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ABSTRACT 

Changes of both designs and construction process usually cause spatial changes in facility design and challenges 
related to spatial change management between various building systems (e.g., Mechanical, Electrical, and 
Plumbing) and building components. In practice, design changes can be triggered by the needs of the owner, 
engineers and experts, resulting in spatial changes of as-designed objects and possibly spatial clashes between 
them. Spatial deviations also occur between the as-built conditions of building systems components and their as-
designed conditions. These deviations are due to changing environments, incomplete design information, and 
uncertainties in the construction workflows. Spatial clashes caused by changes and deviations need to be 
addressed through coordination among stakeholders from multiple trades. Such coordination can be tedious, 
especially when interwoven geometries of building systems components exist. Automated spatial clash detection 
algorithms are of limited help when the large number of objects interwoven in small spaces, as ambiguities about 
which points belong to which objects often occur within a space packed with a large number of building systems 
components.  

This paper examines the technical feasibility and scientific challenges of using 3D imaging technology (e.g., 
laser scanning) to support spatial change analysis of building systems. A review of existing studies indicates that 
the uses of 3D imaging systems enable civil engineers to acquire detailed as-built geometries frequently in the 
form of dense 3D point clouds, while posing challenges of handling 3D curvilinear geometries locating close to or 
even interwoven with each other. Using a case study, this paper shows that currently-adopted neighborhood-
searching-based analysis fails in detecting changes of 3D curvilinear objects packed in small spaces, and proposes 
to model the geometric and topological relationships among 3D curves as the theoretic basis of a robust spatial 
change analysis approach of building systems. 
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1. INTRODUCTION 

Spatial changes occur frequently during the construction and maintenance of building systems (e.g., Mechanical, 
Electrical, and Plumbing). As-built conditions of building systems’ components deviate from their as-designed 
conditions (Akinci and Boukamp 2002; Bhatla et al. 2012; Klein et al. 2011; Rojas et al. 2009; Su et al. 2006). 
Such deviations are caused by design changes, unexpected site conditions, incomplete design information, and 
uncertainties in the construction operations (Hao and Shen 2008). More changes of building systems occur during 
the life-cycle of a building (Tang et al. 2010). Figure 1 uses red boxes to highlight an example of design change 
within the building system of a campus facility. The change shown on this figure is the dislocation of two pipes: 
the as-designed Building Information Model created in August 2012 only has two smaller pipes in the 
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highlighting box, while the dislocations of the pipes make the constructed building have four pipes in that box. 
Other types of spatial changes include the shape changes (e.g., variations in diameters of conduits), dislocations, 
merging and disaggregation of components. Changes of objects in such packed spaces can cause spatial clashes 
between building components and spatial-temporal conflicts between construction processes (Jongeling et al. 
2008). These inconsistencies between building components and construction processes can result in construction 
delays, costive reworks, safety and quality control issues. Engineers need to track and analyze these changes to 
achieve balanced project performance among productivity, cost, quality, and safety.  
 

 
(a) 

 
(b) 

 
(c) 

Figure 1 Spatial changes of the design of a mechanical system: a) 3D imaging data capturing the physical 
conditions; b) the as-designed Building Information Model (BIM); c) zoom-in view of the as-designed BIM  

