
1 INTRODUCTION

Construction projects are one-of-a-kind undertakings
characterised by one-of-a-kind products and proc-
esses, complex one-of-a-kind partner relationships,
frequently changing tasks and high dependency on
external factors like weather, transportation, various
socio-political aspects etc. In such virtual organisa-
tion environments achievement of dynamic (ad hoc)
process support is a critical issue as comprehensive
process planning is rarely possible in advance. In-
deed, modelling of the construction process can be
done at the outset using e. g. the ARIS methodology
(cf. Scheer 2000), and event-driven process chains
(EPCs) in particular. However, EPCs lack fully for-
malised mechanisms that can enable flow control to-
gether with proper resource assignment to processes
and explicitly defined actors/roles with respective
process-related responsibilities, authorisation and
access rights. Moreover, they provide only weak
support to dynamic process modelling and manage-
ment, basically requiring assembly of the model be-
forehand. To tackle these issues we suggest a formal
holistic description of the overall model realised by
a set of independent, yet inter-related ontologies.
This provides an expedient mechanism for the
achievement of interoperability in complex systems
with multiple heterogeneous resources.

The developed layered set of inter-related ontolo-
gies (based on Description Logics) provides a clear

distinction between concepts and instances as well as
between generic and specific concepts in the main-
tained knowledge base. Consequently, knowledge
representation of the process is done in three steps,
from generic (meta) concepts, representing business
process patterns (BPPs), through specific domain
concepts to executable business process objects
(BPOs). However, whilst the approach is designed to
be highly generic and hence anticipated to be broadly
applicable, the specific development carried out in the
frames of the integrated German project BauVOGrid
(cf. BauVOGrid 2009) focuses on the defect manage-
ment process, also known as “snagging” in the UK.
Appearing delusively simple, defect management is
in fact a very complex process due to the thousands
of defects that have to be handled in parallel, the con-
stant (often controversial) inter-relationships of
owner, general contractor and subcontractors, and the
great number of ad hoc decisions to be taken. There-
fore, it has been purposefully selected as a major sce-
nario for the BauVOGrid platform which aims at
achieving efficient VO cooperation and management
in construction projects on the basis of distributed
Grid and Web Services combined with semantic
methods and goal-oriented process management.

The paper outlines the suggested overall approach,
describes the developed ontology framework and
provides an overview how it is currently used. More
details are available in the public documents at
http://www.bauvogrid.de.

Ontology-Based Dynamic Process Support on the Example of Defect
Management

P. Katranuschkov, K. Rybenko & R. J. Scherer
Institute of Construction Informatics, Technical University of Dresden, Germany

ABSTRACT: In construction projects, characterised by one-of-a-kind products and processes and frequently
changing everyday tasks, achievement of dynamic process support is a critical success factor. However, current
process management techniques rarely provide adequate dynamicity. In this paper we describe an ontology-
based approach enabling dynamic construction of (sub)process chains with the help of pre-defined reusable
business process objects coherently integrating processes with resources, services and responsible persons/teams
for their execution. The paper presents the background of the approach, discusses the developed ontology
framework and outlines the current environment and services with which it is used. The development work on
domain-specific level targets the area of defect management which, due to the thousands of defects that have to
be handled in parallel and the large number of unpredictable situations that have to be dealt with in a project, is
an area of high process-related complexity. The reported research is largely done in the frames of the integrated
German project BauVOGrid (2007-2010).

2 BACKGROUND

In the following, the theoretical basis upon which we
build our system is briefly outlined. This includes
Description Logics and ontologies, event-driven
process chains (EPC) and the suggested extension
and modularisation of processes with the help of
Business Process Objects (BPO).

2.1 Description Logics
Description logics (DL) is a knowledge representa-
tion formalism that can be used to represent the con-
cept definitions of an application domain (known as
terminological knowledge) in a structured and for-
mally understood way (Baader et al. 2003). It refers
also to the logic-based semantics which can be ex-
pressed by first-order predicate logic, a feature that
was not available in its predecessors, frames and
semantic networks. Today DL has become a corner
stone of the Semantic Web for its use in the design
and specification of ontologies via the Web Ontol-
ogy language OWL (W3C 2004). OWL is also the
language formalism used consistently in our work.

Elementary descriptions in DL are atomic con-
cepts and atomic roles (also called concept names
and role names). Complex descriptions can be built
from them inductively with concept and role con-
structors. A common DL level of expressiveness as
basically available in OWL is ALCQI. ALC stands
for a DL that allows only negation, conjunction, dis-
junction, and universal and existential restrictions, Q
stands for number restrictions, and I for inverse roles.
The main constructs available in ALCQI are listed in
Table 1 below.
Table 1. Syntax and semantics of description logics
Name Syntax Semantics
top con-
cept Τ IΔ

