
Semantic Rule-checking for Regulation Compliance Checking:
An Overview of Strategies and Approaches

Pieter Pauwels, pipauwel.pauwels@ugent.be
Ghent University, Department of Architecture and Urban Planning, Belgium

Sijie Zhang, sijie.zhang@chevron.com
Chevron ETC, Houston, United States of America

Abstract
As more and more architectural design and construction data is represented in the Resource
Description Framework (RDF) data model, it makes sense to take advantage of the logical basis of
RDF and realise a semantic rule-checking process as it is currently not available in architectural
design and construction industry. Such a semantic rule-checking process would be of considerable
value to regulation compliance checking procedures, because the additional logical basis would (1)
allow consistency checking of the rules in the regulations (and thus a better management of the
rules), (2) allow a faster, more transparent and more reliable implementation of regulation
compliance checking procedures (rules are human-readable and more easily changeable), and (3)
provide the option to rely on available reasoning engines and generate proofs without any
additional implementation effort. Obviously, there are a number of strategies and approaches that
can be followed regarding the realisation of such a rule-checking process. In this article, we will
outline three rule-checking approaches that have been reported for semantic rule-checking in the
AEC domain. The produced comprehensive strategic overview can be used as a guide for parties
interested in implementing a semantic rule-checking process for regulation compliance checking.

Keywords: rule checking, regulations, compliance, BIM, linked data, SWRL

1 Introduction

1.1 Types of rule-checking for construction industry
Rules and regulations are of key importance for the domain of architectural design and
construction. In all sorts of forms and shapes, international, national, local and even personal rules
need to be compliant with before, while and after a building is being built. Of particular importance
are the national regulations that are applicable for specific buildings and constructions. The whole
architectural design and construction industry is aware of the building energy performance
regulations imposed by governments, but many other centrally imposed regulations exist as well,
including acoustic performance regulations, safety regulations during construction phase, fire safety
regulations, building access and exit regulations, and local urban regulations.
 With the advent of Building Information Modelling (BIM) tools (Eastman et al, 2008), a central
location has emerged in which building information can be managed at any point in time. Hence,
automatic regulation compliance checking is within reach, as has also been acknowledge in detail
by Eastman et al (2009). Automated rule checking is defined by Eastman et al (2009) as “software
that does not modify a building design, but rather assesses a design on the basis of the configuration of
objects, their relations or attributes”. Rule-based systems are hereby understood as systems that
“apply rules, constraints or conditions to a proposed design, with results such as ‘pass’, ‘fail’ or
‘warning’, or ‘unknown’.” Many of the initiatives that started from a BIM model for regulation
compliance checking started from a neutral representation of the building model, typically in the

Pauwels and Zhang 2015 Semantic Rule-checking for Regulation Compliance Checking: An Overview of Strategies and
Approaches

Proc. of the 32nd CIB W78 Conference 2015, 27th-29th 2015, Eindhoven, The Netherlands

Industry Foundation Classes (IFC). Eastman et al (2009) hereby refers to the early work by Han et al
(1997, 1998, 1999).
 Since more and more architectural design and construction data is now also represented in the
Resource Description Framework (RDF) data model (Manola & Miller, 2004), the underlying logical
basis of RDF can promote the realisation of the rule-checking process outlined by Eastman et al
(2009) using this additional logical basis, as proposed earlier by Pauwels et al (2011). Also Kerrigan
& Law (2003) indicated the usefulness of a logical basis in regulation compliance checking, as early
as 2003, which was at that time implemented as an addition to plain XML. In this article, we will
specifically look into the implementation methods that can be followed to allow the above outlined
regulation compliance checking process. Eastman et al (2009) presents three different
implementation methods, namely (1) computer language encoded rules, (2) parametric tables, and
(3) language driven. Eastman et al (2009) further divides the language driven implementation
method in two: either a predicate logic based language or a domain-oriented language is used. With
its logical basis in Description Logics (DL) (Baader & Nutt, 2003), a semantic rule checking approach
as proposed in Pauwels et al (2011) entirely fits in the former of the two (predicate logic based). The
Built Environment Rule and Analysis (BERA) language (Lee, 2011; Lee et al, 2014) is an example that
is closer to the latter of the two (domain-oriented language). Note, however, that semantic web
languages (RDF and OWL) also allow to define domain oriented knowledge. Perhaps it is better to
consider RDF as a predicate-logic based domain-oriented language. In Pauwels et al. (2011), a
specific focus is set on the possibility of implementing the language driven implementation method,
by using semantic web technologies (Berners-Lee et al, 2001), which is also the focus of this paper.

