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ABSTRACT 
 

Embankment dams, like most other civil infrastructure systems, are exposed 
to harsh and largely unpredictable environments. However, unlike bridges, buildings 
and other structures, their design specifications and as-is properties are not generally 
known in the same level of detail due to, among other things, their age and the 
difficulties associated with assessing their internal structure. Hence, making sense of 
measurements collected from instruments used to monitor their behavior requires 
sound engineering judgment and analysis, as well as robust statistical analysis 
techniques to prevent misinterpretation. In the United States (US), the current 
practice of analyzing the structural integrity of embankment dams relies primarily on 
manual a posteriori analysis of instrument data by engineers, leaving much room for 
improvement through the application of automated data analysis techniques.  In our 
previous work, we presented the effectiveness of applying statistical anomaly 
detection techniques such as Principal Component Analysis and Robust Regression 
Analysis when analyzing piezometer data collected from embankment dams. In this 
paper, we present how we could improve our work by testing with simulated 
anomalies that are indicative of internal erosion problems. In order to closely 
replicate more realistic anomalous scenarios, a physics-based model of an 
embankment dam was developed.  By varying a hydraulic conductivity of a soil 
material in the model, corresponding detection accuracies and sensitivities of the 
statistical anomaly detection algorithm were evaluated. When we applied our 
proposed anomaly detection on more realistically simulated anomalous data using the 
numerical model, the detection accuracy came out to be 98.5%. 
 
INTRODUCTION  
 

There are 84,000 dams in the U.S., and their average age is more than 53 
years old, which means they are in need of extensive rehabilitation given that their 
design life is typically 50 years (ASCE 2013). Moreover, dams have received a grade 
of D in the 2013 ASCE infrastructure report card (ASCE 2013). While dams provide 
drinking water, hydroelectric power, flood control, recreation and many other 
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benefits, dams can pose significant risks to people living around them. Even though 
dam failures are low probability, they have high consequence (ASDSO and FEMA 
2012). Thus, dam safety is one of the important issues among the U.S. infrastructure 
systems that needs to be improved. To efficiently expedite the improvement, 
systematic inspections as well as more advanced monitoring systems are necessary.  

Embankment dams are the most common type of dams in use today (ASDSO 
and FEMA 2012). In general, embankment dams are constructed of natural materials 
of the earth, commonly soil and rock (Schurer et al. 2002). In embankment dams, 
water seeps through many different parts of the dams, and any changes in this 
behavior may signal problems.  Thus, monitoring pore pressures as well as water 
levels of an embankment dam to observe potential seepage problems is important to 
prevent internal erosion and other structural failure modes that are common in these 
types of dams.  

While embankment dams can fail due to overtopping, sliding, spillway/gate 
problems, sub-standard construction materials, poor maintenance, etc., one of the 
leading causes of their failures has been internal erosion, which can occur due to 
normal operations that may pose higher risks to a dam than remote loading conditions 
like floods and earthquakes (URBR 2010). Internal erosion problems are usually 
detected by periodic visual inspections and seepage measurements (USSD Committee 
on Materials for Embankment Dams 2010). However, since they mostly occur 
without any visual signs, it is often too late by the time problems are actually 
identified. Thus, it is important to detect anomalies that are indicative of internal 
erosion problems in advance to prevent catastrophic consequences.  

Engineers monitor instrument data regularly to ensure if a dam is performing 
properly and as expected (Pelton 2000). If there is any abnormal change in flow rates 
or volumes of seepage over time, it indicates various potential problems, such as 
piping, cracks, malfunctions of the piezometers, etc. Embankment dams, like most 
other civil infrastructure systems, are exposed to unpredictable environments. 
However, their design specifications and as-is properties are not generally known due 
to, among other things, their age and the difficulties associated with assessing their 
internal structure. Hence, accurately evaluating measurements collected from 
instruments used to monitor dams’ behavior is not an easy task, requiring sound 
engineering judgment and analysis, as well as robust statistical analysis techniques to 
prevent misinterpretation. Because the current practice of analyzing the structural 
integrity of embankment dams relies primarily on manual a posteriori analysis of 
instrument data by engineers, it leaves much room for improvement through the 
application of automated data analysis techniques.   

