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EVALUATING RELIABILITY OF MULTIPLE-MODEL SYSTEM IDENTIFICATION 

Suraj Ravindran, Prakash Kripakaran, Ian F.C. Smith 
IMAC, Struct. Eng. Inst., Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland 

ABSTRACT: This paper builds upon previous work by providing a statistical basis for multiple-model system identifica-
tion. Multiple model system identification is useful because many models representing different sets of modeling as-
sumptions may fit the measurements. The presence of errors in modeling and measurement increases the number of 
possible models. Modeling error depends on inaccuracies in (i) the numerical model, (ii) parameter values (constants) 
and (iii) boundary conditions. On-site measurement errors are dependent on the sensor type and installation condi-
tions. Understanding errors is essential for generating the set of candidate models that predict measurement data. Pre-
vious work assumed an upper bound for absolute values of composite errors. In this paper, both modeling and meas-
urement errors are characterized as random variables that follow probability distributions. Given error distributions, a 
new method to evaluate the reliability of identification is proposed. The new method defines thresholds at each meas-
urement location. The threshold value pairs at measurement locations are dependent on the required reliability, char-
acteristics of sensors used and modeling errors. A model is classified as a candidate model if the difference between 
prediction and measurement at each location is between the designated threshold values. A timber beam simulation is 
used as example to illustrate the new methodology. Generation of candidate models using the new objective function is 
demonstrated. Results show that the proposed methodology allows engineers to statistically evaluate the performance 
of system identification.  
KEYWORDS: system identification, multiple models, error characterization, reliability, measurements, model predic-
tion. 
 
 
1 INTRODUCTION 

System identification involves determining the state of a 
system and values of system parameters through compari-
sons of predictions with observed responses (Ljung, 
1999). When applied to structural engineering, this is 
equivalent to finding the parameter values for models that 
may represent the behavior of a given structure.  
Conventional system identification strategies, such as 
model updating, use optimization methods with measured 
data to calibrate a mathematical model of a structure that 
is often based on the model used for design. Model updat-
ing in structural engineering may be performed using vi-
bration measurements or using static responses. Friswell 
and Mottershead (1995) provide a survey of model updat-
ing procedures using vibration measurements. Recent 
papers published in this area include Jaishi and Ren 
(2005), Xia and Brownjohn (2004), Brownjohn et al 
(2003) and Koh et al (2003). Compared with the amount 
of research in dynamic systems, only a few workers have 
focused on static systems. Research into model updating 
using static measurements include work by Sanayei et al 
(2005), Banan et al. (2004a, 2004b) and Sanayei et al. 
(1999). 
Although conservative design models result in safe and 
serviceable structures, they are usually not appropriate for 
interpreting measurements from structures in service 

(Smith et al., 2006). Moreover, since system identification 
is an intrinsically abductive task, there may be many 
models that fit observed measurements (Robert-Nicoud et 
al., 2005a, 2005c). A multiple model approach to system 
identification in which each model represents different 
sets of assumptions is capable of incorporating large 
numbers of modeling possibilities.  
Errors play a major role in the system identification proc-
ess. Errors from different sources may compensate each 
other such that predictions of bad models match meas-
urements (Robert-Nicoud et al., 2005a; Mahadevan and 
Rebba, 2006). Modeling and measurement errors have 
been investigated in previous research. Banan et al. 
(1994b) stated that the selection of an appropriate model 
is difficult; it is problem-dependent, and usually requires 
the intuition and judgment of an expert in modeling. For 
example, mathematical models may not be able to exactly 
capture variations in cross-sectional properties, existing 
deformations, residual stresses, stress concentrations and 
variations in connection stiffness. Sanayei et al. (1997) 
and Arya and Sanayei (1999) emphasized that errors in 
parameter estimates may arise from many sources, the 
most significant of which are measurement errors and 
modeling errors. Measurement errors can result from 
equipment as well as on-site installation faults (Sanayei et 
al., 1997). A statistical evaluation of the performance of a 
system identification methodology must account for mod-
eling and measurement errors.  