existen-
tional re-
striction

.r C∃ { }| .(,)I I Ix y x y r y C∈Δ ∃ ∈ ∧ ∈

universal
restriction .r C∀ { }| .(,)I I Ix y x y r y C∈Δ ∀ ∈ → ∈

negation C¬ \I ICΔ
conjunc-
tion C DI I IC DU

disjunc-
tion C DU I IC DI

at-least
restriction (≥ n r C) { }| #{ | (,) }I I Ix y C x y r n∈Δ ∈ ∈ ≥

at-most
restriction (≤ n r C) { }| #{ | (,) }I I Ix y C x y r n∈Δ ∈ ∈ ≤

inverse
role r– (r Ι) –1

The semantics of ALCQI concepts is defined in

terms of an interpretation. An interpretation I con-
sists of a non-empty set ΙΔ (the domain of the inter-
pretation) and an interpretation function, which as-

signs to every atomic concept A a set ΙΙ Δ⊆ A and to
every atomic role R a binary relation ΙΙ Δ×Δ⊆R .
The inductive extension of the interpretation func-
tion to concept descriptions is also shown in Table 1.

A DL knowledge base usually consists of a set of
terminological axioms (often called TBox) and a set
of assertional axioms or assertions (often called
ABox). An interpretation I is a model of a DL
knowledge base if it is a model for the ABox and the
TBox.

An equality whose left-hand side is an atomic
concept is called concept definition. Axioms of the
form DC ⊆ for a complex description C are often
called general concept inclusion axioms (GCI). An
interpretation I satisfies DC ⊆ if ΙΙ ⊆ DC . Every
concept definition CA ≡ can be expressed using
two GCIs: CA ⊆ and AC ⊆ . Therefore a TBox
can be seen as a finite set of GCIs. I is a model of a
TBox T if it satisfies all GCIs in T.

An ABox assertion is of the form C(a), r(a,b),
where a, b are individual names, C is a concept, and
r a role name. An interpretation I additionally as-
signs to every individual name a an element ΙΙ Δ⊆ a .
An interpretation I satisfies C(a) if ΙΙ ∈Ca and I
satisfies r(a,b) if ΙΙΙ ∈ Rba),(. I is a model of an
ABox A if it satisfies all assertions in A.

What makes description logics the formalism of
choice is the fact that it defines a decidable fragment
of first-order logic and, via OWL, a good back-
ground for a distributed modelling / service platform.

2.2 Event-Driven Process Chains
Event-Driven Process Chains (EPCs) are a busi-

ness modelling technique that has become a de facto
industry standard in the German-speaking countries,
especially in conjunction with the ARIS methodol-
ogy. Using certain normative extensions they inte-
grate four major ERP modelling aspects, namely
event, function, system / data and organisation
(Figure 1).

Figure 1. The basic EPC-elements (left) and a fraction of an
EPC showing schematically their inter-relationships (right)

A Function can be understood as activity or action.
Each function is preceded by a before-event and fol-
lowed by an after-event. Syntactically, a function is
a sentence, consisting of verb and noun, for example
“Register defect”, where the verb (or command)

transforms the noun (object). Functions can belong
to one or more processes. Based on that observation,
different classification criteria can be applied to
functions. In general they can be grouped by objec-
tive, transformation, responsibility, or process, in
which the functions are enrolled.

Events connect functions to provide a consistent
workflow. They can be further categorised into
start-events, internal events and end-events. From
logical point of view, a two-valued Status has to be
assigned to an event, indicating whether the event
occurred or not.

Figure 2 shows an abstract process represented in
DL. As in each EPC, it starts and ends with events.
The top concepts are Event and Function, and it is
easy to define StartEvent, InternEvent and EndEvent
by means of DL. StartEvent is an event, after which
some functions follow but there is no function that
comes before this event, InternEvent has after- and
before-functions, and EndEvent has a function that
comes before the event but there is no function fol-
lowing after.

.
.

.
.

.

Function
Event
StartEvent Event hasAfterFunction Function

hasBeforeFunction Function
InternalEvent Event hasAfterFunction Function

hasBeforeFunction Function
EndEvent Event hasAfterFunction Fun

⊆ Τ
⊆ Τ

≡ ∩ ∃
∩¬∃

≡ ∩ ∃
∩∃

≡ ∩¬∃
.

ction
hasBeforeFunction Function∩∃

Figure 2. Representation of functions and events in DL

Organisational Entity is used as anchor to the
ARIS Organisational View describing organisational
entities with their hierarchy and the communications
between them. The concept of roles must also be de-
fined here, to assign the rights for executing a con-
crete function.

Similarly, System is used as anchor to the ARIS
Data View describing data objects, document and
product data, as well as tools and services used to
process this data in the context of the related func-
tion.

Output is the result of a process. It may comprise
material and/or service results. The notion of output
can be related to the notion of product.

The EPC itself is represented in the ARIS Control
View in which the additional components Flow Re-
lation and Logical Connectors are defined.

There exist also some syntactical rules for con-
structing an EPC, which must also be reflected in the
corresponding ontology. On the basis of these ob-
servations a mapping strategy from EPC to DL was
developed. It is presented briefly in Section 3.2.

