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ABSTRACT 
 

Data envelopment analysis (DEA) is emerging as an important benchmarking 
tool for building energy performance with its unique capability of discriminating 
scale efficiency and management efficiency. Generally, the impacts of climate factors 
are desired to be neutralized to obtain a climate-adjusted energy parameter when 
using DEA for building energy performance benchmarking. Multiple linear 
regression is often adopted for this neutralization. While very useful, this approach 
rarely considers the multicollinearity trap referring to the statistical issue that the 
strong correlations among explanatory variables can lead to non-robust building 
energy regression models. This paper presents a simple alternative normalizing 
approach to avoid the multicollinearity deficiency in DEA benchmarking application 
through neutralizing energy input with degree day and floor area. First, the annual 
energy consumption of each building is normalized by its floor area and local degree 
day to acquire the degree day normalized energy use intensity (DEUI). Second, with 
each building as one decision making unit, DEA model is constructed with the 
number of occupants and the floor area as DEA outputs and DEUI as input. Finally, 
DEA is calculated to obtain overall efficiency, scale efficiency and management 
efficiency. The energy performance of 31 one-story residential buildings is 
benchmarked using the developed approach based on historical data. The case study 
reveals that the low energy performance of the targeted buildings is mainly due to the 
inefficiency of management factors but further verification is desired.   
 
INTRODUCTION  
 

Complex factors can potentially affect the energy consumption of an existing 
building, including such uncontrollable scale factors as building size, number of 
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occupants and such manageable factors like occupants’ behavior, maintenance, 
equipment efficiency, etc. (Wang 2013;Wang and Shen 2012). This leads to the 
importance of discriminating the effects of these factors to take appropriate measures 
for effective building energy saving. Among the legion of existing models for 
building energy benchmarking, data envelopment analysis (DEA) which is a typical 
multi-factor efficiency analysis tool stands out due to its capability of discriminating 
scale efficiency and management efficiency. The scale efficiency is attributable to 
uncontrollable factors while the management efficiency is a measurement of 
manageable factors (Lee and Lee 2009). With each building as a decision making unit 
(DMU), DEA model essentially benchmarks the targeted buildings by comparing 
their performance with the energy frontier buildings that are identified by linear 
programming.  

Climate is a significant energy consumption influencer, so to examine the 
residential energy efficiency using DEA, its influence should be neutralized. Linear 
regression is often used to eliminate the effects of climate factors (Lee and Lee 2009; 
Lee 2010). First, the linear equation between energy consumption and available 
influencing variables (e.g. floor area, occupants’ counts, climate conditions) is 
established. After that, the climate-adjusted energy consumption is calculated using 
average climate information related to the targeted buildings. These adjusted energy 
values are then used as the input for the following DEA computation. While very 
useful, multicollinearity trap remains an issue in regression application. 
Multicollinearity refers to the statistical phenomenon that the strong correlations 
among explanatory variables make a regression model not robust (Farrar and Glauber 
1967). Multicollinearity phenomenon could be common in building energy linear 
regression models considering that the strong correlations often exist between the 
adopted explanatory parameters (Wang 2013).       

On the other hand, energy use intensity (EUI) is a most commonly used 
floor-area-normalized performance metrics of building energy (Chung 2011). Degree 
day is an indicator of indoor-outdoor temperature difference frequently used for 
energy use estimating (Lee 2010). These two parameters can then be further 
integrated to compose an indicator of degree day normalized EUI (DEUI) to 
neutralize the energy effects of two important factors: floor area and climate (Ueno 
2010; Barry 2011). This further normalized indicator makes the energy comparison 
between different building individuals for benchmarking more reasonable. 

This paper combined DEA with DEUI for analyzing residential energy 
efficiency. With the targeted individual building as DMU, DEUI is used as energy 
supply and input, and then floor area and number of bedrooms are used as outputs for 
the DEA model to measure the scale efficiency and management efficiency. This 
approach is applied to benchmarking energy efficiency of 31 buildings with real 
historical data.             
 
