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ABSTRACT
Productivity rate estimating is usually based on experience. It entails taking into account different factors, 
some of which are project specific while others are activity related. Conventional methods integrate the 
experience with stored data from previous projects. Such a process is often labor intensive and inaccurate. 
Consequently, accurate estimation of productivity rates through lessons learned is essential for efficient 
planning of projects. This paper proposes an automated decision support tool for productivity rate 
estimating through Machine Learning (ML). The adopted methodology (1) utilizes data from a set of 
completed projects; (2) defines a list of factors -that affect productivity estimates- based on 
comprehensive literature review and previous experiences; and (3) develops and compares the outcomes 
of automated Support Vector Machines (SVM) and Naïve Bayes (NB) models for the assessment of 
productivity rates. The research methodology focuses on steel structures related activities including 
fabrication, delivery, and assembly. The models retrieve the closest case to a newly encountered one, 
including project description, project’s attributes, and activity’s attributes, and reports its estimated 
productivity and duration. This paper defines a pilot study aiming at developing a comprehensive 
automated estimator for the construction industry. The outcomes of the current research illustrate the 
potential of ML modeling to be adopted for assigning productivity rates, making it a powerful tool for 
decision making.

Keywords: Decision support, Machine Learning (ML), Support Vector Machines (SVM), Naïve Bayes 
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1. INTRODUCTION
Construction endeavors are described as complex undertakings that produce nonstandard components 
(Clough et al. 2000). Consequently, productivity estimates of construction activities, like many other 
aspects of construction projects, are based on a number of integrated and associated parameters. 
Depending on the nature of the activity, these parameters include, but not limited to, type of material, 
capacity of the used equipment if any, efficiency of the crew, weather conditions, and experience of the 
estimator. Adding to these, Dunlop and smith (2003) illustrated that productivity estimates adopted from 
a previous project must be adjusted for specific site factors. Productivity estimates of certain types of 
construction activities, like excavation, can be accurately estimated through mathematical equations. 
However, in construction activities that are dependent on human performance, the accuracy of the 
estimate degrades due to inconsistency in the human behavior (Stensrud 1998). Consequently, 
conventional methods of productivity estimating rely mainly on two components, namely personal 
experience and previously stored data. Such a process is often labor intensive and inaccurate (Karshenas 
and Tse 2002). In addition, as illustrated by Graham and Smith (2004), due to the complexity of 
construction activity, there is a difference between actual productivity rates and estimated ones.
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Consequently, accurate estimation of productivity rates through lessons learned is essential for robust and 
efficient planning of construction projects.

In an attempt to mitigate these drawbacks, a number of researches developed models to facilitate 
productivity estimating in an efficient manner. These methodologies ranged from mathematical modeling
(Ibbs 2011, and Jarkas 2012), to Artificial Intelligence (AI) techniques like Case-Based Reasoning (CBR) 
(Dzeng and Tommelien 1997, and Yau and Yang 1998), to hybrid mechanisms (Graham and Smith 
2004). These studies have made major accomplishments in their fields; however, none of them have
utilized the induction learning feature of Support Vector Machines (SVM) and Bayesian theory (Naïve 
Bayes NB) to capture the associations between the different parameters affecting productivity estimating 
of construction activities. To fill this research gap and complement previously developed model, this 
paper presents an initial investigative step of the potentials of the aforementioned two Machine Learning 
(ML) techniques to estimate productivity of construction activities. To that end, the adopted research 
methodology focuses on steel structure related activities. It is instigated that this research task will 
provide insight on the performance of SVM and NB for construction estimating. In addition, it will pave 
the way for the development of a comprehensive automated estimator for the construction industry though 
identification of the pitfalls and area that requires further investigation.

The rest of the body of this paper describes the followings.
• Background;

o Literature Review;
o Support Vector Machines (SVM)
o Naive Bayes (NB);

• Methodology;
• Results and discussion; and
• Conclusion, Limitations, and Future Work.