2.3 Business Process Objects
A Business Process Object (BPO) can be under-

stood as an extension of currently known Business
Object specifications in that it enables better and
more consistent binding of a real-world concept,
representing a product or service which is the goal of
a business activity, with the actual business process
for the realisation of that activity (Katranuschkov et
al. 2006; Keller 2007). A Business Object is typically
comprised of a (sub) schema, population of the
schema, methods assigned to the object providing
various means to access and process the data, and
(optionally) business rules providing quality man-
agement checks. A Business Process Object extends
that definition by adding the process in which the
business object is processed, the actor performing
that process, the related actors to be notified and re-
ceiving results from the process, and the (set of) ser-
vices and tools needed to perform the process.
Hence, a BPO contains a network of objects repre-
senting a partial model, relations to distributed in-
formation resources and links to services/tools to
process these resources. It consists essentially of the
functions and their related resources belonging to a
fragment of an EPC, grouped by specific criteria
such as unique responsibility.
A BPO can be formally described as:
BPO (Name, F, E, SE, EE, C, R, O, Sim, Con) (1)
where
F – finite set of functions
E – finite set of events
SE ⊆ E – set of StartEvents
EE ⊆ E – set of EndEvents
C – finite set of logical connectors
R – set of triples, representing the flow relations

of the EPC, with R⊆ (E, hasAfterFunction, F),
(F, hasBeforeEvent, E), (E, hasBeforeFunction, F),
(F, hasAfterEvent, E), (E, hasAfterConnector, C),
(E, hasBeforeConnector, C)

O – the organisational entity, responsible for execut-
ing the BPO

Sim – set of similar to a BPO other BPOs, having
different O, SE or EE, as well as Name

Con – context of the BPO (important for defining
and using various search criteria).

A BPO function f corresponds to the same EPC con-
cept and can be defined as follows:

f (Name, A, Obj, R, S) (2)
where
A – the action of the function
Obj – the object of the function
R – the resource(s) needed to execute the function
S – the system(s) or tool(s) required to perform the

 function.

According to the rules and conventions concern-
ing EPCs, functions and events should be alternated,
and regarding the connection of functions and events
each function and each event may only have one in-
put and one output connector. Therefore triples like
(F, hasAfterConnector, C) can be omitted. Further-
more, the set of functions, connectors and events in a
BPO have to be disjoint, i. e. F C E =∅I I and
there should exist only one organisational entity for
each BPO.

In summary, BPOs provide standard reusable
process patterns, which can further serve for dy-
namic, IT-supported process configuration, instan-
tiation and analyses on logical basis. The principal
procedure is illustrated in the Figure 3 below.

Dynamically assembled
full ref. process

Knowl. base of process patterns

Instantiated process

Usage

Search
and

Configuration

Adaptation
and

Instantiation
Process
assembly

Definition

Figure 3. Principal use of BPOs stored in a DL knowledge base
for the definition and instantiation of dynamic process chains

The first step is, starting from an idealised refer-
ence process model, to design the BPOs from which
a specific EPC may be constructed (in our case for
“Defect Management”). Secondly, having created a
set of reusable BPO patterns (or shortly BPPs), an
actual process flow can be dynamically assembled at
execution time, pulling the required BPPs from the
knowledge base and adapting them to the actual con-
text. Adaptation rules applied for that purpose can be
as simple as parameter variations but may also in-
clude elaborate procedures executed by some sup-
porting tools. The latter, however, is dependent on
engineering knowledge and might be a very complex
task.

The criteria for the definition of reusable BPOs
from an existing reference process model are identi-
fied as follows (Rybenko & Katranuschkov 2009):

Responsibility – An existing EPC should be di-
vided into parts according to the defined responsi-
bilities; for all functions in one BPO only one role is
allowed to be responsible for the execution.

Modularity – A BPO should solve one specific
problem; thus, it should represent one distinct proc-
ess module.

Configurability – BPOs should be configurable;
therefore they must be equipped with appropriate
configuration rules and interface other BPOs only at
event boundaries (and not at functions).

Time – In defining a BPO the anticipated time
limits for its execution should be taken into account;
even if the other criteria are met, the BPO should be
divided in parts, if its execution time is inadequately
long with regard to the overall project schedule
(minimisation of time-dependent risks).

3 ONTOLOGY FRAMEWORK

In our approach, the DL knowledge base for col-
laborative process management is built in three dis-
tinct stages: (1) on generic level, (2) on domain-
specific level, and (3) on run-time instance level
(Scherer et al. 2008). This is done via a layered sys-
tem of inter-related ontologies (Figure 4).

Process
Ontology

Organisational
Ontology

Resource
Ontology

Defect
Management

BPOs
Defect

Ontology

Executable
BPO

Instances

Runtime
Defect
Data

In
st

an
ce

s
C

on
ce

pt
s

ge
ne

ric
do

m
ai

n-
sp

ec
ifi

c

Figure 4. Schematic presentation of the developed ontology
framework

At first, a generic widely reusable Process Ontol-

ogy that describes the main features of EPCs and en-
compasses the definitions regarding the BPO con-
cept is created. On that level, the generic Resource
and Organisational Ontologies developed in the EU
project InteliGrid (Dolenc et al. 2007) have been
considered as well. The Resource Ontology is dedi-
cated to the representation of all data resources
available in a distributed project environment (files,
documents, product models, product model views
etc.), and the Organisational Ontology defines the
concepts related to the structuring of a virtual project
organisation (VO), i.e. the VO actors, persons, or-
ganisations and roles, together with the respective
access control and authorisation constraints.