Piezometers are the most commonly used instruments in dams to monitor 
water levels, and they can be used to compute pore water pressures (Crum 2011). For 
embankment dams, piezometer levels and reservoir levels are directly related, so they 
are usually compared to monitor the seepage as well as to check the condition of the 
piezometers. Since dams often have slow responses, relatively small anomalies, 
which may be caused by initiations of any catastrophic events that are not obvious 
from engineers’ views or those that are outside of the analysis period, may be easily 
overlooked. Thus, the traditional practice that subjectively detects deviations from the 
historical readings using time-series or correlation plots with raw data, which often 
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contain much noise, may not be accurate enough to capture anomalous changes over 
time. Thus, in an effort to implement a quantitative and robust approach to monitor 
the performance of embankment dams based on piezometer data, we have previously 
applied Moving Principal Component Analysis and Robust Regression Analysis as 
the anomaly detection (Jung et al. 2013). To test anomaly detectability, several 
anomalies have been simulated by de-correlating the relationships between 
piezometer and reservoir readings over certain periods. However, we observed that 
such de-correlation approach might not simulate a realistic anomalous scenario. Thus, 
we improved our previous approach by collecting piezometer data using a numerical 
model to simulate anomalous scenarios that are more realistic.   

APPROACH 
 
Simulation for normal (baseline) and anomalous piezometer readings. Recently, 
numerical analyses as coded into computer programs have been the most widely used 
method to analyze seepage issues (USBR 2011). Such models are often used for 
simulation of infiltration, seepage and seepage path, etc., so that the performance of 
dams can be validated.  In this study, an embankment dam was modeled with 
SEEP/W of the GeoStudio 2012 package (Geo-Slope International Ltd), which is 
often used to analyze seepage problems. It is a finite element software program that 
adopts an implicit numerical solution to solve Darcy’s equation for saturated and 
unsaturated flow conditions over space and time (Krahn 2004). Using SEEP/W 
models, relevant parameters can be varied (e.g., reduction of hydraulic conductivity 
of soil layers and/or core), thus obtaining datasets that correspond to different 
conditions of a dam. In addition, steady-state and transient seepage analyses (during 
specified time sequences) are possible.  

Before simulating anomalies, piezometer readings (assuming this piezometer 
is in the centerline of the dam, and its tip is located in the foundation) were collected 
based on the normal condition of the modeled dam. Here, a hydraulic boundary 
function was computed using the daily reservoir levels obtained from one case study 
dam during five years, i.e., Mar. 2006 to Sep. 2011. Figure 1 shows the 
corresponding time series of the piezometer readings and the reservoir levels.  This 
‘normal’ dataset was used as the baseline of this study. In this paper, we only present 
the result on one piezometer installed in one station of the modeled dam. 

 

 
Figure 1. Time-series of the piezometer and the reservoir levels based on the 
normal dam condition 
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Table 1 and Figure 2 below show the soil properties used when modeling the 
embankment dam, and a cross section of the dam, respectively. 
 
Table 1. Soil properties used when modeling an embankment dam 

Material ksat 

(Saturated hydraulic conductivity in ft/s) 
Anisotropy 

(kvertical/khorizontal) 
US Rock Fill 1 1 

US Gravel 0.001 0.2 
Impervious 8e-006 0.2 
Rock Fill 0.002 0.2 

Till 0.0002 1 
River Deposits 0.007 1 

DS Gravel 0.0002 0.2 
 

 
Figure 2. An embankment dam section modeled using SEEP/W 

Anomaly detection based on Moving Principal Component Analysis (MPCA) 
and Robust Regression Analysis (RRA).  In (Jung et al. 2013), we have applied an 
anomaly detection that is based on MPCA and RRA to see if this method can be also 
useful when analyzing piezometer data from embankment dams. To help the readers, 
we repeat here the basic theoretical explanation of the proposed detection method as 
discussed in (Jung et al. 2013). 

In PCA, a data matrix is decomposed into a number of uncorrelated 
components where each of them represents a different degree of dominant variability 
embedded in the data. Suppose there is a data matrix, ܳ	 ∈ Թேൈெ, whose M columns 
are individual time-series of length N (e.g., measurements from M piezometers) that 
have been normalized with respect to each column. Each entry of this matrix can be 
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denoted by ܸሺݐሻ , where ݅ ൌ 1,… ܯ,  and ݐ ൌ 1, … , ܰ , as shown in the equation 
below. ܸሺݐሻ is the measurement of piezometer i at time t. 
 

