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ABSTRACT 

Existing construction automated compliance checking (ACC) systems require manual effort for extracting 

requirements from textual regulatory documents (e.g. building codes) and encoding these requirements in a 

computer-processable format. To address this gap, we have proposed a new approach for ACC which 

automatically 1) extracts semantic information (concepts and relations) from construction regulatory documents, 

and 2) transforms the extracted information into Prolog logic clauses for automated reasoning. Due to the variety 

of natural language structures, the number of text patterns in one document could become extremely large. As a 

result, text processing (i.e. information extraction (IE) and information transformation (ITr)) becomes highly 

complex and difficult. In our approach, we are proposing two methods to handle sentence complexity: 1) top-

down method: starting from the top level (i.e. full sentence) and proceeding down to identify and process complex 

sentence components, and 2) bottom-up method: starting from the lowest level (i.e. single terms in a sentence) 

and proceeding up to identify and process complex sentence components. Complex sentence components are 

intermediately processed segments of text that are composed of multiple concepts and relations. Further 

processing of complex sentence components results in recognition of concepts and relations for subsequent use in 

constructing logic clauses. We tested our proposed methods in processing quantitative requirements (i.e. IE and 

ITr) from the International Building Code. We compared the results against manually-developed gold standards; 

and evaluated the performance in terms of precision, recall, and F1 measure. Both methods achieved high 

performance, but the bottom-up method outperformed the top-down method. The bottom-up method achieved 

0.962, 0.961, and 0.962, while the top-down method achieved 0.954, 0.925, and 0.939 for precision, recall, and F1 

measure, respectively. 

 

Keywords: automated compliance checking, natural language processing, information extraction, information 

transformation, sentence complexity 

1. INTRODUCTION 

Construction projects are regulated by a multitude of regulations. Manual compliance checking of those 

regulations is costly, time-consuming, and error-prone. Efforts in both academia and industry are being made to 

automate the process of compliance checking of construction projects. However, “formalizing the provisions into 

rules is done manually at present, which is time-consuming” (Zhong et al. 2012). For example, Solibri Model 

Checker (Corke 2013) currently includes a set of 300 proforma-based rules that allow for some degree of user 

customization of rules. However, such customization does not allow for the creation of new rules. The 

development of new rules in Solibri Model Checker, thus, requires professional software engineering expertise 

and deep understanding of the software’s environment and data structure (Corke 2013). Similarly, for the 

SMARTcodes project (ICC 2012), the interpretation and encoding of regulatory provisions into SMARTcodes 

rules is conducted manually. As such, a major research gap still exists in the area of automated compliance 
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checking (ACC): existing ACC systems require manual effort for extracting requirements from textual regulatory 

documents and encoding these requirements in a computer-processable format. To address this gap, we developed 

a semantic natural language processing (NLP)-based approach for automatically extracting semantic information 

(concepts and relations) from regulatory textual documents, and subsequently transforming the extracted 

information into logic clauses (Zhang and El-Gohary 2013). Due to the variety of natural language structures, the 

number of text patterns in one document could become extremely large. As a result, text processing (i.e. 

information extraction (IE) and information transformation (ITr)) becomes highly complex and difficult. In this 

paper, we present and compare two methods that we developed for handling sentence complexity.  

2. BACKGROUND 

2.1 Natural Language Processing 

Natural Language Processing (NLP) aims at enabling computers to analyze and process natural text and speech in 

a human-like manner (Cherpas 1992). NLP belongs to the domain of Artificial Intelligence (AI). AI is concerned 

with symbolic inference by computers and symbolic knowledge representation for use in making inferences 

(Tierney 2012). Many techniques in NLP, such as Part-of-Speech (POS) tagging (Charniak 1997), morphological 

analysis (Spencer 1991), named entity recognition (McCallum and Li 2003), etc., have been practically-used in 

various information systems applications. However, deep NLP, such as full understanding of sentences, is 

difficult. Because human language is irregular and diversified (Tierney 2012), deep NLP requires complex 

knowledge representation and reasoning to accurately understand the meaning of the text, which remains to be a 

fundamental challenge in AI. There are two main types of approaches taken in NLP: 1) rule-based approach, and 

2) machine learning (ML)-based approach. Rule-based NLP uses manually-coded rules for text processing. These 

rules are iteratively-constructed and refined to improve the accuracy of text processing. ML-based NLP uses ML 

algorithms to train text processing models based on the text features of a given training text (Tierney 2012). Rule-

based NLP tends to show better text processing performance (in terms of precision and recall), but requires more 

human effort. We are taking the rule-based approach (i.e. using human-developed text processing rules), because 

a high performance is important in supporting automated compliance checking. 