On the basis of these generic definitions, in the
second stage the ontologies for a specific process
type are created. In our case, this is the “Defect

Management” process. The BPO Ontology that spe-
cialises the BPO/EPC concepts and a Defect Ontol-
ogy that describes the data for the defects itself via
specialisation/extension of concepts from the Re-
source and Organisational Ontologies are defined
here. In the BPO Ontology the idealised reference
EPC for Defect Management is formalised as well.

The Defect Ontology contains the defect data of
the involved project partners and provides a harmo-
nised view on the distributed stored data. This en-
ables purposeful and safe data handling by means of
a set of implemented ontology-based services.

In the third stage, at run-time, the BPOs for a
concrete process have to be instantiated and refer-
enced with the run-time data corresponding to the
data specification for a process. This means that the
EPC for Defect Management will be instantiated
multiple (up to several thousand) times for all actual
defect cases in a specific construction project. The
instances of these defects, i.e. the defect data, are
maintained by the respective project partners accord-
ing to their responsibilities and access rights but are
inter-linked and referenced via the Defect ontology.

3.1 Process Ontology
The Process Ontology plays a leading role in the
whole ontology framework. It contains such con-
cepts as BPO, EPC, Function, Event and partially re-
flects the ARIS-methodology, thereby enabling the
direct modelling (or mapping) of business processes
in DL. It provides the description of an abstract EPC
or an abstract fragment of an EPC (Business Process
Pattern) and is also the basis for developing domain-
specific BPO ontologies.

The main concepts of the Process Ontology are
Function (Figure 5) and BPO (Figure 6).

Figure 5. The concept Function of the Process Ontology

The relations assigned to the Function concept
comprise hasSystem, inBPO, hasOrganisation,
hasObject, hasAction, hasResource, as well as
various flow relations like hasBeforeFunction,

hasAfterFunction, hasBeforeEvent, hasAfterEvent,
hasBeforeConnector, hasAfterConnector etc.

A BPO has also assigned Resources, start and end
events (StartsWith Event, EndsWith Event), con-
text data to facilitate search capabilities (hasContext)
and, eventually, an EPC to which it has been at-
tached (inEPC EPC). Moreover, it contains a link
to Organisation thereby identifying the person(s) re-
sponsible for its execution.

Figure 6. The concept BPO of the Process Ontology

A detailed example of a concrete EPC with con-
crete BPOs is given in Section 3.2 below.

3.2 BPO Ontology for Defect Management
As already mentioned, the purpose of a BPO Ontol-
ogy is to represent a domain-specific target area,
thereby subsuming as appropriate the high-level
concepts of the Process Ontology. In our case this
area is Defect Management. The main goal is to rep-
resent the reference EPC from which real project
cases can be instantiated later by means of transfor-
mation and adaptation rules using modularised
building blocks, the reusable BPOs.

As a first step in the ontology specification, the
modularisation of the EPC is carried out applying
the criteria listed in Section 2.3. In a second step, the
actual formalisation of the BPOs in OWL is per-
formed. This is illustrated below in DL-syntax on
the example of the relatively simple BPO5.1 from
the developed BPO Ontology for Defect Manage-
ment (Figure 7).

Figure 7. BPO5.1 „Defect processing if not part of contract“

The defined concepts for this example are:
Is_not_part_of_contract ⊆ InternEvent
Rejection_passed_further ⊆ InternEvent
Defect_not_eliminated ⊆ EndEvent
Reject_defect ⊆ Function
Prep_legal_explanation ⊆ Function
General_Contractor ⊆ Organisation
BPO5.1 ⊆ BPO
DMS_GC : System.

The concept assertions are:
Is_not_part_of_contract (Is_not_part_of_contract)
Rejection_passed_further (Rejection_passed_further)
Defect_not_eliminated (Defect_not_eliminated)
Reject_defect (Reject_defect)
Prep_legal_explanation (Prep_legal_explanation)
General_Contractor (General_Contractor)
BPO5.1 (BPO5.1)
DMS_GC (DMS_GC)
EPC (EPC)
Context (Contract)
Action (prepare)
Action (reject)
Object (Legal_explanation)
Object (Defect).