 Understanding the principles underlying various spatial changes and correlations amongst them is critical for 
proactive spatial change management during the construction and maintenance of MEP systems. In construction, 
the propagative nature of some spatial changes caused chain reactions of change orders and reworks (S. Han et al. 
2012; Park and Pena-Mora 2003). For example, the deviations of conduits from their as-designed geometries 
cause clashes with other building components (N. Han et al. 2012; Korman et al. 2008; Leite et al. 2010). In 
packed spaces, resolving clashes can result in further adjustments. Cascading changes escalate construction costs 
and delays (Hwang et al. 2009; Koch and Firmenich 2011; Love et al. 2010; Rodriguez 2012). Typically, rework 
costs range from 2% to 12% of contract values (Feng et al. 2008; Josephson and Hammarlund 1999; Love and Li 
2000). The total contract value in U.S. was estimated at $798.5 billion for the year of 2011 (U.S. Department of 
Commerce 2011). Better knowledge about the cascading effects of spatial changes in construction projects can 
assist engineers identify critical spatial changes that have broad impacts on the project performance. In 
maintenance, facility managers need to analyze spatial changes of MEP systems for ensuring safe and cost 
effective life-cycle management (Arayici 2008; Chaput 2008; Huber et al. 2010; Mahmoud and RODZI 2009) and 
to reduce possibly costly damages to facilities and public utilities (Qiang and Jie 2006). Analyzing the 
relationships between changes of MEP systems and maintenance activities can guide engineers to identify 
maintenance strategies that reduce the risks related to cascading effects of these changes. 
 Within the construction and facility management domain, currently there is not a unified theory about spatial 
change analysis. Several questions that would help in developing such a theory remain to be answered: Where and 
how do spatial changes of MEP systems arise in the field? How can spatial changes be classified based on their 
nature and impacts? How do spatial changes affect each other and cause cascading effects? Some studies show 
the technical feasibility of detecting deviations of physical conditions captured in imagery data from as-designed 
models for construction progress monitoring (Akinci et al. 2006; Turkan et al. 2010) and urban change analysis 
(Malpica and Alonso 2010). The change detection methods developed for these studies cannot reliably relate 3D 
imagery data with corresponding model objects when the scenes are packed with small objects (e.g., mechanical 
rooms packed with conduits). That results in unreliable answers about which objects have changed and how 
spatial changes have arisen (challenge of data-model association). Previous change management studies 
investigated the impacts of design errors and changes on performances of construction projects (S. Han et al. 2012; 
Park and Pena-Mora 2003). These studies assume the reliability of the change data at the project level, while did 
not explore detailed spatial changes and algorithms for automatically classifying changes based on spatial data. In 
practice, it is critical to classify and analyze the nature of a change to reduce possible cascading effects of it 
(challenge of change classification). Finally, previous studies conducted limited explorations about automated 
methods for correlating spatial changes (challenge of change correlation analysis). Without automated supports, 
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manually exploring all possible correlations amongst different types of spatial changes is infeasible, as the 
number of combinations of various spatial changes is exponentially large (Teizer et al. 2007). 
 This paper synthesizes the potentials and challenges of spatial change analysis of building systems through 
case studies (section 2) and extensive literature review (section 3). Findings in this synthesis provide insights into 
the theoretical feasibility of creating a computational framework for automated spatial change analysis of building 
systems based on relational graphs that model spatial relationships between building components (section 4). 
Using 3D point clouds collected in a mechanical room within a campus building by a laser scanner, this paper 
shows the testing results of algorithms that can automatically generate relational graphs of the conduits in this 
mechanical room, showing the potential of using such relational graphs for automated spatial change analysis of 
conduits (section 5). The paper concludes with the summaries of findings from the synthesis of research 
challenges and testing results from the generation of relational graphs based on 3D point clouds, and highlight 
future research directions within this area (section 6). 