1.2 Example implementations of semantic rule-checking applications
 A good number of applications have by now emerged that relies on the logical basis of semantic
web languages to accommodate some form of semantic rule checking. One example that was
already mentioned in the introduction is the effort by Pauwels et al (2011), which aims at
accommodating acoustic regulation compliance checking for BIM models. In this exploratory article,
an indication is made of the way in which N3Logic rules can be represented and used in
combination with a domain ontology (TBox) and an instance model (ABox), so that an inference
engine immediately indicates whether a building model is compliant or not with the European
acoustic regulations. In a full implementation, one might opt to use the IFC data model to fill the
TBox and ABox. A similar proposal is made in Pauwels et al (2011a) to convert a geometry
representation in IFC to corresponding geometry representations in the X3D and STL schemas,
thereby relying on N3Logic rules, the EYE reasoning engine and standard semantic web
technologies.

Wicaksono et al (2010) rely on semantic web technologies to build an intelligent energy
management system for buildings. They propose to build an RDF representation of a building
model, using an OWL ontology for building information. This ontology includes concepts for the
appliances present in the building (dishwasher, fridge). The OWL ontology can then be combined
with a number of rules expressed in the Semantic Web Rule Language (SWRL), in order for an
inference engine to infer if there are any anomalous activities occurring (e.g. ‘heaters’ that are
‘working’ AND ‘windows’ that are ‘open’). This work has been extended in Wicaksono et al (2013),
to include an OWL ontology inspired by IFC. In this extended proposal, the authors rely on a rule
engine based on SWRLJessBridge, which allows the execution of rules combined with the Protégé
API. A SPARQL endpoint is made available on top of this rule engine, so that the end user only has
to query for the results of the rules (i.e. are the EnergyInefficient or UsageAnomaly individuals
present?).

The third example showing the way in which rules can be deployed for construction industry
and building information management is provided by Kadolsky et al (2014) and Baumgärtel et al
(2015). In this example, the authors propose to represent a building in an ifcOWL ontology, after
which rules can be used to retrieve information that is relevant for building energy performance.
Baumgärtel et al (2015) specifically shows how rules can be used to allow a thermal insulation
check: the right-hand side of one of the SWRL rules includes the statement ?summ eeBIM:definition
“Thermal insulation check failed”.

The last example is the Job Hazard Analysis (JHA) application that is documented by Zhang et
al (2015). In this example, the authors propose to combine an RDF representation of the building

Pauwels and Zhang 2015 Semantic Rule-checking for Regulation Compliance Checking: An Overview of Strategies and
Approaches

Proc. of the 32nd CIB W78 Conference 2015, 27th-29th 2015, Eindhoven, The Netherlands

model, contained in Tekla Structures, with a number of ontologies and SWRL rules that allow the
analysis of the construction project in terms of jobs, tasks, safety procedures, and the resources that
are required to allow the safe execution of these job steps. A prototype was implemented in the
form of a plugin in Tekla Structures.

As these examples successfully illustrate, the usage of semantic web technologies in
Architecture, Engineering and Construction (AEC) industries opens up considerable possibilities in
terms of formal rule-checking. This rule-checking can be useful for a number of different use cases,
including building usage analysis, anomaly detection, job hazard analysis and regulation compliance
checking. In the following section, we will recapitulate the basics of semantic rule checking, thereby
outlining some of the key principles. Thereafter, we will look more closely in the implementation
strategies that can be followed to accommodate semantic rule-checking.