Finally, the role assertions are defined as follows:
hasName (EPC, „Defect management EPC“)
hasName (BPO5.1,
 „Defect procedure if not part of contract (GC)“)
hasName (Prep_legal_explanation, “54”)
hasName (Reject_defect, “24”)
hasEPC (BPO5.1, EPC)
hasSimilar (BPO5.1, BPO5.2)
hasOrganisation (BPO5.1, General_Contractor)
hasContext (BPO5.1, Contract)
StartsWithEvent (BPO5.1, Is_not_part_of_contract)
EndsWithEvent (BPO5.1, Rejection_passed_further)
EndsWithEvent (BPO5.1, Defect_not_eliminated)
hasBPO (Prep_legal_explanation, BPO5.1)
hasBPO (Reject_defect, BPO5.1)
hasAction (Prep_legal_explanation, prepare)
hasAction (Reject_defect, reject)
hasObject (Prep_legal_explanation, Legal_explanation)
hasObject (Reject_defect, Defect)
hasSystem (Reject_defect, DMS_GC)
hasAfterConnector (Is_not_part_of_contract, OR)
hasAfterFunction (Is_not_part_of_contract,
 Prep_legal_explanation)
hasAfterFunction (Is_not_part_of_contract,
 Reject_defect)
hasBeforeFunction (Rejection_passed_further,
 Reject_defect)
hasBeforeFunction (Defect_not_eliminated,
 Prep_legal_explanation).

The full set of the identified 11 BPOs modularis-
ing 57 individual reference process functions is
shown in (Rybenko & Katranuschkov 2009).

The representation of the BPOs in DL provides
all the necessary (meta) information to enable auto-
mated real-time instantiation. For example, the func-
tion “Reject_defect” can be instantiated with the in-
dividual “Reject_defect_33” that will be correspond-
ingly represented in the ontology and inter-linked to
all required additional data (responsible person, de-
fect record, targeted receiver etc.) at run-time.

3.3 Resource Ontology
The Resource Ontology, originally developed in the
InteliGrid-project (Gehre et al. 2007) and appropri-
ately adopted here, targets the capturing of metadata
describing various types of resources that are stored
somewhere on a distributed project environment. It
contains information about any kind of resource
used in the environment but not the resource itself.
However, capturing resource metadata does not only
serve the purpose of establishing a central informa-
tion service that holds URI references to distributed
data. By annotating information resources with se-
mantic metadata, software programs can automati-
cally utilise the full context of what that information
means and can make correct decisions about who
may use the information and how. Also, in manag-
ing distributed digital resources the need for meta-
data that can support effective decision-making is
even greater than with traditional information re-
sources as there is less opportunity to recognise and
understand a problem by merely looking at the target
object. There is likely to be a much larger amount of
information material to be managed (e.g. various
multimedia data) so that management processes
need to be automated as much as possible, based on
easily interpreted rich metadata serving a broad
range of requirements.

The main concept in the Resource Ontology is
Resource. Figure 8 shows the subclass taxonomy be-
low that core concept, including all explicitly mod-
elled resources. As can be seen, the main distinction
of resource types is between ServiceResource and
InformationResource.

A further one-level specialisation of service re-
sources is done by defining Storage Services and
Processing Services. This classification is in line
with the BPO definitions that need a clear distinction
between the data provided by Storage Services and
the processing functionality performed by Process-
ing Services.

The InformationResource concept is specialised
to SingleInformationResource, ProductModel and
ComplexInformationResource.

SingleInformationResource is the main class for
traditional singular resources like files and database
entries, whereas ComplexInformationResource pro-
vides an abstract top-level class for a variety of
composite resources that are commonly used in AEC
projects. From the defined three subclasses of

SingleInformationResource it is anticipated that via
FileEntity the majority of resources in a project will
be captured. FileEntity is further subdivided to
StructuredFile and UnstructuredFile, thereby distin-

guishing between files that can be parsed or ana-
lysed automatically by some third-party software,
and files that provide non-structured data, as e.g. a
scanned fax.

Figure 8. Taxonomy of the Resource concept

A further classification of unstructured files for
organisational purposes is provided by means of a
ClassificationProfile which defines a domain-
specific classification mechanism that is also good
enough for project specific classifications. Devel-
oped as ontology extension of the original Resource
Ontology, instances of specific classification profiles
can be dynamically assigned to resources meeting
project specific requirements to the ordering of re-
sources. This proves to be particularly useful in de-
fect management for the classification of multi-
modal media data associated to defects.

Single Information Resources can be pulled to-
gether in a Complex Information Resource – a sim-
ple collection mechanism that allows defining clus-
ters of related resources. Complex Information Re-
sources do not define process-like inter-relationships
between the resources as defined in a Business Proc-
ess Object but they can be very useful as integrated
elements in a business process.

Another important concept of the Resource On-
tology, not shown on Figure 8, is ResourceProfile. It
provides a multi-facetted, wide ranging description
of a resource that does not conform to any particular
XML schema and has no particular single canonical
or authoritative profile for a given resource. This ap-
proach is related to the idea of the semantic web
with its highly distributed and heterogeneous pieces
of information stored with free access to everybody
and no guarantee of availability. However, for the
purpose of metadata gathering in specific project en-
vironments such an irregular architecture will have
serious problems with trust and quality of service.
Hence, the really important feature of the Resource
Profile concept is the treatment of the metadata of a
resource as a Learning Object (Downes 2004) that
gathers new information over time and from differ-
ent “authors”, serving different purposes, and de-
scribed using heterogeneous facets of standards.

