal with this orientation variations properly. On the other hand, through literature
review, convolutional neural networks (CNN) have demonstrated excellent performance in speech or
image recognition/classification, and natural language processing. Although the problems solved in
these areas are not the same, these application methods can be summarized as follows: CNNs can
automatically learn features from large-scale input raw data and generalize the results to unknown data
of the same type. The strong learning ability, fast training speed, and high accuracy of CNNs overcome
inherent shortcomings of the traditional neural networks. Therefore, to address this severe challenge of
rapid and high-precision inspection of screw quality, we propose to develop appropriate CNN-based Al
algorithms. Our proposed CNN-based Al algorithm will create non-linear mappings from a screw head
image to a quality decision.
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Figure 2: Image Examples of Defective and Defect-free Head Screws

The rest of this paper is organized as follows. Section 2 reviews the literature study related to the
use of Al algorithms in object identification or quality inspection. Section 3 describes the proposed low-
complexity CNN-based network architecture. Section 4 introduces the experimental test of the proposed
CNN architecture using established screw image datasets, and compares this work with existing state-
of-the-art designs in the literature. Section 5 concludes this work.

2. Literature Review

In this section, recent research progress and achievements in the area of CNN-based object
detection are reviewed and discussed. A variety of CNN architectures have been created for specific
applications. For example, the researchers in (Cha et al, 2017) have presented a deep CNN architecture
for crack detection in civil infrastructures. Although the reported detection accuracy is very good (about
98%), yet, this CNN architecture is complex, including four convolution layers and two pooling layers.
Other CNN architectures for concrete cracks detection is more complex, such as the adoption of 13
convolutional layers in (Silva et al, 2018). The researchers in (Kim et al, 2018) have presented a region-
based fully convolutional network for construction object detection. Using the proposed network
consisting of 3 convolutional layers, the experimental results have shown a detection accuracy of 96%.
The researchers in (Chen et al, 2018) developed deep CNNs to identify defective states of catenary
support devices in the electrified railway industry. Even though the experimental measurements show
a high detection accuracy and strong robustness in complex outdoor environments, the required CNN
architecture is composed of 6 convolutional layers. Later, a deep CNN architecture was developed to
detect the defects on metal screw surfaces in (Song et al, 2018). Based on the conventional LeNet-5
(LeCun et al, 1998), this complex CNN architecture utilizes 3 convolutional layers, 3 pooling layers,
and 3 fully-connected layers. Furthermore, the input screw image in (Song et al, 2018) is limited to
32x32 pixels. If high-resolution screw images are used as inputs, such as 256x256 pixels or higher, the
corresponding CNN architecture will be more complicated.

It can be clearly seen from the above discussion that despite the superior object detection
performance, these existing CNN architectures (Cha et al, 2017; Silva et al, 2018; Chen et al, 2018;
Song et al, 2018; Kim et al, 2018) rely on complex neural networks, which require a significant amount
of computing resources and storage memories to rapidly detect defects. To overcome this resource
challenge and still obtain accurate quality assessments, we will explore a low-complexity, resource-
efficient CNN architecture, which supports end-to-end computation — from the input screw head images
down to an output decision for “defective” or “defect-free”. In this sense, our proposed CNN
architecture has the potential to accommodate resources of cost-effective hardware platforms, such as
a low-cost embedded system consisting of only a microprocessor and limited memory space.
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3. Proposed Low-Complexity CNN Architecture

A CNN architecture is composed of various functional layers: convolutional layers, pooling layers,
ReLU layers, and fully-connected layers. Convolution is a mathematical operation to simplify data
representations by filtering out unwanted noise. As a basic layer of CNNs, a convolutional layer often
consists of more than one convolution kernel. Each kernel is convoluted with the input data to form a
feature map. Several convolution kernels have been designed to perform image edge detection,
sharpening, blurring, etc. Therefore, features (e.g., edges and curves) in images can be extracted through
different convolution kernels. The size and number of convolution kernels are pre-defined parameters
in CNN architectures. When training a convolutional neural network, the trainable parameters in
convolution kernels are automatically adjusted to get better results. This process is called feature
learning or feature extraction. In other words, a convolution layer extracts the hidden features from
input data and outputs a feature map, which is often with a large dimension. As each convolution kernel
can grab the presence of a specific feature, people choose to use multiple kernels to capture different
features.