2 The basics of semantic rule checking
At the core of the regulation compliance checking process are rules that need to be checked. To
allow proper checking of rules, three components are always necessary: (1) a schema that defines
what kind of information is used by the rule checking process and how it is structured, (2) a set of
instances following that schema, and (3) a set of rules (IF-THEN statements) that can be directly
combined with the schema (the rule set contains the classes and properties that are defined in the
schema). These three components are filled in in various ways. In a traditional hard-coded rule
checking process, the schema is typically represented by the class hierarchy of the coded system,
the instances are represented by the objects that follow this class hierarchy, and the rules are
represented by procedural interconnected functions that can follow any kind of structure, while still
being compatible with the class hierarchy of the system. This is considerably different from the way
in which these three components take shape in a semantic, language driven approach. Namely, in
this case, the schema is typically represented by an OWL ontology (McGuinness & van Harmelen,
2004), the instances are represented by the RDF graph following that OWL ontology, and the rules
are logical conjunctions (AND) of declarative IF-THEN statements. Because of the logical basis of
the OWL language in DL (Baader & Nutt, 2003), the rule checking process is quite straightforward
as soon as all the data and all the rules are available in a complete and consistent shape: one
generates the inferences and uses the results, e.g. for simple visualisation in a graphical user
interface (GUI).
 The great advantage of using semantic web technologies is that the schema, the instances, and
the rules can all be described using one and the same language. As a result, all three components
benefit from the advantages given by Eastman et al (2009) for any language-driven approach,
namely, (1) the possibility to easily retarget an implementation to different source formats (e.g. an
alternative ontology: a Revit ontology instead of an IFC ontology); (2) portability across contexts,
applications and devices, and (3) the availability of an unlimited representation wealth, including
‘nested conditions’ and ‘branching of alternative contexts’. The downside of this feature is that data,
ontologies and rules can be stored in very diverse ways and environments. For example, in some
cases, they are shared openly on the World Wide Web (WWW); in other cases, only the ontologies
are widely available via the WWW and the rules and the data are kept in local applications; in other
cases, all three components are kept solely as in-memory models of an application, making them
accessible only via the programming code; and it can even be imagined that all three components
are generated on-demand from legacy data sources (e.g. SQL databases that are given an RDF
interface using R2RML (Das et al, 2012)). This results in a number of implementation plans, each of
them having its strengths, weaknesses, opportunities, and strengths.

In the next sections, we will go through the key strategies found in the literature and briefly
outline our experiences with them for a small use case extracted from the “Job Hazard Analysis”
checking system documented in Zhang et al (2015). We will specifically use one rule that is used in
this use case (see below), and document how it can be stored and used in the diverse
implementation plans.

Pauwels and Zhang 2015 Semantic Rule-checking for Regulation Compliance Checking: An Overview of Strategies and
Approaches

Proc. of the 32nd CIB W78 Conference 2015, 27th-29th 2015, Eindhoven, The Netherlands

This rule allows to infer that a ‘masonry wall’ needs to be ‘braced’ when it is ‘produced’ by

‘placing bricks’ and the ‘height’ of this wall is greater than ‘2438,4’. As it is displayed above, it is not
contained yet in any kind of software. There are a number of options to formally represent it in a
software environment, depending on which kind of implementation is chosen. These options are
discussed in the following three sections, thereby indicating what they result in for the usability of
these rules by developers and end users.

3 Strategy 1: Hard-coded rule checking after querying for information
The first strategy most closely ties to existing procedures for rule-checking and existing software
implementation plans. Namely, it is possible to represent the information that is contained in the
rule mentioned earlier as plain RDF data, ideally following an OWL ontology. Many existing
applications for rule-checking take this approach, although they usually do not use RDF and OWL
to store the rule information. For example, the commercial Solibri Model Checker application
(Solibri, 2014) provides a great interface that allows to load a BIM model and combine it with
information that is stored natively in the Solibri application (database). This then allows performing
rule checking against BIMs for architectural design validations. In most of the existing applications,
including Solibri, the rules are not available outside the actual application. As a result, the user is
required to manage and use rules through that interface. When relying on RDF and OWL, this can
be done differently. For example, in the below code, a representation is given of the rule that was
displayed earlier.