2. POTENTIALS OF USING 3D IMAGING TECHNOLOGY FOR SPATIAL CHANGE 
ANALYSIS OF BUILDING SYSTEMS 

2.1 3D Imaging technology for spatial change analysis of building systems 

Recent developments in various 3D imaging technologies enable engineers to capture detailed as-is geometric and 
visual information of constructed facilities and building systems. Three-dimensional (3D) imaging technologies 
include 3D laser scanning/LiDAR (Budroni and Boehm 2010; Cho et al. 2011; Tang et al. 2010), 3D 
photogrammetry and videogrammetry (Dai et al. 2012; Fathi and Brilakis 2011; Golparvar-Fard et al. 2009, 2011). 
A common feature of these technologies is the capabilities of generating 3D data set in the form of “3D point 
cloud” to capture the 3D geometries of the objects and their environments. The technical differences between 
them lie in the capabilities of collecting certain visual data in addition to the 3D geometries (e.g., reflectivity and 
color of the object surface), the time needed for data collection, and the quality of the collected data (e.g., 
accuracy, density/resolution of 3D data for capturing certain levels of geometric details).  
 Most 3D imaging systems are able to generate 3D representations of constructed facilities in a few days or 
even within a day. These representations usually capture objects or building features as small as a few centimeters 
along all three dimensions (X, Y, and Z). Such detailed 3D data collection and modeling capabilities enable 
engineers to conduct quantitative analysis of as-built or as-is condition of facilities to understand issues of 
construction and renovation projects. Some recent studies have started investigating the uses of 3D imaging 
systems in capturing visual and geometric conditions of building systems (Arayici 2007; Klein et al. 2011; Tang 
et al. 2010). Building on this existing knowledge, the authors conducted some case studies to understand the 
technical feasibility and challenges of using 3D imaging technologies for analyzing spatial changes of building 
systems. The 3D imaging technology explored in these case studies is 3D laser scanning. Two different laser 
scanners are tested, as detailed in the next subsection. 

2.2 Spatial change analysis methods and two case studies  

The authors conducted two case studies to explore the feasibility of using 3D imagery data in analyzing the 
changes of building systems. This research defines “spatial changes” as the deviations of the as-built/as-is 
conditions of building systems from the as-designed models. In current practice, many projects are using Building 
Information Modeling technology (BIM) to represent and exchange as-designed models of facilities (Sugihara and 
Kikata 2012; Tang et al. 2010). Essentially, spatial analysis methods first calculate a “deviation map” between 3D 
point clouds and as-designed BIM, and then analyze the deviation map to identify spatial changes. State-of-the-art 
3D data processing algorithms generate “deviation maps” using neighborhood searching criteria (e.g., Euclidean 
distance). These methods first associate data points in one source with the nearest surface or points in the other, 
and then calculate the deviations between associated geometric data along particular directions (e.g., vertical). 
These algorithms have a “maximum distance” parameter to specify the size of the neighborhood to be searched 
for matching two geometries. Users can set this parameter based on the expected magnitude of spatial changes in 
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a scene, attempting to maintain reliable matches for most parts of the data while minimizing spurious matches 
(Akinci et al. 2006; Turkan et al. 2012).  
 The two case studies focus on analyzing the spatial changes of objects of curvilinear geometries, because 
most building systems are featured as having a large number of ducts that are of curvilinear geometries.  
Examples of such curvilinear objects are trusses, ducts, conduits, and frames. The first case study uses a Time-of-
Flight (TOF) laser scanner to collect 3D point clouds of the exterior geometries of a campus building in Michigan. 
The second case study uses an Amplitude Modulated Continuous Wave (AMCW) scanner. Detailed definitions of 
TOF and AMCW systems are available in (Stone et al. 2004). Figure 2(a) shows a deviation map of a campus 
building, which visualizes deviations between the as-is point clouds and the as-designed model: red and magenta 
indicates large deviations (positive and negative values along the normal direction of model surface), while green 
and blue indicate small deviations. The “maximum distance” parameter was set to 10 cm so that points that are 
not within 10 cm of the as-designed model are white, the default color of the point cloud. For example, the white 
stripes on the roof indicate that those points are not associated with the roof, and thus no deviations are calculated 
for these points. 