It is well known that a feature map usually has spatial correlation — a pixel is similar to the pixels
around it in a large probability. If adjacent pixels are merged, the feature map size will be reduced.
Therefore, a pooling layer performs feature selection on the original feature map by taking the
maximum or average value to remove redundant features, and reconstructs a new feature map with a
small dimension. In average pooling, the average of all values in the pooled area is used as the pooling
result. In maximum pooling, the maximum of all values in the pooled area as a pooling result. After
pooling operations, the remained information expresses the feature characteristics better. A ReLU
(rectified linear unit) layer usually placed after a pooling layer. The goal of the ReLU layer is to
introduce nonlinear features into a CNN by forcing its output to zero when the input is negative. To
continuously extract deep feature maps, multiple rounds of convolution-pooling-ReLU layers are often
created in CNN architectures. As a result, these CNN architectures can compress the height and width
of input images, while increasing the number of channels (i.e., depth).

After grabbing enough features of an input image, the final step is how to identify or classify it.
The role of a fully-connected layer is to observe the output of previous layer (generally a feature map
containing high-level features), and then determine which features are the most relevant to a particular
class. A fully connected layer maps the detected features from input images to a separable space, such
as a decision of “defective” or “defect-free”.

So far, there is no explicit criteria to guide designers to determine CNN architectures, such as the
number of total layers, the number of convolution layers, the size and number of convolution kernels,
etc. This is because a neural network is largely dependent on the size, type, hidden features, and
complexity of processing tasks. In this work, we figure out how to choose a low-complexity and high-
precision CNN architecture through the “trial and error” approach. In this way, an appropriate CNN
architecture is proposed in Figure 3, which consists of only 1 convolution layer and 1 pooling layer.
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Figure 3: The Proposed Low-Complex CNN Architecture for Screw Quality Classification
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As shown in Figure 3, the proposed CNN architecture consists of one input layer, one convolution
layer, one pooling layer, one ReLU layer, three fully-connected layers, and a softmax layer. As the
resolution of each screw head image is 256x256 pixels with 3 channels (RGB), the input layer has a
dimension of 256x256x3. Then, in the convolution layer, 32 convolution kernels with a size of 5x5 are
used. The padding option is chosen to be “same”, so it makes sure that the output size after convolution
is the same as the input size. Hence, the resultant feature map size after convolution is still 256x256x32.
After the pooling layer, the size of these feature maps shrinks to 128x128x32. Next, the nonlinearity is
added through the ReLU layer, the latest feature maps are passed to the three fully connected layers.
Finally, the “defective” or “defect-free” classification decision is provided from the softmax layer. This
CNN architecture has been described and implemented in software code using the Python language.

4. Methodology and Design Considerations

Figure 4 illustrates the flowchart of training and validating the proposed CNN architecture. The
CNN training is conducted with an established dataset of 8,200 screw images with a dimension of
256x256 pixels. 4,100 screw images are included in a training dataset, while the other 4,100 screw
images are included in a test dataset. That means that we use 4,100 training images to train our proposed
CNN architecture, and use another 4,100 test images to validate the classification accuracy of the trained
CNN architecture. The goal of CNN training is to optimize trainable parameters (weights and biases in
each neuron) to maximize the chance of correct defects decision. All trainable parameters are randomly
initialized during the training process. Then, the CNN training is based on gradient descent algorithm
in the framework of TensorFlow. The gradient descent algorithm consists of two steps. The first step is
a feedforward step, which calculates the output value of the CNN for an input image. The second step
is a back propagation step, which deviates from the calculated output value of the CNN to modify the
network parameters and to slightly improve its performance on an input image. In this manner, all
trainable parameters will be updated iteratively.