 If the above rule information, which is represented in RDF, is published in an open or somehow
accessible repository, for instance a government-owned repository, anyone can access this
information and use it. Access of the information can occur via a visual web interface (e.g. Pubby),
via a SPARQL query endpoint, via an API, or via any other means that is provided by the owner of
the RDF data. This is different from what currently happens in applications like Solibri, in the sense
that the rules are external to the application. An example application of this strategy is provided
and documented by Dimyadi et al (2014, 2015) for the New Zealand Building Code (NZBC) for fire
safety design of buildings. This building code is available from the New Zealand government in
plain text. A formal representation of this code is prepared, both in XML and RDF. An application
has then be developed that queries this formal representation and makes actions accordingly. A
similar approach might be followed by applications like Solibri, simply if they allow to load rules
not only from an internal database, but also from external formal representations (in XML or RDF)
of rule information.

It is important to note here that the success of the rule-checking process still considerably
depends on the algorithms of the rule-checking application itself. Namely, the application needs to
find out when to send which kinds of queries to the XML and/or RDF representations, and it needs
to consume the returned information into executable code that actually performs the rule-checking.
For example, in the case of an application like Solibri, application developers will likely opt to
directly execute rule-checking processes on BIM models and checking results can then be visualised
directly in a 3D representation of the BIM model. Other software developers, depending on their
preferences or business model, can accommodate an entirely different procedure. The formal
representation of the rules is only a small part of the success of the rule-checking procedure.
Second, and perhaps more importantly, the source code of the application needs to match with the

Pauwels and Zhang 2015 Semantic Rule-checking for Regulation Compliance Checking: An Overview of Strategies and
Approaches

Proc. of the 32nd CIB W78 Conference 2015, 27th-29th 2015, Eindhoven, The Netherlands

formal representation of the rules and ‘understand’ how to interpret the rule information it
retrieves from the external dataset. As a result, there is only limited support possible for rule
customisation. If the rules are customised beyond what can be interpreted by the source code of the
rule-checking application, the application can no longer use those rules. Also, its rule checking
capability is restricted to check whether information exists and is available in the model. In other
words, the rule checking cannot be achieved if the required information does not exist or is not
accessible in the building information model.

4 Strategy 2: Rule-checking by querying
An alternative approach has been proposed by Yurchyshyna et al (2008, 2008a), Yurchyshyna (2010),
Bouzidi et al (2011, 2012). In their proposal, the rule information is formalised directly into SPARQL
queries. This is different from the previous approach, in the sense that only the building model is
represented in RDF, but not the rule information. This building model is then ‘interrogated’ in detail
using formal SPARQL queries. The rule information is captured in these SPARQL queries. The
example below shows what this results in for our example presented earlier.

The example code above shows a simple query. The results of this query are then to be interpreted
by the rule-checking application in order to visualise the end result and inform the end user. This
procedure is somewhat comparable to the previous approach. The main difference here is that the
actual rule information is easier to represent using SPARQL queries instead of using the flat RDF
data model, which is more appropriate for representing the actual data. Furthermore, when relying
on the CONSTRUCT keyword available in SPARQL, an even closer formalisation of the rule
information lies within reach (see example below).

By executing this query for a building model, the building model will generate the additional
“needResources” property when the query is successful. This property can be added to the actual
building model, thus enriching the data model, or it could be kept separate for processing by
alternative algorithms. If a number of such queries are executed, one might be able to assess step by
step the conformance of a building with certain rules or requirements. This procedure can be
further extended by relying on the SPARQL Inference Notation (SPIN). As indicated in SPIN (2015),

Pauwels and Zhang 2015 Semantic Rule-checking for Regulation Compliance Checking: An Overview of Strategies and
Approaches

Proc. of the 32nd CIB W78 Conference 2015, 27th-29th 2015, Eindhoven, The Netherlands

this method relies heavily on the CONSTRUCT keyword in SPARQL and the SPARQL INSERT and
UPDATE statements. The downside of the strategy of implementing rule-checking by querying is
that queries typically still need to be fired one by one by an application logic. This thus requires
some implementation work. Obviously, the SPARQL queries also need to be in-sync with the
ontologies used to express the building information.