2.2 Information Extraction 

Information Extraction (IE) is a subfield of NLP that aims at extracting predefined target information from given 

text sources. IE mainly relies on text patterns that consist of multiple text features to recognize specific types of 

information from the text. There are two main types of text features that could be used in IE: syntactic (i.e. 

grammatical) and semantic (i.e. meaning related). Semantic features (concepts and relations) could be recognized 

based on an ontology. An ontology models domain knowledge in a semantic way, in the form of concept 

hierarchies, relationships between concepts, and axioms (El-Gohary and El-Diraby 2010). Semantic IE utilizes 

both syntactic and semantic features. In comparison to syntactic-only IE (i.e. IE methods utilizing syntactic 

features only), the semantic features in semantic IE allows for capturing domain-specific text meaning which can 

lead to a better IE performance (Zhang and El-Gohary 2011). In our IE work, we utilize an ontology together with 

NLP techniques to conduct semantic IE. 

2.3 Automated Reasoning 

Automated reasoning is a field of AI that aims at building computing systems that automate the process of 

inference-making (Portoraro 2011). Both conventional programming languages (e.g. Java programming language) 

and formal logic could be used to conduct automated reasoning. However, in comparison to conventional 

programming languages, formal logic could represent complex relations more efficiently. This makes formal logic 

quite suitable for representing complex regulatory requirements. Several types of formal logics are available, such 

as propositional logic, predicate logic, modal logic, and description logic. First Order Logic (FOL), as one type of 

predicate logic, is the most widely-used formal logic for automated deduction purposes. Logic Programming is an 

important and widespread application of formal logic (Portoraro 2011). Prolog is the most commonly-used logic 
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programming language. Prolog uses Horn Clauses (HCs). A HC is one of the most restricted forms of FOL, but is 

very efficient in implementing inference rules due to its restricted syntax (Saint-Dizier 1994). A HC could be 

represented by a rule that has zero or more antecedents (i.e. bodies in Prolog rules) that are conjoined, and zero or 

one consequent (i.e. heads in Prolog rules). There are three types of HCs: 1) one or more antecedents and one 

consequent, 2) zero antecedents and one consequent, and 3) one or more antecedents and zero consequent. 

Correspondingly, there are three basic logic clauses in Prolog: 1) rules, 2) facts, and 3) queries. We use the rules 

and facts in Prolog to represent requirement rules and project information, respectively. The reasoning about both 

the rules and project information, for compliance checking, will be automatically carried out by the underlying 

theorem prover (i.e. a reasoner) in Prolog.  

2.4 Automated Compliance Checking in the Construction Domain 

In the existing research efforts in automated compliance checking in the construction domain, several techniques 

have been utilized for representing building standards and/or specifications to support automated reasoning, such 

as decision table/trees-based models (Fenves and Garrett 1986), rules in logic programs (Thomson et al. 1988), 

IF/THEN rules in knowledge systems (Delis and Delis 1995), and distributed object system (Han et al. 1997). 

However, the interpretation and encoding of requirements into those computer-processable representation is still 

conducted manually. To address this gap, we proposed a method to automatically generate requirements in 

computer-processable representations (i.e. logic clauses) based on textual standards and/or specifications (Zhang 

and El-Gohary 2013).  

3. PROPOSED METHODS 

Aligned with our method of automated logic clause generation (Zhang and El-Gohary 2013), we developed two 

methods to handle sentence complexity: 1) a top-down method: starting from the top level (i.e. full sentence) and 

proceeding down to identify and process complex sentence components, and 2) bottom-up method: starting from 

the lowest level (i.e. single terms in a sentence) and proceeding up to identify and process complex sentence 

components. Complex sentence components are intermediately-processed segments of texts that are: 1) expressed 

using a variety of natural language structures, and 2) composed of multiple concepts and relations. 