Learning rate is an important custom parameter that affects the training convergence speed and
final classification accuracy of CNNs. For a too high learning rate, the weight update is very large, so
CNNs can converge quickly. But it also raises a problem that the weight is not accurate enough to
achieve the best solution. Otherwise, for a too small learning rate, CNN training will converge very
slowly or even impossible to learn at all. In this study, we carefully tuned the value of learning rate to
obtain a good trade-off between the training convergence speed and final classification accuracy. The
learning rate for training our proposed CNN architecture was chosen to be 0.001.

Instead of training each input image, multiple input images are entered as a batch (e.g., epoch).
The goal is to make the learning process less sharp and the convergence direction more consistent. A
large batch size reduces training time and improves stability. However, a large batch size can lead to a
decline in model generalization capability. In this study, we chose the epoch size to be 64.
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Figure 4: Flowchart of Training and Validating the Proposed CNN Architecture
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5. Experimental Results and Discussions

Figure 5 shows how the detection accuracies vary with the number of training epoch. The final
training accuracy can be as high as 99.4%, which is much better than conventional methods for screw
defect inspection. The final validation accuracy is about 95.13%, which is comparable with the state-
of-the-art works in the literature. Figure 6 plots the simulation results for the training and validation
losses with respect to the number of training epoch. This figure shows our chosen learning rate is
appropriate.
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Figure 5: Classification Accuracy vs. Training Epoch Number
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Figure 6: Classification Loss vs. Training Epoch Number

Table 1 summarizes the performance comparison of proposed low-complexity CNN with the state-
of-the-art CNN architectures in the literature. Compared with (Cha et al, 2017; Silva et al, 2018; Chen
et al, 2018; Song et al, 2018; Kim et al, 2018), the proposed CNN architecture is relatively simple to
implement and obtains a comparable classification accuracy. Therefore, our proposed CNN architecture
has the potential to be implemented in cost-effective hardware platforms, such as a low-cost embedded
system consisting of only a microprocessor and limited memory space. Our proposed Al algorithm
spends around 1 second to complete the quality inspection of a screw. Compared with human-conducted
quality inspection, our algorithm has 2 or 3 orders of improvement in the detection throughput, hence
enabling high-throughput automated production of construction materials.
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Table 1: Comparison Summary of this Work with Existing CNN Architectures

Purpose CNN Classification
P Architecture Accuracy
4 convolution
gf):il ;l) etal, crack detection layers 98%
2 pooling layers
(Silva et al, concrete crack 13 convolution o
2018) detection layers 92:27%
(Kim et al, . . 3 convolution 7
2018) construction equipment - 96%
(Song et al, defective metal screw 3120;1::lut10n 08%
2018) surface yer 0
3 pooling layers
(Chen et al, Defective fastener 6 convolution o
2018) detection layers Ll
1 convolution
This work defective screw head layer 95.13%
1 pooling layer

6. Conclusions

In order to achieve rapid, high-throughput, and high-precision screw head quality inspection, a
vision-based artificial intelligence algorithm is investigated in this work. The proposed convolutional
neural network (CNN) architecture consists of only one convolution layer and one pooling layer, so it
is a low-complexity network architecture with an acceptable high accuracy of 95.13%. This study has
the great potential to replace human-conducted onsite inspections to realize high-throughput automated
production of construction materials.

7. Limitations and Future Work

Despite the very high detection accuracy, this Al architecture is very complex. Thus, it is a
challenge to implement our proposed Al algorithm is resource-limited computational platforms, such
as an embedded system which is connected with a camera that captures raw screw head images. A
typical embedded system consists of only a quad-core microprocessor and limited memory size. To
solve this problem, I will investigate low-complexity, energy-efficient Al algorithm implementation,
and adopt it to a typical hardware platform (e.g., Raspberry PI) to achieve fast end-to-end quality
inspection.
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