2. BACKGROUND 

2.1 Literature review

The construction industry represents a perfect example of a knowledge-intensive industry where decision 
making is extensively based on experience (Kovacevic et al. 2008, and Yua and Yang 1998). Estimating 
productivity rates of construction activity is one of those examples were experiences gained in previous 
projects are employed. For newly encountered projects, estimators utilize their gathered expertise to 
modify stored data from previous projects according to specific project attributes (Graham and Smith 
2004). These processes are often cumbersome and time consuming. Consequently, facilitating the use of 
this knowledge through lessons learned to assist decision making in relation to productivity estimating 
became a necessity to enhance project control and to focus the professional expertise on value-adding 
tasks. As a result, a number of research studies have attempted to address this need. Through 
mathematical modeling, Jarkas (2012) utilized multiple categorical regression to capture the effects of 
rebar diameter, quantity of reinforcement, wall thickness and geometry, as well as curvature intensity on 
rebar installation activities. Jarkas research provided recommended mechanisms to improve labor 
productivity in the aforementioned activity. Furthermore, Ibbs (2011) evaluated the impact of change 
orders on cost, schedule, and productivity in construction projects. Other researchers utilized CBR to 
tackle this problem. Dzeng and Tommelien (1997) developed the “CasePlan” system to facilitate schedule 
generation in relation to power plant boiler erection. The system utilized project attributes and annotated 
cases to select a similar previously developed schedule for a new project. Yau and Yang (1998) 
developed a CBR system to estimate costs and durations of construction projects in the preliminary 
design stage. In 2004, Graham and Smith developed and compared productivity estimators for concrete 
activities through mathematical modeling (similarity measures) and decision trees. The current research 
task augments the aforementioned developments through investigating the possibility of adapting two ML 
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methodologies, namely Support Vector Machines (SVM) and Naïve Bayes (NB), for estimating 
productivity rates of steel structure related activities.  

2.2 Support Vector Machines (SVM)

“SVM are learning systems that use hypothesis space of linear functions in high dimensional space, 
trained with a learning algorithm from optimization theory that implements a learning biased derived 
from statistical learning theory” (Shawe-Taylor and Cristianini 2000). In other words, SVM algorithms
aim at separating a set of instances into two groups based on specific pre-defined characteristics 
“attributes”. In its simplest form, Linear SVM (LSVM), SVM defines a separation surface (hyperplane) in 
accordance with equation 1 that best separates the analyzed instances into groups, where ones includes a
set of positively classified cases and the other defines a set of negatively classified ones as shown in 
Figure 1a (Mahfouz et al. 2010). Due to the existence of more than one separation plane, SVM finds the 
optimum hyperplane that separates the input data with maximum geometric margin (Figure 1b). 

y=<w.x>+b                                                                                      (1)

where vector w (weight vector), b (functional bias) are the parameters that control the function of the 
separation hyperplan, and x is the feature vector which may have different representations based on the 
nature of problem.

 

              

      Figure 1a. Possible Hyperplanes in SVM                        Figure 1b. Hyperplane Representation in SVM
Where i j defines the Euclidean distance of two points from the decision boundary in the input space; and

is the maximum geometric margin over all possible hyperplanes

SVM are applicable not only to problems of binary nature but also to multiclass classification nature. 
For a sample space X and output space Y, a binary classification problem will have Y= {-1, 1} while a 
multiclass one will have Y= {1, 2 …, m}.

In fact, not all classification problems are linearly separable. As the complexity of the analyzed 
problem increases, the representation of the defined attribute values becomes more complex. This 
mandates the representation of the cases in a higher dimension space in order to be linearly separate them.
The literature of the ML domain defines Kernel representation as a solution to this problem (Shawe-
Taylor and Cristianini 2000, Shawe-Taylor and Cristianini 1999, Platt 1999, and Mangasarian and 
Musicant 1999). By introducing the appropriate Kernel function to equation 1, the data set can be 
transformed and plotted in a higher feature space (equation 2). Such transformation converts the problem 
from being linearly inseparable to a linearly separable one (Figure 2).

x=((x1,…,xn) (x)= 1(x1),…, n(xn) or k(x,y)=[ (x). (y)]                                    (2)
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Figure 2: Kernel Transformation (Mangasarian and Musicant, 1999)

Within the current research task, (1) cases are defined as specific steel activity; (2) attributes are 
defined as the characteristics pertinent to each steel activity. The mechanism of generating these 
characteristics and their values is discussed in the methodology section; and (3) classes are defined as the 
average productivity rates related to each steel activity. 

2.3 Naïve Bayes (NB)

The Naïve Bayes classification methodology is based on conditional probability. In the training step of 
NB model development, the likelihood of a specific outcome is calculated based on existing conditions in 
previously encountered instances. Consequently, it finds the most likely possible classification for an a
newly encountered instance among all available ones taking into consideration the presence of prior 
knowledge its attributes. It is based on the work of Reverend Thomas Bayes (1702 – 1761), who was an 
English Presbyterian and Mathematician that is considered to be the first to apply Probability Theory, the 
basis of Naïve Bayes Classifiers, in an inductive manner. For more illustration, the NB classifier 
calculates the odds of a newly encountered steel activity being classified to a specific productivity rate 
while having prior knowledge of the activity related characteristics. A decision is made based on the 
highest calculated probability for all productivity classes. NB assumes that all steel activities are 
mutually exclusive and exhaustive. Consequently, it assumes that any newly analyzed activity falls into 
one productivity class and cannot be classified to more than one, hence the Naïve component of the name.

3. METHODOLOGY
The following section of the paper describes the different steps of the adopted research methodology. To 
that end, the proposed research plan (Figure 3) is fourfold (1) problem identification; (2) factors 
identification; (3) model development and implementation; and (4) model testing and validation.  