3.1 The proposed automated logic clause generation method 

In previous work (Zhang and El-Gohary 2013; Salama and El-Gohary 2013), we proposed a method for 

automatically extracting requirement rules from regulatory text sources and formalizing the extracted information 

into logic clauses. As shown in Figure 1, we use three main phases of text processing: text classification (TC), 

information extraction (IE), and information transformation (ITr). In our method, TC recognizes sentences that 

are relevant (i.e. containing target information). By retrieving the relevant text only, TC allows for filtering off 

irrelevant sentences prior to IE. This could save computational processing efforts and avoid unnecessary errors in 

IE.  

Subsequently, in our method, semantic IE recognizes instances of target information in the text (i.e. instances 

of concepts and relations), extracts those instances, and fills those instances into predefined information templates. 

We use pattern matching-based IE rules for executing the extraction. Pattern matching is a widely-used IE 

technique. Each pattern matching rule defines the part of text to extract based on a pattern that consists of various 

text features. Since we use both syntactic and semantic text features in matching patterns, our IE rules are 

semantic pattern-based. The syntactic features we use include: Part-of-speech (POS) tags, phrasal tags, and 

gazetteer lists. POS tags are tags indicating words’ lexical and functional categories, such as noun, verb, adjective, 

etc. Phrasal tags are type labels assigned to phrases of a sentence, such as noun phrase, verb phrase, etc. A 

gazetteer list groups any set of terms based on any commonality possessed by these terms. The semantic features 

we use are based on the concepts and relations in our ontology. 

In our method, ITr utilizes a set of manually-developed semantic mapping (SM) rules and conflict resolution 

(CR) rules to transform the extracted information instances into Prolog logic clauses. SM rules define how to 

process the extracted information instances based on their semantic meanings. For example, one semantic 



Proceedings of the 30th CIB W78 International Conference - October 9-12, 2013, Beijing, China 773 

mapping rule (for information elements ‘subject’ and ‘general relation’; detailed meaning of each information 

element is explained in latter sections) could be “if two ‘subject’ instances are connected by a ‘general relation’ 

instance, then generate a logic clause for each of the ‘subject’ instance and another logic clause (based on the 

‘general relation’ instance) connecting the two ‘subject’ instances.” According to this semantic mapping rule the 

logic clauses ‘interior_space(Interior_Space), human_occupancy(Human_occupancy), intended_for(Interior 

Space, Human_occupancy)’ will be generated for the part of statement “Interior spaces intended for human 

occupancy…”. CR rules define the methods for resolving each type of extraction conflict among information 

elements. For example, one conflict resolution rule could be “If there is no ‘comparative relation’ instance 

extracted, use the default comparative relation ‘greater_than_or_equal’.” Prolog logic clauses in our method are 

composed of concept logic clauses and relation logic clauses. A concept logic clause is in the form of 

‘element_name(Element_name)’, where the element_name outside the parenthesis is all lower-cased and the first 

letter of element_name inside the parenthesis is capitalized (in Prolog syntax, names that start with capitalized 

letter are all representing variables). A relation logic clause is in the form of 

‘element_name(Instance1,Instance2,…)’, where the element_name is the name of the relation and the instances 

inside the parenthesis are the concept instances linked by the relation. How many instances should be in a relation 

depends on the semantics of the relation. For example, ‘provided_by’ relation links two concept instances while 

‘between_and’ relation links three concept instances (i.e. one concept instance indicates the subject and the other 

two indicate boundaries for a range). Each element inside or outside the parenthesis in a logic clause is called a 

logic clause element. Concept logic clauses and relation logic clauses are used to build rules in Prolog. The reader 

is referred to (Zhang and El-Gohary 2013) for more technical details of each step.  

 

 

Figure 1 : The proposed automated logic clause generation method 

3.2 Top-down method for handling complex sentence components 

The top-down method for handling complex sentence components is composed of three main steps: 1) extraction 

of necessary information elements, 2) extraction of secondary information elements, and 3) information 

transformation for necessary information elements and secondary information elements.  