METHODOLOGY  
 
Data Envelopment Analysis.  Data Envelopment Analysis (DEA) has been 
frequently taken for quantifying the relative efficiency of organizations, generally 
called Decision Making Units (DMUs). Its core principle is to first obtain the best 

1995COMPUTING IN CIVIL AND BUILDING ENGINEERING ©ASCE 2014 



practice frontier, and then calculate the relative efficiency of all DMUs with respect 
to it. Figure 1 shows a simple single-input single-output DEA example. To get the 
relative efficiency profile of the four DMUs, the efficient frontier needs to be firstly 
identified and then used as a benchmark for calculation. For nth (n=1, 2, 3, 4) DMUn 

with an output of On and an input of In, the efficiency factor nλ  can be computed 
with the following formula:       
Objective function  )*/()*( nnnnn IxOyMax =λ  

Subject to         1)*/()*( ≤knkn IxOy    for 4,3,2,1 =∀ k                 
Where 0, ≥nn yx are the weighting coefficients; Ik and Ok are input and output for kth 

DMU, respectively.    
 

Figure 1. Single-input single-output DEA  
 
Data Envelopment Analysis for Buildings with Normalized Metrics.  The 
building energy system can be viewed as an input-output system. As shown in Figure 
2, buildings consume energy which can be regarded as input and provide such 
comfort services, like heating, cooling, lighting and so forth to the building occupants. 
To obtain scale efficiency and management efficiency profiles, the effect of climate 
on energy consumption is neutralized. This neutralization is achieved by using degree 
day normalized EUI (DEUI) which can be defined as Btu/ (Square foot* Degree 
day*Year) (Ueno 2010; Barry 2011). The DEUI normalization not only considers the 
immediate impact of ambient temperature but also avoids the multicollinearity risk 
when compared to the regression method.   

The input-oriented DEA approach is used because the reduction in energy 
input is targeted while maintaining the comfort level constant. Two basic models 
including constant returns to scale (CRS) model and variable returns to scale (VRS) 
model are adopted. Figure 3 presents a graphical example of using VRS for building 
energy management efficiency assessment. The floor area (Lee and Lee 2009) which 
indicates building size and the number of bedrooms which represents the number of 
occupants (Ueno 2010) are taken as DMU outputs (scale factors) and DEUI is made 
as DMU input. The surface is VRS frontier. The DMUs lying on the frontier present 
the best management efficiency. The value of management efficiency for DMU1 is 
then represented by the length ratio of AB over AC. Higher ratio value indicates 
better efficiency.  
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CASE STUDY 
 

The sample buildings’ ages range from 15 to 106 years, with mean floor area of 
998.0 SF and standard deviation of 239.9 SF. The mean value and standard deviation 
for the counts of bedrooms are 2.4 and 0.8, respectively. The samples cover three types 
of basement, including the slab, the partial and the full basement and two kinds of air 
conditioning system, i.e. central and non-central. The energy data were collected 
through three continuous years 2008, 2009, 2010.     

Statistical dispersions differ among the three types of efficiency profile 
(Figure 4). In general, the investigated buildings show highest level of scale 
efficiency and lowest overall efficiency. It implies that these buildings are poor in 
building energy efficiency in terms of the overall indicator but the scales (including 
building size and occupants’ counts) of buildings are at optimal level. Inferred from 
their relationships, i.e., the overall efficiency is the product of the scale efficiency and 
management efficiency, the poor overall efficiency may mainly be due to the poor 
management. The management efficiency in Figure 4 validates this inference. 

 
 

 
 

Figure 2. Building DEA   Figure 3. DEA for building energy efficiency 
                       (Lee and Lee 2009) 

 
Figure 5 presents the cumulative distribution profiles of three efficiency 

categories. The mean overall efficiency value and standard deviation are 0.32 and 
0.20, respectively. The coefficient of variation (COV) is an indicator of measuring 
variability and can be calculated as the ratio of standard deviation over the mean 
value. Higher values indicate larger variability. COV value for overall efficiency is 
0.63, implying that large variability exists among the overall energy efficiency of 
buildings, i.e., the discrepancy between the better and the worse ones is significant. 
About 80% of the buildings have the overall efficiency below 0.50. This large 
proportion of building samples of poor overall efficiency presents a great potential for 
energy efficiency improvement through such measures as better maintenance, 
building envelope renovation, more economical behavior, etc.  