Raphael and Smith (1998) introduced the strategy of gen-
eration and iterative filtering of candidate multiple mod-
els. Robert-Nicoud et al. (2005a) adopted this strategy 
and proposed a multiple-model identification methodol-
ogy based on compositional modeling and stochastic 
global search. Stochastic search was used to generate a set 
of candidate models. The objective function for the search 
was defined to be the root-mean-square of the difference 
between measured values and model predictions (RMSE). 
When the RMSE value was less than a certain threshold 
value, the model was classified as a candidate model. The 
threshold was evaluated by assuming reasonable values 
for modeling and measurement errors through reference 
to previous studies in finite element analysis and sensor 
precision. A model involving the right set of assumptions 
and correct values of parameters has a cost function value 
that is less than or equal to this threshold when errors due 
to mathematical modeling and measurement are equal to 
estimated maximum values. A limitation of this study is 
that the threshold value is not qualitatively associated 
with the reliability of identification.  
In this paper, a novel method of evaluating candidate 
models that accounts for the reliability of identification is 
proposed. Random variables are introduced for the errors 
in modeling and measurements. A new objective function 
is introduced for the stochastic search. The new form of 
the function uses threshold values at each measurement 
location. These threshold values are determined through 
reference to the required reliability of identification and 
probability distributions of errors. These methods are il-
lustrated for a timber beam. The paper describes the 
methodology of generating candidate models, followed by 
a section that treats errors in system identification and the 
formulation of a new objective function and concludes 
with the results and suggestions for future work. 
 
 
2 METHODOLOGY 

The framework of multiple-model system identification 
research at EPFL is shown in Figure 1. At the beginning, 
modeling hypotheses lead to a number of possible models 
using measurements from the structure. The model gen-
eration module compares measurements with predictions 
to identify a set of candidate models. A stochastic global 
search algorithm called PGSL (Raphael and Smith, 
2003b) is used for optimization. A feature extraction 
module extracts characteristics of these models. 
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Figure 1. Framework of multiple-model system identification 
research at EPFL (ongoing work highlighted). 

Data mining techniques are used to cluster models (Saitta 
et al., 2005). Ongoing research includes error estimation 
for better system identification, improving the measure-
ment system design and developing appropriate engineer-
computer interaction. The highlighted areas are focal 
points of current research. 
The methodology used to generate a set of candidate 
models is illustrated in Figure 2. Users input measurement 
data and specify a set of modeling assumptions. Model 
parameters and their permitted range of values are set a 
priori. Structural models are generated by stochastic sam-
pling in a model space that consists of all combinations of 
acceptable parameter values. At each instance of model 
selection from the population of models, the structure is 
modeled as a finite element model, and its predictions are 
obtained. Responses from each model are compared with 
measurements in order to ascertain if the model is a can-
didate model. A candidate model is one that has predic-
tions congruent with measured behavior. PGSL uses an 
objective function to determine if a model is a candidate 
model. The objective function is the distance metric used 
to differentiate candidate models from other models. 
Once a sufficient number of models have been sampled, a 
set of candidate models is available for subsequent analy-
sis. 

 
Figure 2. Methodology used for generating a set of candidate 
models. 
 
This paper examines the reliability of system identifica-
tion. A reliability of 100% requires that the following 
three conditions are met: all possible models are consid-
ered in the set of models; there are sufficient measure-
ment data to filter out wrong models and; all errors are 
zero. 



Fulfilling these three conditions completely is never fea-
sible. However, for the purposes of this paper, it is as-
sumed that the first two conditions are met. Many struc-
tures can be evaluated using the assumption that through 
use of good stochastic search algorithms and high toler-
ance limits all possible models are generated. The second 
condition requires the assumption that enough measure-
ment data is available to filter out wrong models. Since a 
goal of this research is to determine systematically the 
best path to fulfillment of this condition, it is assumed that 
this goal is reached. 
Estimating the reliability of structural identification, as 
discussed in this paper, involves calculation of a threshold 
range of errors given a statistical tolerance limit. When 
the assumptions discussed above are not possible, evalua-
tions of reliability that are described in this paper provide 
upper-bound values. In the following section, errors that 
affect the reliability of identification are discussed. 
 
 
3 ERRORS IN SYSTEM IDENTIFICATION 

The following discussion is drawn from previous work at 
EPFL (Robert-Nicoud et al., 2000, 2005a, 2005c). Error 
definitions are used unchanged in this research. 
 