First, our method extracts the necessary information elements for a specific problem. A necessary information 

element is an information element that must be defined for this specific type of requirement. For example, for 

extracting quantitative requirements, we recognized five necessary information elements: 1) ‘subject’, a thing  

(e.g. building object, space, etc.) that is subject to a particular regulation or norm; 2) ‘compliance checking 

attribute’, a specific characteristic of a ‘subject’ by which its compliance is assessed; 3) ‘comparative relation’, a 

relation used for comparison such as greater_than_or_equal, less_than, or equal_to, etc; 4) ‘quantity value’, a 

value, or a range of values, which defines the quantified requirement; and 5) ‘quantity unit’, the unit measure for 

the ‘quantity value’; or ‘quantity reference’, a reference to another quantity (which presumably includes a value 

and a unit).  

Second, our method extracts the secondary information elements. Secondary information elements are not 

necessary for this specific type of requirement, but may exist in defining the requirement. Secondary information 

elements usually appear in subordinate clauses (i.e. a clause that adds additional information to an independent 

clause, but which cannot exists on its own) of a sentence or modifiers (i.e. an optional element that depends on 
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and modifies another element in the same phrase or clause structure). They are more likely to result in complex 

sentence structures by embedding in or attaching more concepts and relations to a sentence. For example, in the 

sentence “Courts having windows opening on opposite sides shall not be less than 6 feet in width”, the part 

“having windows opening on opposite sides” is a secondary information element. It appears as a modifier of the 

main subject of the sentence, and contains several concepts and relations (i.e. ‘window’, ‘opposite side’, ‘opening 

on’). We use the same method, namely semantic IE, for extracting both necessary and secondary information 

elements.  

Third, in the ITr step, necessary and secondary information elements are transformed into logic clauses, 

separately. Transforming secondary information elements requires one extra processing step in comparison to the 

transformation of necessary information elements: recognizing the concepts and relations contained in the 

secondary information element. Thus, necessary information elements are transformed first. Secondary 

information elements are processed to extract the contained concepts and relations. Those concepts and relations 

from secondary information elements are then transformed into logic clauses, and those logic clauses are 

combined with the logic clauses transformed from necessary information elements. We call this method top-down, 

because we start from information extraction on the sentence level, then further extract information on the 

segment level (i.e. the secondary information elements are extracted in form of segments of a sentence), and end 

with information extraction on the concept and relation level (i.e. term and phrase level) before transformation.   

3.3 Bottom-up method for handling complex sentence components 

The bottom-up method for handling complex sentence components is composed of two main steps: 1) extraction 

of necessary information elements and secondary information elements, together, and 2) information 

transformation through ‘consume and generate’ mechanism.  

First, our method extracts all information elements together, no matter whether they are necessary information 

elements or secondary information elements. Those information elements are put into a list (i.e. one list for each 

sentence, we call it information element list), with the order of each information element in the list decided by 

their order in the original text.  

Second, our method transforms all information elements through a new mechanism that we propose – we call 

it ‘consume and generate’ mechanism. The ‘consume and generate’ mechanism implements the SM and CR rules 

for ITr in a sequential processing. This mechanism is following the heuristics of the ‘sliding window’ method in 

computational research (i.e. a sequence of data is processed sequentially, segment by segment, and each segment 

has a predefined fixed length), and the mechanism of transcription in genetics domain (i.e. a sequence of DNA is 

transcribed sequentially, segment by segment, and each segment has a length of about 17 base-pair). The 

‘consume and generate’ mechanism is based on processing text segments that match different types of semantic 

tuples. A type of semantic tuple captures a specific type of relation of concepts. For example, the ‘quantity 

comparison tuple’ captures the comparative relation between a ‘compliance checking attribute’ and a specific 

quantity (e.g. a quantity is represented by a structured four-tuple consisted of the instances for <‘compliance 

checking attribute’, ‘comparative relation’, ‘quantity value’, ‘quantity unit’/‘quantity reference’>, such as in 

‘less_than_or_equal(Transmission_rate,quantity(1,perm))’); the ‘general relation tuple’ captures a relation 

between any two ‘subject’, such as the ‘added to’ relation in ‘added_to(One_story_addition,Existing_building)’; 

the ‘above’ relation captures the relative location relation between two ‘subject’, such as in above(Ventilators, 