The scale efficiency has higher mean value of 0.81 and the lower standard 
deviation of 0.19 than the overall efficiency. The COV is 0.23 and much less than 
COV of overall efficiency which means lower variability. More than half (about 68%) 
of the buildings show their scale efficiency above 0.81. It may indicate most of the 
building energy systems are suitable for the buildings in terms of building size and 
the number of occupants. Little energy is wasted due to the too small building size or 
too few occupants. From this concern, it may not be effective to reduce energy 
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consumption by improving the building system design.       
From Figure 5, the management efficiency graph appears quite even. The 

mean value is 0.43 while the standard deviation is 0.28. The COV for management 
efficiency is 0.65 which is greater than the above two COVs. It means the variability 
of management efficiency is the largest among that of the three types. The 
management efficiency discrepancy between buildings is significant. Around 77% of 
the residential buildings have the management efficiency less than 0.60. It may be 
inferred that, compared to the frontier, most of the investigated buildings are poorly 
managed or used, e.g. bad building condition, poor maintenance, extravagant energy 
use and so forth. As a result, the energy consumed by these inefficient buildings may 
be significantly saved by improving management factors.      

Figure 6 shows the relationships between energy efficiency and DEUI. 
Moderate negative linear relationships are detected between overall efficiency and 
observed DEUI (Overall efficiency = 0.64-0.0015*DEUI), management efficiency 
and observed DEUI (Management efficiency = 0.80-0.0018*DEUI)                 
with r2 of 0.53 and 0.36, respectively. It means the buildings have higher DEUI very 
possibly show lower overall efficiency and management efficiency. However, almost 
no linear relationship exists between scale efficiency and observed DEUI (Scale 
efficiency= 0.83-0.000091*DEUI) with r2 of 0.002.        
         
 

Figure 4. Building energy efficiency Figure 5. Cumulative distribution 
 
The further relationships between the management efficiency, scale efficiency 

and overall efficiency are presented in Figure 7. No significant relationships are 
observed between scale efficiency and overall efficiency (Overall efficiency = 
0.37-0.063*Scale efficiency) with negligible r2 of 0.004. Significant positive 
correlation is detected between management efficiency and overall efficiency 
(Overall efficiency = 0.058+0.61*Management efficiency) with r2 of 0.75. It means if 
management efficiency increases, the overall efficiency can be significantly improved. 
Nevertheless, the improvement in scale efficiency cannot help to promote the overall 
efficiency of these buildings. 

Figure 8 shows the relationship between management efficiency and scale 
efficiency (Management efficiency =1.01-0.71*Scale efficiency) with r2=0.24. It can 
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be seen moderate negative correlation exists between scale efficiency and 
management efficiency. As the scale efficiency increases, the management efficiency 
decreases. It may indicate that the larger buildings in this region are subject to worse 
management.     
 

Figure 7. Impacts of scale efficiency and management efficiency on overall 
efficiency 

 

Figure 8. Relationship between management efficiency and scale efficiency
    
CONCLUSION 
 

Reliable benchmarking of building energy performance is an important step 
towards energy saving. However, the long list of influencers for building energy 
consumption leads to the difficulty in its reliable benchmarking. As a typical 
numerical productivity efficiency benchmarking method, data envelopment analysis 
(DEA) has been recommended for building energy efficiency benchmarking. DEA 
has the unique capability of identifying the impacts of scale and management 
influencers which makes building energy efficiency improvement more specific. 
However, when using DEA for benchmarking building energy efficiency, the impacts 
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of climate factors need to be normalized. The linear regression approach can be 
useful but subject to the typical multicollinearity risk.  

This paper develops a degree-day normalized EUI (DEUI) based DEA 
approach for building energy efficiency benchmarking. It is able to normalize the 
variation of both indoor and outdoor temperature and simultaneously avoid the 
trouble of multicollinearity deficiency. First, DEUI is obtained by dividing energy use 
intensity by degree day counts. Second, treating each building as a decision making 
unit (DMU), DEUI is used as energy input and two parameters of floor area and 
occupants counts as outputs for DEA calculation. Lower level of overall efficiency 
and management efficiency and higher level of scale efficiency are observed for the 
case buildings. It indicates that these buildings have poor energy management but 
relatively optimal building layout design. The relationship study shows the 
improvement of overall efficiency is largely dependent on the management efficiency 
increase. This developed normalized DEA approach is simpler than the conventional 
manner but the normalization process is still limited to linear nature and its resulting 
accuracy needs further case validation.   
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