5 Strategy 3: Semantic rule checking with dedicated rule languages

5.1 Theory and formal notation
The third and last approach relies on dedicated semantic web rule languages. Two example rule
languages are SWRL and N3Logic. SWRL is one of the most often used languages (Horrocks et al,
2004). Other languages are Jess (Friedman-Hill, 2008) and N3Logic (Berners-Lee et al, 2008; Vanel,
2012). Rules can be exchanged using the Rule Interchange Format (RIF, 2013). Several rule engines
are able to process the rules in combination with RDF data and OWL ontologies. The Jess Rule
Engine (Friedman-Hill, 2008) is entirely built in Java, so this can be combined easily with native
Java applications and Jess rules. Similarly, the Apache Jena software library was implemented in
Java, which also includes Jena rules and functionality to execute these rules with RDF data and
OWL ontologies opened up in-memory in the Jena-enabled application (Apache Jena, 2015).
N3Logic rules are easily consumed by the Euler Yap Engine (De Roo, 2011, 2015). SWRL rules are
often used within Protégé. A SWRLAPI is also available that allows to build, process and execute
rules in a software application (O’Connor et al, 2005; O’Connor & Dias, 2012).

In construction industry, this third strategy has been used most often in recent research for both
compliance checking and performance control. Literature examples mentioned in the introduction
of this article show its application to assist construction quality compliance checking in Zhong et al
(2012), to monitor and control energy consumption in Wicaksono et al (2010), to enable BIM-based
job hazard analysis in Zhang et al (2015), and to support the plan definition and verification process
in pit excavation in Zhong et al (2015). Depending on the scenario, the respective authors decide to
choose one or the other rule language and inference engine. The way in which the rule information
is represented using any one of the rule languages is very similar to the original form of this rule
information. Namely, rule languages allow to formally specify RDF graphs, both in the left hand
side and in the right hand side of the formal notation, connecting them with a logical “implies”. We
provide an example below in the N3 Logic notation, which can easily be transformed into
equivalent notations in the other rule languages (Jess, SWRL, and others).

This rule is in fact following a triple notation, with the left hand side of the rule being the

‘subject’ of the statement, the log:implies property as the ‘predicate’ of the statement, and the right
hand side of the rule being the ‘object’ of the statement. So, this is not only a very natural way of
describing any kind of rule information (RBox), it is also highly compatible with OWL ontologies
(TBox) and RDF instance graphs (ABox). In this strategy, an application targeting at rule-checking
procedures thus typically aims at storing three things separate from each other: TBox, ABox and
RBox. On top of these three, there is only a reasoning engine to combine pieces from the TBox,

Pauwels and Zhang 2015 Semantic Rule-checking for Regulation Compliance Checking: An Overview of Strategies and
Approaches

Proc. of the 32nd CIB W78 Conference 2015, 27th-29th 2015, Eindhoven, The Netherlands

ABox and RBox, and an application logic that allows to visualise the inferred information in one
way or another (Figure 1).

Figure 1. Overview implementation path for any rule-checking application relying on a dedicated rule language.

For each of the components, a different library can be used (e.g. SWRL instead of N3Logic for
representing the RBox; the Jess rule engine instead of the SWRLAPI; standalone application instead
of plugins in existing software, SPARQL versus API calls, …). But at the core, the overall
implementation path remains the same.

5.2 Application in construction industry
A use case on BIM-based hazard identification and mitigation from Zhang et al (2015) shows
detailed ontology development, instance generation, SWRL rules checking using rule engine, and
finally its checking results visualisation back in BIM. It first formalises construction safety
knowledge using engineering ontology. Then, selected OSHA regulations and industry safety best
practices are coded in SWRL rule formats, compatible with ontology classes and relationships. The
used SWRL rule is the masonry wall example shown in Section 2. A BIM-based JHA application is
developed to automatically identify work activity related safety hazards, suggest mitigation
methods, and visualise relevant safety information, such as hazard zones. The system architecture of
the ontology-based hazard identification application includes ontology editor, reasoner, rule engine,
and BIM platform (Figure 2).

Figure 2. System architecture of the ontology-based hazard identification application in BIM.

1) The OWL-based safety ontology is first modelled and edited using an ontology editor, in
this case Protégé, to define its classes, relationships and axioms.