Eave_or_cornice_vents), etc. Our ‘consume and generate’ mechanism uses sequential processing - processing 

segment by segment. Each segment matches a pattern of one type of semantic tuple. However, the segment length 

is not fixed. The length of each segment is decided by the number of information elements in the corresponding 

type of semantic tuple. More precisely, it is decided by the span of text covered by the pattern of that type of 

semantic tuple (i.e. the pattern as represented by a specific sequence of information elements in the information 

element list). For example, ‘one story addition’, ‘added to’, and ‘existing building’ are the first three elements in 

the information element list generated for the sentence “A one story addition added to an existing building with a 

glazing area in excess of 40 percent of the gross area…”. They match a pattern for the ‘general relation tuple’: 

<‘subject’, ‘general relation’, ‘subject’>. Correspondingly, a SM rule of the ‘general relation tuple’ will generate 

the relation logic clause ‘added_to(One_story_addition,Existing_building)’ from this tuple. In the ‘consume and 
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generate’ mechanism, the length of segment for this part is three (i.e. consuming three elements in the element 

list). Our ‘consume and generate’ mechanism allows backward matching. That is, if a segment of text matches the 

later part of a pattern, then the preceding text is checked for matching of the earlier part of the same pattern. 

Corresponding logic clauses will be generated if the matching check succeeds. For example, the list of elements 

generated for the sentence “The unit shall have a living room of not less than 220 square feet of floor area” is: 

‘unit’, ‘have’, ‘living room’, ‘of’, ‘not less than’, ‘220’, ‘square feet’, ‘of’ ‘floor area’. Their corresponding 

information elements are: ‘subject’, ‘general relation’, ‘subject’, ‘part of relation’, ‘comparative relation’, 

‘quantity value’, ‘quantity unit’, ‘part of relation’, ‘compliance checking attribute’. Matching the pattern for 

‘general relation tuple’, the first three elements in the list are consumed and there are three logic clauses generated: 

‘unit(Unit)’, ‘living_room(Living_room)’, and ‘has(Unit, Living_room)’. Then the starting point of the next 

segment to consume is ‘of’, which corresponds to ‘part of relation’ in a pattern for the ‘quantity comparison tuple’: 

<‘subject’, ‘part of relation’, ‘comparative relation’, ‘quantity value’, ‘quantity unit’, ‘compliance checking 

attribute’>. The five elements starting from ‘of’ match the later part of the pattern, so ‘living room’ is checked for 

the matching of ‘subject’. The matching check succeeds, so the following logic clauses are generated: 

floor_area(Floor_area), has(Living_room, Floor_area), greater_than_or_equal(Floor_area, quantity(220, 

square_feet)).  

 

“Interior spaces intended for human occupancy shall be provided with active or passive space heating systems capable of 

maintaining a minimum indoor temperature of 68 DegreeF at a point 3 feet  above the floor on the design heating day. ”

Top – Down Method Bottom – Up Method

Essential 

Information 

Elements:

active_or_passiv

e_space_heating

system, 

indoor_temperatu

re, 

greater_than_or_

equal, 68, 

DegreeF

Secondary Information Elements:

Interior_spaces_intended_for_human_occu

pancy_shall_be_provided_with, at_ 

a_point_3_feet_above_the 

floor_on_the_design_heating_day

Information Elements:

interior_space, intended_for, human_occupancy, 

provided_with, active_or_passive_space_heating_system, 

greater_than_or_equal, indoor_temparature, 68, DegreeF, 

at, a_point, 3, feet, above, floor, on, design_heating_day 

Secondary Information Elements: 

interior_space, intended_for, 

human_occupancy, provided_with, at, 

a_point, 3, feet, above, floor, on, 

design_heating_day

IE IE

ITr

ITr

compliance_indoor_temper

ature_of_active_or_passive

_space_heating_systems(In

door_temperature):-

indoor_temperature(Indoor

_temperature),active_or_pa

ssive_space_heating_syste
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ce_heating_systems),has(A

ctive_or_passive_space_he

ating_systems,Indoor_temp

erature),greater_than_or_eq

ual(Indoor_temperature,qua

ntity(68,DegreeF)).
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ntended_for(Interior_spaces, 