ܳ ൌ ൦ ଵܸሺ1ሻ ଶܸሺ1ሻ ⋯ ெܸሺ1ሻଵܸሺ2ሻ ଶܸሺ2ሻ ⋯ ெܸሺ2ሻ⋮ ⋮ ⋯ ⋮ଵܸሺܰሻ ଶܸሺܰሻ ⋯ ெܸሺܰሻ൪ 
First, a singular value decomposition (SVD) is performed on the matrix, ܳ. 

During SVD, the matrix, ܳ first gets decomposed into matrices ܷ, ܵ, and	ܸ, where ܥ ൌ ܷ ∗ ܵ ∗ ்ܸ. The columns of ܷ are the left singular vectors while those of ܸ are 
the right singular vectors. ܵ  is a diagonal matrix with singular values along the 
diagonal. Since C is symmetric, the right singular vectors correspond to the 
eigenvectors, ܧ, and the diagonal elements of ܵ correspond to the square roots of the 
eigenvalues, ݁, of the covariance matrix. The eigenvectors represent the directions of 
the variance, or the variance of each component, and each of the corresponding 
eigenvalues indicates a degree of each component’s proportional variance. Thus, the 
most dominant patterns can be captured by the first few sets of the eigenvectors after 
ordering the corresponding eigenvalues in a descending order. 

While a common PCA approach is applied to the whole dataset, it can also be 
varied to analyze a subset, or a window, of the dataset. When analyzing time series 
data, for example, a window can slide from the beginning to the end of the dataset by 
performing PCA in each time step in order to detect any change in the main direction 
over time. Thus, this moving window approach is often called Moving PCA (MPCA). 
To apply MPCA on ܳ, first a sliding window of size ܮ	is applied to the matrix, to 
extract a sub-matrix, called ܴሺ݇ሻ ∈ Թൈெ  at each time value ݇ , where ݇ ൌ1,… , ሺܰ െ   .ሻ. Then, a singular value decomposition (SVD) is performed on each ܴሺ݇ሻ in the same manner as PCAܮ

Once the direction of the most variability is computed for each time step, any 
changes in the eigenvectors over time, which would signal the presence of an 
anomaly, need to be detected. Robust Regression Analysis (RRA), which is known as 
a good regression technique in the presence of outliers, is performed to observe if any 
changes in the first few relevant eigenvectors from ܴሺ݇ሻ have occurred over time. 
Among many types of robust regression models, we employ the method that uses 
iteratively reweighted least squares with a bisquare weighting function. Using only 
normal data, regression model is formed, and the threshold level is determined by 
computing certain degrees of standard deviation of absolute values of the regression 
residuals (a difference between actual and predicted values) in the normal data. Any 
regression residuals that exceed this threshold would be marked as anomalies.  

 
Figure 3. The proposed anomaly detection technique 
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APPLICATIONS AND RESULTS  
 
As mentioned above, one of the main causes of embankment dam failures all over the 
world is internal erosion, or a piping event, which occurs due to the constant 
migration of soil particles towards free exits or into coarse openings (Flores-Berrones 
and Patricia 2011). One of the main factors affecting such erosion phenomenon is the 
hydraulic conductivity of the materials (Flores-Berrones and Patricia 2011). In this 
study, anomalies were simulated for 4 months starting from Jan. 2010 to Apr. 2010 
by changing the hydraulic property of the downstream rock fill embankment shell, 
which is the rightmost material of the dam in Figure 2, given that most piping events 
would initiate from the toe area. The initial hydraulic conductivity of the rock fill was 
0.002 ft/s. It was changed to a saturated-only material instead of an 
unsaturated/saturated material, and its hydraulic conductivity was increased to 0.2 ft/s 
to see how such changes would affect the seepage flow pathway, consequently 
piezometric responses.  