Ontology editor

Reasoner

Rule engine

BIM application

Construction Safety
Ontology

1. Edit

6. New
knowledge

5. Facts
and rules

2. Check
consistency

4. Individuals
and geometry

7. New knowledge to
visualize

3. Customize rule

8. JHA and 4D model

Safety Manager

Pauwels and Zhang 2015 Semantic Rule-checking for Regulation Compliance Checking: An Overview of Strategies and
Approaches

Proc. of the 32nd CIB W78 Conference 2015, 27th-29th 2015, Eindhoven, The Netherlands

2) The consistency of the developed Construction Safety Ontology is then checked by OWL
reasoner (Pellet).

3) Based on the Construction Safety Ontology, SWRL rules are then developed to represent
OSHA regulations and industry best practices. Also, the rule set can be customised and rules can be
added by subject matter experts according to their specific requirements.

4) After connecting the ontology with BIM software platform, individuals/instances of the
safety concepts defined in the ontology are generated using BIM project information. Properties of
each individual, such as geometry information, are obtained through BIM.

5) Facts including the knowledge base and individuals generated from BIM are passed to the
Jess rule engine to be checked against SWRL rules defined earlier by a safety manager or safety
superintendent.

6) Once new knowledge is inferred by the rule-checking process, the ontology is updated by
the rule engine.

7) The updated OWL ontology is then linked with the BIM platform to visualise inferred
knowledge, such as required safety protective systems and protective safety zones.

8) Finally, project specific JHA along with a 4D building model visualising safety information
are generated to support site level project safety planning and inspection.

6 Conclusion: comparison across rule-checking strategies
We presented a non-exhaustive overview of key implementation strategies for semantic rule-
checking tailored to the architectural design and construction industry. A comparison between the
three rule-checking techniques is shown in Table 1.

Table 1 Comparison between the three rule-checking techniques

(1) The time requirement of coded rule-checking is very short since the checking algorithms

can be executed directly on the model. Rule-checking by querying and rule-checking with
rule languages takes longer, as they require processing of queries / rules in combination
with a model that is often too large. When implementing an approach that relies on a
dedicated rule language, it is of the utmost importance to be as selective as possible at the
‘resource selection’ stage in Figure 1.

(2) The user rule-customisation is limited for coded rule-checking since a user interface needs
to be provided for such customisation. SPARQL queries and SWRL-like rules offer more
flexibility. The user can define new SPARQL queries or SWRL-like rules to check against
new or customised conditions, as long as the information exists in the ABox and TBox
(Figure 1).

(3) Knowledge inference is only supported by the approach based on a rule language. This is a
key methodological difference compared to the other two approaches (declarative versus
procedural).

(4) Depending on the way in which the application logic and GUI is implemented (cfr. plug-in
in existing BIM software or standalone applications), rule-checking can be directly (tightly)
or indirectly (loosely) combined with available BIM software. In any case, additional
programming is required in all three approaches.

Acknowledgements
This research is made possible by the generous support of Ghent University, through the Special
Research Fund (BOF).

References

 Coded rule-checking Rule-checking by querying Dedicated rule language
Time Short Long Long

Customization Limited Open Open
Knowledge inference No No / Limited Yes
Integration with BIM Direct or Indirect Direct or Indirect Direct or Indirect

Pauwels and Zhang 2015 Semantic Rule-checking for Regulation Compliance Checking: An Overview of Strategies and
Approaches

Proc. of the 32nd CIB W78 Conference 2015, 27th-29th 2015, Eindhoven, The Netherlands

Apache Jena (2015). Reasoners and rule engines: Jena inference support.
https://jena.apache.org/documentation/inference/ (Last visited on 12 June 2015).

Baader, F. & Nutt, W. (2003). Basic description logics. In: Description Logic Handbook: Theory, Implementation,
and Applications. Cambridge University Press, Cambridge. pp. 47-100.

Baumgärtel, K., Kadolsky, M. & Scherer, R.J. (2015). An ontology framework for improving building energy
performance by utilizing energy saving regulations. Proc. of the 10th European Conference on Product &
Process Modelling (ECPPM). pp. 519-526.