3.1 Problem Identification

The current research task focuses on steel structure related activities including fabrication, delivery, and 
installation. To that end, four completed projects were utilized for the model development. Steel 
structures under consideration are restricted to hangers, warehouses, and parking sheds. The total number 
of activities were adopted based on their breakdown in the schedules of the analyzed projects. In other 
words, if the scheduled detailed the assembly activities into modules, columns and bracing of zones
(i=1…m), cladding of zones (c=1…n), roof trusses (r=1…p), and miscellaneous (m=1…j), the total 
number of activities pertinent to this project is m+n+p+j. Similar analogy was followed for the 
fabrication, and delivery activities. The total number of identified activities are 59.
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3.2 Factors Identification

Since this paper represents an initial step in a study aiming at finding a robust methodology for 
automating estimating processes for the construction industry, the focus of this sub-task is to define an 
inclusive list of factors that affect the prediction accuracy of the ML models. Consequently, the factors 
under consideration for the current research task were defined in two steps. First, a compressive literature 
review of factors identified in similar researches activities (Skitmore 1991, Akintoye and Fitzgerald 2000, 
Trost and Oberlender 2003, Serpell 2004, Graham and Smith 2004, An et al. 2007, and Mahfouz 2011) 
were gathered. Second, these factors were evaluated by the author, to eliminate unrelated ones and 
augment missed factors, yielding a total of 28 factors. Table 1 illustrates the full list of factors definitions
and their types.

Table 1: List of Utilized Factors
Item Factor Definition Type of Factor

1 Size of the building Ft2

2 Type of the building Shed, Warehouse, Simple hangar, Hangar with attachments
3 Type of the activity Procurement, Fabrication, Delivery, Installation
4 Building design Pre-engineered, fully engineered, not designed
5 Experience of the estimator with similar projects Ordinal  5:high–1:low
6 Experience of the contractor with similar projects Ordinal  5:high–1:low
7 Experience of the fabricator with similar projects Ordinal  5:high–1:low 
8 Type of the Client Local, Foreign
9 Type of Material Specified Local, Imported
10 Fabricator Location Local, Foreign
11 Details of existing data Ordinal  5:high–0:none 
12 Level of details of the project drawings Ordinal  5:high–1:low 
13 Level of details of the project technical specification Ordinal  5:high–1:low 
14 Financial capacity of the company Ordinal  5:high–1:low 
15 Financial capacity of the client Ordinal  5:high–1:low 
16 Project Duration Numerical days
17 Difficulty of the estimating procedures Ordinal  5:high–1:low 
18 Estimator’s career experience Numerical  years 
19 Estimator’s field work experience Numerical  years 

20 Estimator’s experience with field work in similar 
projects Ordinal  5:high–0:none 

21 Capacity of the estimating team Ordinal  5:high–1:low 
22 Capacity of the procurement team Ordinal  5:high–1:low 
23 Capacity of the technical office team Ordinal  5:high–1:low 
24 Capacity of the quality control team Ordinal  5:high–1:low 
25 Level of construction difficulty Ordinal  5:high–1:low 

26 Location of the Project Within isolated area, intermediate density, densely 
populated area

27 Weather Condition Dry, Humid, Wet
28 Temperature while construction High, intermediate, Low
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3.3 Model Development and Implementation

Within the current sub-task, the 59 identified activities are utilized for the model development. In 
addition, the set 28 factors illustrated in Table 1 are used as the input features of the model, while the 
productivity rates represent the predicted output. To that end, the proposed research methodology 
developed and compared the outputs of 5 ML models, namely (1) Linear Support Vector Machine 
(LSVM) model, (2) 1st degree polynomial kernel SVM model; (3) 2nd degree polynomial kernel SVM 
model; (4) 3rd degree polynomial kernel SVM models; and (5) Naïve Bayes (NB) model. Productivity 
rates adopted for the model training are the average rates of all activities required to perform a specific 
task. The specific and average rates are calculated as per equation 3 and 4 respectively.   = (3)

  =     (4)

Where Qt is the quantity of steel related to a specific activity, duration is the actual duration in days 
taken to finish this activity, and n is the total number of activities needed to finish a specific task.

For the model development and training, the input features were prepared using Excel and the models 
were developed through Weka algorithms. The training of each model was performed on 10 fold cross 
validation scheme, where the data set is broken into two subsets containing 90% and 10% of the instances 
respectively. The model is first trained on the 90% subset and tested over the 10% one. The process is 
repeated for 10 times until the model is trained and tested over all instances. 