  
(a) (b) 

Figure 2 Change analysis results of two case studies: a) deviation analysis of a campus building; b) point clouds 
of the mechanical system of a campus building 

 Two limitations of the neighborhood-searching change analysis method are highlighted in Figure 2. Using 
distance as the only measure for data-model association, these methods have difficulties to handle curvilinear 
geometries of objects that are close to each other reliably, especially when those objects have large dislocations 
and deformations. In Figure 2(a), a dislocated frame circled on the right is composed of bars having radii smaller 
than 10 cm. The 10 cm “maximum distance” results in several bars that are not associated with the as-designed 
model, and the established associations are incorrect: the frame slides along the façade of the building, and the 
points on some bars are associated with other bars. That is because after sliding, those bars are closer to the data 
points than the correct correspondences. In Figure 2(b), the authors observed various discrepancies between the 
as-built data of the mechanical system and its as-designed BIM. These discrepancies include dislocations of ducts, 
missing or additional ducts. Some ducts also have shape changes, such as elongations and diameter changes. As 
the geometries of these curvilinear ducts are interwoven, it is challenging to use the neighborhood-search method 
for reliably associating data points with the corresponding ducts in the BIM. Incorrect data-BIM associations 
cause erroneous results of change analyses.  
 Another limitation of current deviation generation and spatial change analysis methods is the lack of formal 
change classification and correlation analysis approaches. With the deviation maps in Figure 2(b), the goal was to 
determine the numbers of dislocated, missing, added or deformed ducts. Even though engineers can manually 
inspect the point clouds together with BIM to identify certain types of changes (e.g., dislocations, missed and 
added objects, deformations), without having access to an automated change classification approach, it would be 
necessary to analyze all ducts manually. In addition, changes of the interwoven geometries of ducts will result in 
spatial clashes and require adjustments to resolve such clashes. The spatial changes of building systems, therefore, 
have correlations with each other. It would be important for project engineers to understand such correlations so 
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data points 
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that they can identify more economical adjustments of the ducts. Economical adjustments would be those that will 
cause fewer propagative changes of the as-designed BIM and thus lower costs for change management. State-of-
the-art spatial change analysis methods, such as those clash detection algorithms implemented in Autodesk 
Navisworks (Autodesk Inc. 2010) and data-model deviation visualization methods implemented in 
CloudCompare (Daniel Girardeau-Montaut 2011), focus on identifying inconsistencies and changes as individual 
cases. No methods have been developed for analyzing the correlations between multiple spatial changes of 
building systems, while manually analyzing large numbers of changes to identify their correlations is tedious. 