human_occupancy),provided_wit

h(Interior_spaces,Active_or_passi

ve_space_heating_systems),a_po
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point), 
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),floor(Floor), 

on(Indoor_temperature, 

Design_heating_day), 

design_heating_day(Design_heati

ng_day)

compliance_indoor_temperature_of_active_or_passive_spa

ce_heating_systems(Indoor_temperature):-

interior_spaces(Interior_spaces),intended_for(Interior_spac

es, human_occupancy), 
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ive_space_heating_systems),provided_with(Interior_space

s,Active_or_passive_space_heating_systems),indoor_temp

erature(Indoor_temperature),has(Active_or_passive_space

_heating_systems,Indoor_temperature),greater_than_or_eq

ual(Indoor_temperature,quantity(68,DegreeF)),a_point(A_po

int),greater_than_or_equal(A_point,quantity(3,feet)),above(

A_point,Floor),floor(Floor), on(Indoor_temperature, 

Design_heating_day), 

design_heating_day(Design_heating_day).

Combine

IE

ITr

 
             * ‘DegreeF’ is transformed from ‘ °F’ in a preprocessing step for practical reasons 
             ** elements to the left of ‘:-’ is head (consequent), elements to the right of ‘:-’ is body (antecedents) 

Figure 2 : A sample sentence processing illustrating top-down method and bottom-up method 
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4. PRELIMINARY EXPERIMENTS  

We tested our top-down and bottom-up methods for handling complex sentence components on processing 

quantitative requirements in Chapter 12 of the International Building Code 2006 (ICC 2006). In the bottom-up 

method, since we need to process each word of a sentence, any information other than necessary information 

elements and secondary information elements (for quantitative requirements) are also automatically processed (i.e. 

extracted and transformed). Thus, we developed two sets of gold standards, one for each method. The gold 

standard for the bottom-up method has more information instances than that for the top-down method (Figure 3). 

But, for both gold standards, there are 57 logic clauses corresponding to 57 requirement sentences. 

For TC and IE, we used ANNIE (A Nearly-New Information Extraction System) in GATE (General 

Architecture for Text Engineering) tools (Cunningham et al. 2012) for POS tagging, phrasal tag generation, and 

gazetteer compiling; and we used JAPE (Java Annotation Patterns Engine) transducer for TC and for writing IE 

rules. We developed an ontology using the ontology editor in GATE to support our semantic IE. For ITr, we 

implemented the SM rules and CR rules in Python programming language (v3.2.3). We utilized the “re” module 

(i.e. regular expression module) in Python for pattern matching, so that the output from the IE step (i.e. text 

source tagged with information element tags in XML format) could be directly used as input to the ITr step.   

For the top-down method, we used five necessary information elements to represent and extract the target 

information – ‘subject’, ‘compliance checking attribute’, ‘comparative relation’, ‘quantity value’, and ‘quantity 

unit’ or ‘quantity reference’, as explained in the Proposed Methods section. We used two secondary information 

elements – ‘subject restriction’ and ‘quantity restriction’. A ‘subject restriction’ places a constraint on the 

definition of a ‘subject’ (e.g. by defining the properties of the ‘subject’). Similarly, a ‘quantity restriction’ places a 

constraint on the definition of a ‘quantity’. A quantity is consisted of either a ‘quantity value’ and a ‘quantity unit’, 

or a ‘quantity value’ and a ‘quantity reference’. For processing (extracting and transforming) concepts and 

relations inside ‘subject restriction’ and ‘quantity restriction’, we utilized the semantics of several specific types 

of relations, such as ‘for_each’, ‘and’, ‘or’, etc. Seventeen SM rules and 26 CR rules were used. 

For the bottom-up method, we used eleven information elements, including the five necessary information 

elements used in the top-down method in addition to the following information elements: ‘semantic clause 

boundary indicator’, ‘general relation’, ‘part of relation’, ‘reverse part of relation’, ‘conjunctive term’, and ‘for 

each’. We used more information elements than the top-down method, because we need to capture all information 

(i.e. not only necessary information elements and secondary information elements) in the selected sentences. 