3.1 Modeling errors 

Modeling error ( ) is the difference between the pre-
dicted response of a given model and that of an ideal 
model that accurately represents behavior. Modeling error 
propagation is graphically depicted in Figure 3. Modeling 
error has three constituents – , , and  (Raphael 

and Smith, 2003a). The component  is the error due to 
discrepancy between the behavior of the mathematical 
model and that of the real structure. Component  is 
introduced during numerical computation of the solution 
of partial differential equations. Component  is the 
error arising from inaccurate assumptions made during 
simulation. Such a definition of modeling errors by sub-
dividing it into sources is similar to the delineation of 
errors in physical system modeling (Mahadevan and 
Rebba, 2006). 

mode

1e 2e 3e

1e

2e

3e
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Component  is further separated into two parts –  

and . The error part, , arises from assumptions 
made when using the model (typically assumptions re-
lated to boundary conditions such as support characteris-
tics and connection stiffness). The error part, , arises 
from errors in values of model parameters such as mo-
ment of inertia and Young’s modulus. While it might be 
impossible to separate the components in practice, it is 
still important to distinguish between these errors since 
the only error source that is usually recognized by tradi-
tional model calibration techniques is . 

3e 3ae

3be 3ae

3be

3be
 
 

 

1e : During creation of mathematical models of real structures 

: While representing mathematical models using numerical 
models 

: While simulating numerical models on computers 

2e

3e
Figure 3. Errors in computational mechanics simulations. 
 
3.2 Measurement errors 

Measurement error ( ) is the difference between the 
real and measured quantities in a single measurement. 
Measurement errors result from equipment as well as on-
site installation faults (Sanayei et al., 1997). In addition to 
sensor precision values reported by manufacturers, the 
stability and robustness (for example, with respect to 
temperature), and the effects of location characteristics 
(for example, connection losses) also account for meas-
urement error. While it is tempting to quantify measure-
ment error as a sum of individual sources, it is more rea-
sonable to quantify them probabilistically using sensor 
precision and on-site information obtained during sensor 
installation. 

mease

 
3.3 Previous objective function 

The model generation task requires an objective function 
that accounts for the errors to generate a set of candidate 
models. In Robert-Nicoud et al. (2005a), the objective 
function is formulated as follows. If ax  is the real value 

of a behavior quantity such as deflection, measx  is the 

measured value and cx  is the value computed using a 
model, the following relationships have been obtained for 
a single measurement. 

a meas measx x e= +

a c

      (1) 

x 1 2 3x e e e= + + +       (2) 

Model calibration procedures minimize the absolute value 
of the difference between measx  and cx . The difference 

between measx  and cx  is known as the residue . Rear-
ranging the terms in Equations 1 and 2, 

q

1 2 3meas c measq x x e e e e= − = + + −    (3) 

Thus, model calibration techniques minimize the quantity 
( 1 2 3 mease e e e+ + − ).This is equivalent to inaccurately 
assuming that this quantity is always zero. The objective 
function that is minimized during the optimization routine 
is the root-mean-square composite error (RMSE) which 
was calculated as 



RMSE = 
2

iq
n

∑
 

   (4) 

where , ,i ci i measq x x= −  = difference between the value 

measured at the ith measurement point and the predicted 
value computed using the model. Any model that gives an 
RMSE value less than a threshold value is considered to 
be a candidate model. The threshold is computed using an 
approximate estimate of modeling and measurement er-
rors. From Eqn. 3, since errors could be positive or nega-
tive 

1 2 3c meas meaq x x e e e e≤ + ≤ + + + s   (5) 
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≤q  Threshold    (6) = +est est
mod mease e

est
mode  and  are estimates of the upper bound for 

modeling errors and measurement errors respec-

tively. For quantifying threshold,  has been assumed 
to have a value of ±4% (from finite element simulations) 
and  was taken to be the precision of the sensor 
(Robert-Nicoud et al., 2005a). 

est
mease

est
mease

est
mode

est
mease

 
 
4 NEW OBJECTIVE FUNCTION 

The formulation described in the previous section for 
evaluating candidate models is improved by combining 
errors using statistical methods. Modeling error  is dif-
ficult to quantify. It is problem dependent and can be 
minimized using modeling expertise (Banan et al., 
1994b). Assuming an ideal situation, . The other 
errors can be modeled probabilistically.  

1 0e =

Consider i
measx  as the measured value at the ith measure-

ment location and  as the measurement error at that 

location. Similarly, 

i
mease

i
predx  is the predicted value at the ith 

measurement location and ( e e ) is the 
total modeling error. In the absence of errors, predictions 
from a candidate model exactly match the measurements. 
Since errors are present, this is represented in mathemati-
cal terms as,  

1 2 3d e= +i
pre e +

i i i i
meas meas pred predx e x e+ = +    (7) 

Δ = − = −i i i i i
meas pred pred measx x x e e   (8) 