3. REVIEW OF CHALLENGES AND RELEVANT APPROACHES FOR SPATIAL CHANGE 
ANALYSIS OF BUILDING SYSTEMS 

Results of the two case studies presented above reveal three challenges of using 3D imagery data for spatial 
change analysis of building systems: 1) data-model association challenge that impedes reliable detections of 
spatial changes of curvilinear objects; 2) change classification challenge that impedes efficient and reliable data-
driven change classifications; 3) change correlation analysis challenge that impedes the discoveries of the 
relationships between changes for controlling cascading effects of changes. This section will review state-of-the-
art methods that are potentially promising for addressing these challenges. Due to the space limits, this paper put 
more emphasis on discussing the challenges of data-model association, while briefly discussing references and 
potentially useful methods related to the other two challenges. 
 Related to the challenge of data-model association, recent studies propose to create relational graphs from 3D 
point clouds and as-designed models, and then match these two graphs for identifying their correspondences 
(Zeibak-Shini et al. 2012). A relational graph represents geometric features of building components as nodes. 
Edges linking two nodes in a graph represent spatial relationships between them. For example, two nodes in a 
relational graph can represent two ducts; an edge linking these two nodes can represent the “parallel” relationship 
between them. Compared with the neighborhood searching method, graph-matching methods could result in more 
robust data-model association, because in many cases spatial changes of objects may not change their spatial 
relationships. For example, two ducts are parallel with each other. Even after significant dislocations of them 
occur, they may still be parallel to each other. The “parallel” relationship is relatively robust to dislocations.  
 Some studies investigated methods that can extract relational graphs based on point clouds or as-designed 
models. Given 3D point clouds, 3D data segmentation algorithms can group 3D points based on their spatial 
proximity and similarities in their attributes (e.g., color, normal and curvature of local surface). Feature extraction 
algorithms can then extract geometric primitives from those clusters of data points, and compute spatial 
relationships between them (Nüchter et al. 2003; Xiong and Huber 2010). Given an as-designed BIM, the 
geometric primitives and building component information are already available in the BIM, and it is possible to 
compute a relational graph as well (Zeibak-Shini et al. 2012). Graph matching methods, such as the one described 
in (Xiong and Huber 2010), will be able to match two graphs derived from the data and the BIM efficiently to 
find their correspondences. Two issues challenging such graph-matching processes, however, include: 1) 
imperfect segmentations of point clouds could cause one duct to be corresponding to multiple clusters of points, 
or vice versa; 2) spatial relationships between interwoven curves, such as angles and relative locations between 
them, are changing along these curves as the locations and directions of them change. That brings the challenges 
of matching two relational graphs while considering possible “n to one” matches between the nodes. So far, no 
good solutions have been found for such a graph-matching problem. The preliminary results shown in section 5 
illustrate this challenge using examples from our case study. 
 The change classification is a 3D pattern recognition problem. Given the patterns of deviations of 3D points 
from the as-design model, 3D pattern recognition algorithms will be able to classify them (Tang et al. 2010). The 
difficulties specific to change classification center around two questions: how to establish a taxonomy of spatial 
changes that can cover all types of changes of various of 3D shapes, and how to establish the correspondences 
between certain types of changes in that taxonomy with certain deviation patterns. A classification of spatial 
deviation patterns is presented in (Anil et al. 2012). That article also discusses how different types of spatial 
changes can be manually recognized through certain spatial reasoning, and possible ways to formalize spatial 
reasoning mechanisms for automated spatial change classification. 
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 The correlation analysis of changes is a problem of identifying statistically significant correlations among the 
locations and other attributes of changes. Spatial analysis methods developed in the domain of Geoscience aim at 
identifying correlations among observations distributed on both spatial and temporal domains (Anselin et al. 
2006). In the case of spatial change analysis, each change would be an observation. Spatial statistical analysis 
methods, such as “Local Indicators of Spatial Association” (Anselin et al. 2006), can analyze the correlations 
among observations of spatial changes. The authors are currently conducting explorations along this direction. 

4. A RELATIONAL-GRAPH-BASED FRAMEWORK FOR SPATIAL CHANGE ANALYSIS 

This paper proposes a computational framework to address the three major challenges identified through above 
case studies and literature review. Overcoming these three barriers will lead to automated spatial change analysis 
of building systems for possibly reducing construction coordination costs and delays. Figure 3 shows an overview 
of this computational framework. This figure shows three stages of analysis corresponding three challenges 
presented before: data-model association, change classification, and change correlation. The first stage produces a 
relational graph for the building systems composed of ducts and other mechanical components, and match the 
graphs derived from point clouds against a graph based on the as-designed model for creating data-model 
associations. The relationships examined in this paper are “parallel” and “perpendicular;” both are angular 
relationships between ducts. The second and third steps use the results of data-model association to detect and 
classify spatial changes within the building systems, and then calculate the correlations among these spatial 
changes to identify which changes trigger larger numbers of subsequent changes. 
  

Data-Model Association Spatial Change Classification

Spatial Change Correlation

• Segmentation
• Geometric primitive extraction
• Relational graph generation
• Relational graph matching

• Spatial change taxonomy
• 3D pattern classification

• Spatial change clustering
• Statistical correlation analysis
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Figure 3 A computational framework for automating the spatial change analysis of building systems (detailed 
views of the extracted curves and the relational graph are in section 5) 