‘Semantic clause boundary indicator’ is a symbol indicating a boundary of two neighboring sub-clauses or 

complete sets of meanings; this is typically a punctuation like a comma. ‘General relation’ is a relation between 

two concepts, such as ‘provided by’, ‘located in’, etc. ‘Part of relation’ is a relation indicating that the concept 

before the relation is part of or belongs to the concept after the relation; this is mostly indicated by the term ‘of’. 

‘Reverse part of relation’ is a relation indicating that the concept after the relation is part of or belongs to the 

concept before the relation; this is indicated by terms like ‘having’. ‘Conjunctive term’ is the term ‘and’ or ‘or’. 

Sixty-four and 17 SM and CR rules were used, respectively. The SM rules in the bottom-up method are based on 

patterns of semantic tuples. The patterns are composed of syntactic and semantic features of the information 

elements in the corresponding semantic tuples. Each pattern is consisted of not more than six (an empirically-

decided number) information elements.  

  

Figure 3: The relation between gold standards for top-down method and bottom-up method 
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The results were evaluated in terms of precision, recall, and F1 measure, against the two manually-developed 

gold standards (one for each of the top-down and bottom-up methods). Precision is the correctly-generated logic 

clause elements divided by the total number of logic clause elements generated. Recall is the correctly-generated 

logic clause elements divided by the total number of logic clause elements that should be generated. F1 measure is 

the harmonic mean of precision and recall, that is, F1 = Precision*Recall*2/(Precision+Recall).  

5. RESULTS AND DISCUSSION 

As shown in Table 1, both the top-down method and the bottom-up method perform well in terms of capturing 

information elements from complex sentence components, with all precision, recall, and F1 measure values 

reaching more than 0.92. In addition, although the bottom-up method extracted more information than the top-

down method (which might introduce more errors), it outperformed the top-down method in all three measures: 

total precision, total recall, and total F1 measure. To the best of our knowledge, the closest research studies to this 

work are those who take a ML-based approach for transforming text into logic clauses (e.g. Raina et al. 2005 and 

Schoenmackers et al. 2010). Their precision and recall are around 0.80 and 0.35, respectively. But our work is not 

comparable because: 1) we are taking a different approach (i.e. rule-based approach instead of ML-based 

approach), and 2) we are addressing a different domain (i.e. construction domain instead of general domain). 

Table 1: Preliminary experimental results of the top-down and bottom-up methods. 

Performance Measures Top-Down Method Bottom-Up Method 

Concept logic 

clause elements 

Number constructed 509 572 

Number correctly-constructed 489 570 

Number in gold standard 530 584 

Precision 0.961 0.997 

Recall 0.923 0.976 

F1 Measure 0.941 0.986 

Relation logic 

clause elements 

Number constructed 601 820 

Number correctly-constructed 570 769 

Number in gold standard 615 809 

Precision 0.948 0.938 

Recall 0.927 0.951 

F1 Measure 0.938 0.944 

Total Precision 0.954 0.962 

Recall 0.925 0.961 

F1 Measure 0.939 0.962 

 

In our analysis, we identified four main reasons for the better performance of the bottom-up method: 1) The 

bottom-up method has a better capability of capturing information carried by complex sentence structures through 

pattern matching on a small-scale. In the ‘consume and generate’ mechanism, each segment of text to process 

contains not more than six concepts/relations; this makes the construction of pattern-based SM rules much easier 

than matching within a whole sentence. The patterns used for matching on a small-scale tend to be more flexible 

in capturing the regularities in complex sentence structures. As a result, the chance of missing the information 

contained in the secondary information elements is smaller; 2) There are less conflicts in extraction using the 

bottom-up method (17 versus 26 CR rules for the bottom-up and top-down methods, respectively). This is related 

to the first point, because small segments of the text tend to have less conflicts for the information elements inside; 

3) In the ‘consume and generate’ mechanism, the complete processing of each word in a sentence ensures a higher 

information coverage. In the ‘consume and generate’ mechanism, the processing of a sentence cannot finish 

unless every word in the sentence has been matched by some pattern and processed. This makes the chance of 

information missing even smaller; 4) For the top-down method, in order to extract secondary information 

elements, the pattern(s) of secondary information element(s) and the relation between secondary and necessary 
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information elements need to be decided. This limits the method’s ability to incorporate more patterns. For 

example, we decided that the ‘subject restriction’ appears after ‘subject’. For example, in the sentence “Courts 

having windows opening on opposite sides shall not be less than 6 feet in width”, the ‘subject restriction’ ‘having 

windows opening on opposite sides’ appears after the ‘subject’ ‘court’. But there could be uncommon expressions 

(in the context of regulatory requirements in construction) for the exact same meaning. For example, “Having 

windows opening on opposite sides, courts shall not be less than 6 feet in width.” The information in the 

‘secondary information elements’ in such uncommonly-expressed sentences would be missed due to the limitation 

of the top-down method.   