Finally, the concept of AccessProfile deserves to
be mentioned. It enables separation of the resource
description itself from the methods used to access

the actual resource by different tools/systems. For
example, one and the same file can have an FTP and
a Web-DAV profile, thus providing different access
methods to the information to the different parties.

3.4 Organisational Ontology
The Organisational Ontology combines in a co-

herent way various organisational aspects that are
usually spread among different services, locations
and information authorities, and are seldom repre-
sented explicitly. It enables storing the necessary
management information into a single ontology stor-
age, at the same time leaving sensitive partner data
at place, guarded from unauthorised access. Its pur-
pose is in the first place to enable proper authentica-
tion, authorisation and access control with regard to
the management and the execution of BPOs, their re-
lated IT-services and the underlying resources. Ac-
cordingly, the Organisational Ontology is based on a
couple of accepted standards from which it adopts
essential concepts.

From the IFC standard developed by the IAI (IFC
2009), concept definitions are taken into account de-
scribing actor and project related information by
contact details and metadata. Some of these concepts
are shown on Figure 9 in their surrounding context.

Actor

OrganisationalEntity

Group

Organisation

Person

SoftwareActor

Role
hasActorRoleAssignment

Project

isInvolvedInProject hasInvolvedActor

isPartOf
hasPart

Address

ReifiedRelation

hasInternalRoleDefinition

hasBusinessAddress

hasBusinessAddress hasHomeAddress

is-a is-a

is-a

hasRoleActorAssignment

relatesTo

hasRelatedOrganisationalEntity

Figure 9. The Actor concept of the Organisational Ontology
with its major inter-relationships

The adopted IFC definitions are in line with other
standards describing these or similar concepts, such
as CIM or GAEB. Therefore, information exchange
with other systems should be possible without com-
plex mappings.

Authorization aspects of the Organisational On-
tology that are absent in IFC are modelled on the
basis of adopted top-level concepts from the RBAC
standard (Ferraiolo et al. 2001), as illustrated in
Figure 10 below. The large amount of rules defined
in RBAC is not modelled directly, since the Organ-
isational Ontology is not used for dedicated man-
agement of access constraints. However, as not all
information managed by an Ontology Service can
be provided to each actor in a distributed environ-
ment, access information handled by an Authoriza-
tion Service can be translated partially and stored in
the RBAC related concepts of the Organisational
Ontology. This information can then be used for re-
stricting requests to any other ontology-based ser-
vice. A difference to the original RBAC approach
is the reuse of the Actor concept that replaces the
simpler RBAC concept User. The Organisational
Ontology has to serve a wider range of information
requirements than RBAC; therefore the more so-
phisticated Actor concept outlined in Figure 9 needs
to be applied. From Figure 10 it becomes clear that
the Role concept is central to this approach. Per-
missions are granted to roles and actors can be dy-
namically linked to roles, with the additional possi-
bility to define sessions in which a specific Actor-
Role assignment is valid.

Actor

hasActorRoleAssignment

hasRoleActorAssignment

Permission

hasPermission
RoleAssignment

hasRolePermission
RoleAssignment

ObjectPermission

OperationPermissionSession

hasActorSession
Assignment

hasRoleSession
Assignment

hasSessionRole
Assignment

Role

is-a is-a

Figure 10. The principal concepts and inter-relationships in the
Organisational Ontology providing RBAC support

Beside a number of data type properties, there are
also object properties that relate Actors to Roles and
Projects, as well as to the OrganisationalEntity ag-
gregation concept and its subclasses, respectively.

3.5 Defect Ontology
Having constructed the Resource and Organisational
Ontologies on the high level, development of a
Defect Ontology enabling harmonised exchange and
sharing of defect related data is a straight-forward
task. The primary purpose of this ontology is to de-
scribe all necessary data regarding any project defect
in such a way that distributed storage of the data and
observation of public/private access to this data are
warranted, whilst at the same time all common data

can be coherently used by all affected parties in the
defect management process. Therefore, beside spe-
cialisation of concepts of the Resource Ontology re-
flecting defect-specific information items such as
DefectType, ContractType, MediaData, ActiviyZone,
Location etc., concepts of the Organisational Ontol-
ogy regarding the RBAC approach are adopted as
well. These include Partner (as specialisation of
OrganisationalEntity), Role etc. Here there are three
principal actor roles involved: Owner, General Con-
tractor (GC) and Subcontractor (SC). However,
these roles can be easily further sub-classed if neces-
sary. Defect itself is a typical Complex Information
Resource as it may be associated to multi-modal in-
formation – database records and/or textual descrip-
tions, drawings, photos, videos, audio recordings etc.
(Figure 11).

Figure 11. The Defect concept of the Defect Ontology with its
major properties and inter-relationships

Exchange of defect data using the Defect Ontol-
ogy is done via structured XML files or messages,
based on a developed publicly available XML
Schema specification published on the Internet (cf.
http://www.bauvogrid.de/mangel/MangelSchema).