 When applying MPCA, a window size of 365, which corresponds to a year, 
was used to capture a periodic behavior of the dam. Since a piezometer responds to 
reservoir pool events, especially when it is located close to the upstream of a dam, 
and its tip is located in pervious soil layers, the proposed anomaly detection was 
performed using both of the piezometer readings and the reservoir levels. In our 
application, we observed the changes in the first eigenvectors only (to make the 
detection task not too sensitive to any minor changes), and the robust regression 
model (RRA) was developed based on the first year of the data. Any regression 
residuals computed from MPCA+RRA that exceed a threshold level, which was set 
as ±6 standard deviations of absolute values of the regression residuals were marked 
as anomalies. When the normal dataset was tested, 161 anomalies were detected. This 
corresponded to almost every April to summer season where the provided reservoir 
levels rapidly rise up and down due to precipitation and other seasonal effects. Such 
rapid filling and rapid drawdown can modify flow conditions inside a soil mass, thus 
causing uncontrolled saturation and seepage forces (Flores-Berrones and Patricia 
2011).  

When anomalous datasets were tested, 615 anomalies were detected, or 454 
more anomalies than the normal dataset. The additional anomalies corresponded to 
Jan. 26, 2010 to Apr. 27, 2011, which do not overlap with the anomalies detected 
from the normal dataset (please see Figure 4 and 5). Since the window size of a year 
was used in our application, the anomalies were expected during one year before and 
one year after where the actual anomalies were introduced.  Given this comparably 
big window size, it was a satisfactory result to see the detected anomalies during Jan. 
2010 to Apr. 2011. The true positive rate, which is the fraction of true positives out of 
the total actual positives (true positives and false negatives), was 96.6% (=820 
/(820+29)), and there were no false positives. The accuracy, which is obtained by 
taking the ratio of sum of true positives and negatives to the total, was 98.5% 
(=(820+1150)/(1999)).  

In the application, we tested the proposed anomaly detection using the 
anomalous data that were generated by making the hydraulic conductivity of the rock 
fill 100 times more than the original. Due to the sensitivity of the proposed anomaly 
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detection, it is possible that we may not obtain such high accuracy if we do not 
increase the conductivity as high as we have simulated in this application. However, 
our result still showed the potential of detecting realistically simulated anomalies that 
have been generated by the physical model.  
 

 
 Figure 4. Result on the normal dam condition 
 

 
Figure 5. Result on the abnormal dam condition 
 
CONCLUSION  
 
In this paper, we applied the proposed anomaly detection (MPCA+RRA) and 
detected the simulated anomalies by observing how the relationships between the 
piezometer readings and the reservoir levels change over time. Since PCA can extract 
dominant patterns among the data masking any irrelevant patterns, the task of 
monitoring the performance of embankment dams could become more robust. In 
addition, such statistical approach reduced the subjective interpretation on the 
instrumentation data.  

Since it is hard to obtain anomalous datasets given that catastrophic events are 
very rare, anomalies were simulated. In order to simulate a realistic anomalous 
scenario, we generated anomalous data using a physical seepage model, which would 
enhance the validation process of our previous work. This approach allowed us to 
understand how piezometric levels would be reflected by specific physical processes, 
which have been hard for engineers to recognize proactively especially given that 
problems often occur inside embankment dams without visual signs.  

The most common failure mode of embankment dams is internal erosion, or a 
piping event, which often occurs from the toe area and develops backwards towards 
an embankment. Once a piping starts to initiate and eventually develop further, the 
hydraulic conductivity of affected soil materials would change.  Thus, to simulate 
such anomalies, we changed the hydraulic property of the downstream rock fill. The 
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hydraulic conductivity of the rock fill was increased from 0.002 ft/s to 0.2 ft/s.  Then 
the corresponding piezometer readings were collected.  

When the proposed anomaly detection (MPCA+RRA) was applied to the 
simulated datasets (the reservoir level and the anomalous piezometer readings), the 
simulated anomalies could be detected with a high accuracy of 98.5%. Thus, we can 
conclude that changes in hydraulic conductivity, consequently piezometer responses, 
can be successfully detected using the proposed anomaly detection. Thus, the 
proposed anomaly detection was validated that has the potential to aid in determining 
if a piping has occurred or not. In the future, it would be also beneficial to vary values 
of other parameters as well as degrees of anomalous severities in order to evaluate 
corresponding detection accuracies and sensitivities of the proposed anomaly 
detection.  
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