3.4 Testing and Validation

To that end, the performance of the models is evaluated through 4 parameters defined as Prediction 
Accuracy (A), Precision (P), Recall (R), and F-Measure (refer to equations 5, 6, 7, and 8 respectively). 
Within each training steps, the 4 parameters are reported and the final measure of performance is 
calculated as the average values of all 10 steps (Mahfouz and Kandil 2011, and 2010). The following is an 
elaboration on the 4 measures. The Prediction Accuracy (A) of is the ratio between the total number of 
correctly predicted productivity rates out of all tested activites. Whereas, the Precision (P) of the model is 
a representation of the ratio of instances in which the productivity rate was correctly predicted to the total 
number of instances predicted with the same productivity rate, whether correct or wrong. On contrast, the 
Recall (R) is the ratio of instances in which the productivity rate was correctly predicted to the total 
number of instances that should have been predicted with the same productivity rate. Examining 
equations 6 and 7, and the aforementioned definitions, it becomes clear that there is always a tradeoff 
between the two performance measures. Consequently, an average measure is reported, which is defined 
as F-Measure.  

Accuracy = tp / n (5)
Precision = tp / (tp+fp) (6)
Recall = tp / (tp+fn) (7)            
F- Measure = 2PR / (R+P)  (8)

Where tp is the true positive prediction of the model, fp is the false positive prediction of the model, 
and fn is the false negative prediction of the model. 
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4. RESULTS AND DISCUSSION
The results of the application of the aforementioned research methodology is illustrated in Table 2 and 
Figure 4. A closer examination of the table shows:

The highest prediction rate of 70% was achieved through Naïve Bayes (NB) model. In 
addition, the model attained an increase in prediction accuracy amounting to 47%, 43%, 18%, 
and 17% over the Linear (LSVM), 1st degree Polynomial, 2nd degree polynomial, and 3rd

Degree Polynomial Support Vector Machines (SVM) models respectively. This could be 
attributed to the number of instances analyzed. It was noticed in previous researches that as 
the number of instances exceeds twice the number of features, the induction learning feature 
of the SVM model enhances. In comparison, the conditional probability applied by the NB 
allows the model to predict an outcome at higher accuracy, even within a small sample 
(Oracle 2009, Mahfouz and Kandil 2010). 
The trend of enhanced performance of the NB over the developed models extends to the other 
performance measures. 

o The NB model recorded an increase of 30%, 19%, 18%, and 9% over the LSVM, 1st

degree Polynomial, 2nd degree polynomial, and 3rd Degree Polynomial SVM models 
respectively, with respect to recall.

o In regards to the average model precision, NB achieved an increase of 14%, 8%, 7%, 
and 5% over the LSVM, 1st degree Polynomial, 2nd degree polynomial, and 3rd

Degree Polynomial SVM models respectively.
o Consequently, an increase of 22%, 13%, 12%, and 7% were scored in the F-Measure 

of NB over LSVM, 1st degree Polynomial, 2nd degree polynomial, and 3rd Degree 
Polynomial SVM models respectively.

Table 2: Average Performance Measures
Developed Models

Performance Measure LSVM 1st Degree SVM 2nd Degree SVM 3rd degree SVM NB
Accuracy 23% 27% 52% 53% 70%
Recall 33% 44% 45% 54% 63%
Precision 44% 50% 51% 53% 58%
F-Measure 38% 47% 48% 51% 60%
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5. CONCLUSIONS, LIMITATIONS, AND FUTURE WORK
The paper presented a study that represents an initial step in developing a robust productivity estimating 
methodology for the construction industry through Machine Learning (ML). For the proof of the concept, 
the current research focused on steel structures related activities including fabrication, delivery, and 
assembly. To that end, the adopted research methodology (1) utilized data from 4 projects, where 59 
isolated activities were analyzed; (2) identified 28 features of these activities; (3) developed 5 ML 
productivity prediction models; and (5) used the 59 activities and 28 features for the models training and 
validation. The outcomes of the implementation of the aforementioned methodology yielded that a Naïve 
Bayes (NB) model is the most suited among the developed ones, for it has attained the highest 
performance measures namely, Prediction Accuracy of 71%, average recall of 64%, average precision of 
59, and average F-Measure of 61%. This research is instigated to complement previously performed 
research activities in this field and to pave the way for further development and expansion of the current 
adopted methodology.

However, the presented research has a set of limitation that should be acknowledged. First, the 
problem analyzed is complicated due to the interaction and associations between a wide range of factors. 
Consequently, a more comprehensive list of factors should generated through interviews and opinion 
assessment of experts in the field. In addition, a Golden Standard of human performance in relation to the 
current analyzed problem should be established and compared to the model performance. Second, these 
factors should be analyzed statistically to define a list of features that are statistically significant for the 
prediction of productivity rates. Third, a larger number of projects should be included in the analysis to 
increase the learning capabilities of the ML models and in return increase the prediction accuracy. These 
items are currently under investigation by the author and will be addressed under future works. 
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