According to that schema, separate Defect Re-
cords or sets of such records can be exchanged or
accessed on a project repository. The simplified ex-
ample of a Defect Record provided below illustrates
the outlined technique.

XML Defect Record Example:
<?xml version="1.0" encoding="UTF-8"?>
<DefectRecord>
<ID>81f7768d-199d-4b72-949e7</ID>
<ActiveRoles>

<Partner ID="ID_2" Role="SubContractor"/>
<Partner ID="ID_1" Role="Contractor"/>

</ActiveRoles>
<Keywords>

<User_defined> Wall cracks
</User_defined>

</Keywords>
<Remark> Updated </Remark>
<MediaData>IMAGE_00001.jpg</MediaData>
<DefectType>Optical defect</DefectType>
<DefectCause>unknown</DefectCause>
...

...
<Location>Berlin</Location>
<ContractType>Lump Sum</ContractType>
<Priority>1ow</Priority>
<Date>2009-02-13T09:30:47</Date>
<Deadline>2009-02-14</Deadline>
<Value Currency=”EUR”> 199.99
</Value>
<Status>open</Status>
...
<PartnerRecord>

<Partner IDREF="ID_2"/>
<PartnerData>

<Defect_NR>0815a</Defect_NR>
<ResponsibleForDefect>

SPINNLER GmbH
</ResponsibleForDefect>
<Informer>

Euro-Trans GmbH & Co.
</Informer>
<Operator>

Import Export GbR
</Operator>
<Controller>Mustermann</Controller>
<StartDate>2009-02-13T09:30:47
</StartDate>
<FinishDate>2009-02-13T10:30:47
</FinishDate>
...

</PartnerData>
</PartnerRecord>
<PartnerRecord>

<Partner IDREF="ID_1"/>
<PartnerData>
...
</PartnerData>

</PartnerRecord>
</DefectRecord>

As it can be seen, the role-based concept is used
in the Defect Record in straight-forward manner via
the <PartnerRecord> sections. All partners having
to do with a certain defect are thereby specified with
their active roles and are assigned their partner-
specific data. However, as all the services providing
access to Defect Records should observe the Role-
Actor assignments made in a project, visible to each
partner will be only the data partitions with respec-
tively granted access rights. Hence, only as much as
necessary information for each dynamically assigned
defect management task will be made available.
Private data stored locally can thereby be accessed
via a 1:1 mapping of the defect’s ID and the corre-
sponding local PartnerID.

4 DEFECT MANAGEMENT SUPPORT USING
THE DEVELOPED ONTOLOGIES

The described ontology framework for dynamic
process support is freely accessible via the Internet
at http://www.bauvogrid.de/ontologies/. It is avail-

able to any IT services, systems and tools that may
use it on generic level, by providing their own do-
main-specific extensions, or, as in the case of the
BauVOGrid project, specifically for the needs of
Defect Management – the major targeted application
scenario.

Indeed, defect management in any AEC project
appears to be a rather complex process. Whilst the
established idealised reference EPC for the treatment
of one particular defect contains “only” 57 functions
of which only some may have to be appropriately
adapted and executed, there occur thousands of de-
fects during construction that must be handled in
parallel. According to industry experience, in a large
project up to 50000 EPCs regarding defect and asso-
ciated media data need to be managed, and 10000 to
15000 defects are rather typical. Such large numbers
and the often highly complex contractor – subcon-
tractor relationships emphasise the need of efficient
and robust process-centred IT support.

In BauVOGrid, a number of Grid/Web Services
and tools largely based on the described ontology
framework are being developed to answer that need.
These include:
− A set of Basic Ontology Services providing vari-

ous support functions to the other, more applica-
tion oriented services and tools

− A Central Defect Management Service and a
Central Media Data Management Service that
bring about the integration of existing, proprietary
defect management systems via a range of query,
processing, search and filter functions, thereby
enabling owner – contractor – subcontractor co-
operation

− Mobile Services for local positioning, RFID-
based defect identification, barcode generation
and automatic barcode recognition in ePhotos for
dynamically assigning media and defect data

− A Process Toolbox for flexible, dynamic assem-
bly of complex process chains on the basis of the
ARIS methodology and the developed BPOs

− Further development of the Grid Workflow Exe-
cution Service, originally developed for the
Fraunhofer Resource Grid and the EU project
K-Wf Grid, for transferring business processes in
executable workflows – see (Hoheisel 2008) and
http://www.gridworkflow.org/kwfgrid/gwes/docs/.
At the time of this writing BauVOGrid is entering

its final development phase. In a selected practice-
relevant pilot project it will demonstrate how the de-
veloped services can be used to integrate three sepa-
rate, proprietary defect management systems – in a
secure VO network and in an efficient, process-
oriented manner. It will also demonstrate how these
systems can be expanded with further simulation and
presentation tools. This is expected to highlight per-
suasive, new business perspectives for the construc-
tion industry and software providers.