 This generic computational framework can have multiple algorithmic implementations. Several algorithms 
might be able to realize each of the data processing steps shown in Figure 3. This paper focuses on implementing 
the steps in the stage of “data-model association.” This stage contains four steps. Multiple 3D data segmentation 
algorithms can be used to implement the “segmentation” step, while this research adopts the “Connected 
Component Labeling” approach (Suzuki et al. 2003). Step “geometric primitive extraction” in this research 
focuses on extracting curves representing the axes of ducts within building systems. Several algorithms can 
achieve such curve extractions, while this research adopts the “Laplacian Based Contraction” approach (Cao and 
Tagliasacchi 2010). The implementations of the steps “relational graph generation” and “graph matching” are 
currently in progress. At present, the algorithms being explored for “relational graph generation” are the ones 
presented in (Nguyen et al. 2005) and (Paul and Borrmann 2009). The algorithms examined for implementing the 
step of “graph matching” are built upon the methods explored in (Xiong and Huber 2010). 
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5. RESULTS AND DISCUSSIONS 

The authors have implemented the steps of “segmentation” and “geometric primitive extraction” that are listed in 
Figure 3. Some results of executing these algorithms on two data sets collected in a mechanical room within a 
campus building show the potential and challenges of the proposed computational framework. Figure 4 shows 
these results. In this figure, the curve extraction results use the different colors for labeling curves identified by 
the algorithms as belonging to multiple ducts. This figure also shows the relational graphs manually created by 
the researcher based on the curve extraction results. 
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Figure 4 Curve extraction results and relational graphs manually created based on curves: (a) and (b) are results 
on data shown in the highlighting box of Figure 1; (c) and (d) are partial results on data shown in Figure 2(b) 

 The results shown in Figure 4 indicate that current implementations of 3D data segmentation and geometric 
primitive (curve) extraction have some limitations. The major difficulty is that the connected component labeling 
algorithm will group points belonging to different ducts into one segment. As a result, the curves of multiple 
curves are grouped into one cluster. For example, ducts 5 and 6 in Figure 4(a) are two ducts, but the algorithm did 
not split them into two curves. Similar examples are ducts 1, 2, 4 and 5 in Figure 4(c). Such segmentation 
difficulties cause incorrect relational graphs and thus unreliable data-model graph matching. Future studies will 
further explore robust methods for reliable 3D segmentation and graph generation to ensure precise data-model 
association. Given the curve extraction results, the authors manually split these clusters of data points composed 
of multiple curves, and then use an algorithm that can compute the angular relationship between each pair of ducts 
to establish relational graphs. Figure 4(b) and (d) show these relational graphs. In future studies, these relational 
graphs will be matched against graphs generated from as-designed models for data-model association. 

6. CONCLUSION AND FUTURE WORK  

This paper explores the potentials and challenges of using 3D imagery data in spatial change analysis of building 
systems composed of interwoven curvilinear objects in packed spaces, such as ducts of mechanical systems. Case 



Proceedings of the 30th CIB W78 International Conference - October 9-12, Beijing, China 259

studies and literature review indicate the possibilities of automating the spatial change analysis of complex 
curvilinear geometries of building systems through comparing 3D imagery data against as-designed models. The 
major challenges include the difficulties of reliably associating data points with corresponding objects in as-
designed models (challenge of data-model association), the lack of methods for automatic spatial change 
classification (challenge of spatial change classification), and the lack of methods for analyzing the correlations 
between spatial changes (challenge of change correlation analysis). This paper presents a relational-graph-based 
computational framework and relevant computing techniques that can potentially address these challenges. 
Testing results in a case study of a mechanical room within a campus building reveal the necessity in exploring 
reliable 3D data segmentation methods for improving the relational-graph based algorithm for data-model 
association. Future studies will further explore this relational-graph-based computational framework for achieving 
automated analysis of building systems to reduce construction costs and delays, while improving the quality. It 
would also be possible to integrate spatial ontologies and relevant reasoning mechanisms, such as the ontological 
modeling research presented in (Osman and El-Diraby 2010), into such relational graphs for supporting the graph 
based data-object association and change analysis. 
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