Berners-Lee, T., Hendler, J. & Lassila, O. (2001). The Semantic Web. Scientific American. 284 (5). pp. 29-37.
Berners-Lee, T., Connolly, D., Kagal, L., Scharf, Y. & Hendler, J. (2008). N3logic: A logical framework for the

world wide web. Theory and Practice of Logic Programming. 8 (3). pp. 249-269.
Bouzidi, K.R., Fies, B., Bourdeau, M., Faron-Zucker, C. & Le Thanh, N. (2011). An ontology for modelling and

supporting the process of authoring technical assessments. Proc. of the CIB W78-W102 2011
International Conference.

Bouzidi, K.R., Fies, B., Faron-Zucker, C., Zarli, A. & Le Thanh, N. (2012). Semantic Web Approach to Ease
Regulation Compliance Checking in Construction Industry. Future Internet. 4 (3). pp. 830-851.

Das, S., Sundara, S. & Cyganiak, R. (2012). R2RML: RDB to RDF Mapping Language. W3C Recommendation 27
September 2012. http://www.w3.org/TR/r2rml/ (Last visited on 12 June 2015).

De Roo, J. (2011). Euler YAP Engine, a birds EYE view. http://www.agfa.com/w3c/Talks/2011/01swig/ (Last
visited on 12 June 2015).

De Roo, J. (2015). Euler Yet another proof Engine. http://eulersharp.sourceforge.net/ (Last visited on 12 June
2015).

Dimyadi, J. & Amor, R. (2013). Regulatory knowledge representation for automated compliance audit of BIM-
based models. Proc. of the 30th CIB W78 International Conference. pp. 68-78.

Dimyadi, J., Pauwels, P., Spearpoint, M., Clifton, C. & Amor, R. (2015). Querying a Regulatory Model for
Compliant Building Design Audit. Proc. of the 31st CIB W78 International Conference.

Eastman, C., Teicholz, P., Sacks, R. & Liston, K. (2008). BIM Handbook: A guide to Building Information
Modeling for Owners, Managers, Architects, Engineers, Contractors, and Fabricators. John Wiley and Sons,
Hoboken, NJ.

Eastman, C., Lee, J.-M., Jeong, Y.-S. & Lee, J.-K. (2009). Automatic rule-based checking of building designs.
Automation in Construction. 18. pp. 1011-1033.

Friedman-Hill, E. (2008). Jess, the rule engine for the Java Platform. http://www.jessrules.com/ (Last visited on
12 June 2015).

Han, C., Kunz, J. & Law, K. (1997) Making automated building code checking a reality. Facility Management
Journal. pp. 22-28.

Han, C., Kunz, J. & Law, K. (1998) Client/server framework for on-line building code checking. ASCE Journal
on Computing in Civil Engineering. 12 (4). pp. 181-194.

Han, C., Kunz, J. & Law, K. (1999) Building design services in a distributed architecture, ASCE Journal on
Computing in Civil Engineering. 13 (1). pp. 12-22.

Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof, B. & Dean, M. (2004). SWRL: A Semantic Web
Rule Language Combining OWL and RuleML. W3C Member Submission 21 May 2004.
http://www.w3.org/Submission/SWRL/ (Last visited on 12 June 2015).

Kadolsky, M., Baumgärtel, K. & Scherer, R.J. (2014) An ontology framework for rule-based inspection of
eeBIM-systems. Procedia Engineering. 85. pp. 293-301.

Kerrigan, S. & Law, K. (2003). Logic-based regulation compliance-assistance. Proc. of the Ninth International
Conference on Artificial Intelligence and Law.

Lee, J.K., Eastman, C.M. & Lee, Y.C. (2014). Implementation of a BIM Domain-specific Language for the
Building Environment Rule and Analysis. Journal of Intelligent & Robotic Systems. pp. 1-16.

Lee, J.K. (2011). Building Environment Rule and Analysis (BERA) Language and its application for evaluating
building circulation and spatial program. PhD thesis. Georgia Institute of Technology.

Manola, F. & Miller, E. (2004). RDF Primer, W3C Recommendation. http://www.w3.org/TR/rdf-primer/ (Last
visited on 12 June 2015).