5 CONCLUSIONS

In this paper, an approach for improved process
management in construction on the basis of a well-
defined system of ontologies was presented. To fo-
cus the research, to provide proof of concept and to
achieve short-term practical exploitable results, the
area of defect management has been addressed in all
domain-specific considerations.

Formalisation of the defect management proc-
esses in ontologies and the use of these ontologies in
a typical distributed IT environment with many
heterogeneous resources appeared to have multiple
advantages with regard to flexibility, interoperability
and effective process management. Furthermore, by
translating EPCs into Description Logics, introduc-
ing the concept of Business Process Objects and
coupling these with resources, services and respon-
sibilities, more robust and better formalised treat-
ment of the ARIS methodology as well as dynamic
process support, not available per se in ARIS, could
be achieved.

Whilst more experimentation and real practice
studies would definitely help to refine and improve
the developed ontologies and their use in the area of
defect management, an even more important future
task is the application of the approach in other do-
main areas – to provide evidence of its wider appli-
cability. This is intended in the large German inte-
grated project MEFISTO inaugurated in mid 2009
that will be dealing with various complex manage-
ment, controlling, simulation and decision-making
tasks.

ACKNOWLEDGEMENTS

The concepts presented in this paper have been de-
veloped in the frames of the EU project InteliGrid,
funded partially by the European Commission, and
the German BauVOGrid project, funded partially by
the German Ministry of Education and Research
(BMBF). Their support and the support of the indus-
try partners in these projects are herewith gratefully
acknowledged.

REFERENCES

Baader F., Calvanese D., McGuiness D., Nardi D. & Patel-
Schneider P. F. /eds./ 2003. Description Logic Handbook:
Theory, Implementations, and Applications, Cambridge
Univ. Press, ISBN 978-0521876254.

BauVOGrid 2009. Project Description, www.bauvogrid.de
Dolenc M., Katranuschkov P., Gehre A., Kurowski K. & Turk Z.

2007. The InteliGrid Platform for Virtual Organisations In-
teroperability, ITcon, Vol. 12/2007, pp. 459-477.

Downes S. 2004. Resource Profiles. Journal of Interactive Me-
dia in Education, 2004(5). Special Issue on the Educational
Semantic Web. ISSN:1365-893X.

Ferraiolo D. F., Sandhu R., Gavrila S., Kuhn R. & Chandramouli
R. 2001. Proposed NIST Standard for Role-Based Access
Control, ACM Transactions on Information and System Se-
curity 4(3), pp. 227-274.

Gehre A., Katranuschkov P. & Scherer R. J. 2007. Managing
Virtual Organisation Processes by Semantic Web Ontologies.
In: Rebolj D. /ed./, Proc. CIB 24th W78 Conference Maribor
“Bringing ITC knowledge to work”, Univ. Library Maribor,
ISBN 978-961-248-033-2, pp. 177-182.

Hoheisel A. 2008. Grid-Workflow-Management. In: Weisbe-
cker A., Pfreundt F.-J., Linden J. & Unger S. /eds./ „Fraun-
hofer Enterprise Grids – Software“, Fraunhofer IRB Ver-
lag, Stuttgart, ISBN 978-3-8167-7804-2.

IFC 2009. Industry Foundation Classes, © International Alliance
for Interoperability, http://www.iai-international.org

Katranuschkov P., Gehre A., Keller M., Schapke S.-E. & Sche-
rer, R. J. 2006. Ontology-Based Reusable Process Patterns
for Collaborative Work Environments in the Construction
Industry, in: P. Cunningham and M. Cunningham /eds./
“Exploiting the Knowledge Economy”, IOS Press, ISBN
1-58603-682-3, pp. 1055-1063.

Keller M. 2007. Informationstechnisch unterstützte Kooperation
bei Bauprojekten (IT Supported Co-operation in Construc-
tion Projects; in German), Dissertation, Report No. 6, Insti-
tute of Construction Informatics, TU Dresden, 175 p.

Rybenko K. & Katranuschkov, P. 2009. BauVOGrid-Bericht
A-3.1 Ontologiespezifikation. (BauVOGrid Report A-3.1
“Ontology Specification”: in German), TU Dresden, 67 p.

Scherer R. J., Katranuschkov P. & Rybenko, K. 2008. Descrip-
tion Logic Based Collaborative Process Management. In:
Rafiq Y., de Wilde P. & Borthwick M. /eds./ “ICE08 – Pro-
ceedings of the 15th Workshop of the European Group for
Intelligent Computing in Engineering (EG-ICE)”, Plymouth,
UK, 2008, ISBN 978-1-84102-191-1, pp. 291-302.

Sheer A.-W. 2000. ARIS - Business Process Modeling, Springer,
ISBN 978-3540658351, 218 p.

W3C 2004. OWL Web Ontology Language Reference. W3C
Recommendation, 10.02.04, http://www.w3.org/2004/OWL/

W3C 2004b. XML Schema Second Edition, Parts 0-2, W3C Rec-
ommendation, 28.10.2004, cf. http://www.w3.org/TR/