Through analysis of the errors for both top-down and bottom-up methods, we found that the errors for concept 

logic clause elements are caused by: 1) Errors made by the NLP tool used (e.g. due to imperfect precision and 

recall of POS tagging and ontology-based semantic feature recognition): For example, although ‘kitchen’ was a 

concept in the used ontology and successfully extracted most of the cases, there were few cases where the tool 

failed to extract it; 2) Imperfection of CR rules: For example, in the part of sentence “In one and two family 

dwellings, beams or girders spaced not less than 4 feet on center…”, the CR rules did not separate ‘one and two 

family dwellings’ from ‘beams’ and ‘girders’ as they are expected to due to unexpected matching of other patterns; 

3) Insufficiency of morphological analysis: For example, because any variant of a concept in an ontology is 

extracted as an instance of the concept, there is a case where some verb form of a concept is incorrectly extracted 

as an instance, such as in “tested according to…”, ‘tested’ is incorrectly extracted as a concept instance.  

The errors for relation logic clause elements are caused by: 1) Errors propagated from errors in concept logic 

clause elements; For example, if ‘yard’ fails to be recognized as a ‘subject’ instance, then the ‘subject’ instance in 

the corresponding relation logic clause becomes, consequently, incorrect or missing; and 2) Disambiguation need 

that is beyond the current capability of the proposed method: For example, we only included disambiguation 

capability for ‘conjunctive term’ at the word or phrase level, and it is restricted to the case when the words or 

phrases connected by the ‘conjunctive term’ are in equal status (i.e. having the same POS tag or phrasal tag). In 

more complicated cases of ‘conjunctive term’ use, such as  in “Floor/ceiling assemblies between dwelling units or 

between a dwelling unit and a public or service area within the structure…”, the multiple instances of ‘conjunctive 

term’ create more complicated relations among the connected terms than only equal status, thus our method could 

not process the contained information precisely.  

6. CONCLUSIONS AND FUTURE WORK  

Existing construction automated compliance checking (ACC) systems require manual effort for extracting 

requirements from textual regulatory documents (e.g. building codes) and encoding these requirements in a 

computer-processable format. To address this gap, we developed an automated logic clause generation method to 

automatically transform regulation text into logic clauses (i.e. rules in Prolog syntax). For handling complex 

sentence components in the automated logic clause generation method, we proposed two methods - top-down 

method, which processes text from the sentence level down to identify and process complex sentence components; 

and bottom-up method, which processes text from the term level up to identify and process complex sentence 

components. Both top-down and bottom-up methods for handling complex sentence components were tested on 

processing quantitative requirements in Chapter 12 of the International Building Code 2006 (ICC 2006). 

Performances were evaluated in terms of precision, recall, and F1 measure, against manually-developed gold 

standards. Both top-down and bottom-up methods performed well in terms of capturing information elements 

from complex sentence components, with all precision, recall, and F1 measure values reaching more than 0.92. In 

addition, although the bottom-up method extracted more information than the top-down method (which might 

introduce more errors), it outperformed the top-down method in all total measures. Several causes of errors are 

recognized through analysis, such as errors made by the NLP tool used, imperfection of CR rules, insufficiency of 

morphological analysis, and disambiguation need beyond the capability of the currently proposed method. In the 

future, we plan to: 1) add more capabilities to our methods, by leveraging more techniques in state-of-the-art NLP 

developments (e.g. techniques in complete sentence parsing and semantic relation extraction); 2) test our methods 

on more construction regulatory text (e.g. environmental protection regulations); and 3) adapt and apply our 

methods to other types of text in construction (e.g. construction contracts). 
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