McGuinness, D.L. & van Harmelen, F. (2004). OWL Web Ontology Language Overview - W3C
Recommendation 10 February 2004. http://www.w3.org/TR/owl-features/ (Last visited on 12 June 2015).

O'Connor, M.J., Knublauch, H., Tu, S.W., Grossof, B., Dean, M., Grosso, W.E. & Musen, M.A. (2005).
Supporting Rule System Interoperability on the Semantic Web with SWRL. The Semantic Web – ISWC
2005. In: Lecture Notes in Computer Science. 3729. pp. 974-986.

O’Connor, M.J. & Das, A. (2012). A Pair of OWL 2 RL Reasoners. 9th International Workshop on OWL:
Experiences and Directions (OWLED).

Pauwels, P., Van Deursen, D., Verstraeten, R., De Roo, J., De Meyer, R., Van de Walle, R. & Van Campenhout,
J. (2011). A semantic rule checking environment for building performance checking. Automation in
Construction. 20 (5). pp. 506-518.

Pauwels and Zhang 2015 Semantic Rule-checking for Regulation Compliance Checking: An Overview of Strategies and
Approaches

Proc. of the 32nd CIB W78 Conference 2015, 27th-29th 2015, Eindhoven, The Netherlands

Pauwels, P., Van Deursen, D., De Roo, J., Van Ackere, T., De Meyer, R., Van de Walle, R. & Van Campenhout,
J. (2011a). Three-dimensional information exchange over the semantic web for the domain of
architecture, engineering, and construction. Artificial Intelligence for Engineering Design, Analysis and
Manufacturing. 25 (4). pp. 317-332.

RIF (2013). Rule Interchange Format Current Status. http://www.w3.org/standards/techs/rif#w3c_all (Last
visited on 12 June 2015).

Solibri (2014). http://www.solibri.com/solibri-model-checker.html (Last visited on 12 June 2015).
SPIN (2015). SPIN SPARQL Inferencing Notation. http://spinrdf.org/ (Last visited on 12 June 2015).
Vanel, J.M. (2012). Logic and rules - N3 Logic and syntax.

http://eulergui.sourceforge.net/documentation.html#Logic (Last visited on 12 June 2015).
Wicaksono, H., Rogalski, S. & Kusnady, E. (2010). Knowledge-based intelligent energy management using

building automation system. Proc. of the 2010 IPEC Conference. pp. 1140-1145.
Wicaksono, H., Dobreva, P., Häfner, P. & Rogalski, S. (2013). Ontology development towards expressive and

reasoning-enabled building information model for an intelligent energy management system. Proc. of
the 5th International Conference on Knowledge Engineering and Ontology Development.

Yurchyshyna, A., Faron-Zucker, C., Le Thanh, N. & Zarli, A. (2008). Towards an ontology-based approach for
formalising expert knowledge in the conformity-checking model in construction. Proc. of the 7th
European Conference on Product and Process Modelling (ECPPM).

Yurchyshyna, A., Faron-Zucker, C., Le Thanh, N., & Zarli A. (2008a). Towards an Ontology-enabled Approach
for Modeling the Process of Conformity Checking in Construction. Proc. of the CAiSE’08 Forum, pp. 21-
24.

Yurchyshyna, A. (2010). Knowledge capitalisation and organisation for conformance checking model in
construction. International Journal of Knowledge Engineering and Soft Data Paradigms. 2 (1). pp. 15-32.

Zhang, S., Boukamp, F. & Teizer, J. (2015). Ontology-based semantic modeling of construction safety
knowledge: Towards automated safety planning for job hazard analysis (JHA). Automation in
Construction. 52. pp. 29-41.

Zhang, S., Teizer, J., Lee, J.K., Eastman, C.M. & Venugopal, M. (2013). Building information modeling (BIM)
and safety: Automatic safety checking of construction models and schedules. Automation in
Construction. 29. pp. 183-195.

Zhong, B.T., Ding, L.Y., Luo, H.B., Zhou, Y., Hu, Y.Z. & Hu, H.M. (2012). Ontology-based semantic modeling of
regulation constraint for automated construction quality compliance checking. Automation in
Construction. 28. pp. 58-70.