Modeling error is defined by a variable  that follows 

a probability distribution with mean 
prede

predμ  and standard 

deviation predσ  and measurement error is defined by a 

variable  that follows a probability distribution with 

mean 
mease

measμ  and standard deviation measσ . Assume that 

the probability distribution for  remains the same for 
one modeling problem. However, this may depend on 

element types and in reality, for a complex structure with 
different element types, the distribution for  could be 
different at each location. Since values of measurement 
error depend on sensor type and location characteristics, 
the distribution for  changes for each measurement 
location. Many quantities of engineering interest that are 
not extreme loads generally follow the normal distribution 
(Jordan, 2005). Assuming both probability distributions to 
be Gaussian distributions, the combined error is defined 
by a variable 

prede

mease

mease

Z  with mean zμ  and standard deviation 

zσ , such that  

z pred measμ = μ μ−     (9) 

22
measpredz σσ +=σ     (10) 

Following from Eqn. (9), the threshold values for a cer-
tain reliability of identification are given by 

( )1 2
i i i i

meas predr x x r≤ − ≤    (11) 

such that 

( )1 2
i i

reqdP r Z r p≤ ≤ =     (12) 

1 μ= −zr c  and 2 μ= +zr c    (13) 

where c is the value that is determined from the required 
statistical tolerance limit, . reqdp

The function, if , is defined as 

( )
( )

1 2
2

1 1

2

2 2

0 i i

i i i i
i

i i i i

if r x r

f x r if x r

x r if x r

⎧ i≤ Δ ≤⎪
⎪= Δ − Δ <⎨
⎪
⎪ Δ − Δ >⎩

  (14) 

where superscript i refers to the ith measurement location.  

The significance of if  is that the difference between 
measurement and prediction at each measurement loca-
tion is compared with the corresponding threshold value. 
A model is a candidate model only if it satisfies condition 

0if =  at each measurement location, i.e., the difference 
is within the specified threshold for every single meas-
urement location. This requirement is encapsulated in a 
new objective function as follows  

1

0
n

ifE
n

= =∑     (15) 

The new objective function E in Equation 15 is employed 
for the case study in the next section. Equation 15 could 
be considered to be a form of the classical error function 
that is employed for curve fitting since it includes values 
of errors at each measurement location and provides a 
probabilistic basis for the reliability of candidate models. 
 
 
5 ILLUSTRATION 



Timber Beam Case Study 
Robert-Nicoud et al. (2005a) tested a timber beam in the 
laboratory using a multiple model approach (Figure 4). 
The same case study is simulated in this paper. A mathe-
matical model of the timber beam is created by discretiz-
ing it into 33 elements each of length 0.1 m. The spring 
support is modeled using two elements. Position and 
magnitude of the load and the elastic constant of the 
spring are treated as unknown variables. Minimum and 
maximum values for these variables are provided as input 
to system identification. Three sensors measurements are 
simulated. Models are randomly generated such that each 
model parameter has values within bounds specified by 
engineers. Each model in the set of candidate models has 
an equal probability of representing true structural behav-
ior. The methodology for generating candidate models is 
as outlined in Section 2.  

 
Figure 4. Schema of experimental timber beam (used in the case 
study). 
 
The input values and input ranges of unknown variables 
are shown in Table 1. Results are also analyzed using 
Principal Component Analysis (PCA). Three model pa-
rameters are used as data for PCA. These are transformed 
to the space defined by two principal components and the 
results are then clustered following Saitta et al. (2005). 

Table 1: Material properties of case study structure and ranges 
of variables used in system identification 

 
 
 
6 RESULTS 

In this study, 24000 models are randomly sampled. In 
keeping with the requirements stated earlier, it is assumed 
that all possible models are generated and that there are 
enough measurement data to filter out wrong models. One 
type of sensor is used. The values that are used to charac-
terize random variables pertaining to modeling error and 
measurement error are given in Table 2. Two cases of 
composite error having a tolerance limit of 50% and 95% 
are used. The number of models generated in each case is 
listed in Table 3. 

Table 2. Characterization of error variables used. 

 
 

Table 3. Number of candidate models obtained. 

 
 
It can be seen that higher tolerance limits have greater 
numbers of candidate models. Data mining is performed 
to extract information from the set of candidate models in 
both the cases (Saitta et al., 2005). Principal components 
are plotted in Figures 5(a) and 5(b). Figure 5(a) shows, in 
PCA space, the candidate models obtained in the case 
with 50% tolerance limits and Figure 5(b) shows that 
there are a greater number of candidate models discovered 
in the case with 95% tolerance limits. These plots support 
the postulate that insufficient tolerance limits may result 
in potentially important candidate models not being iden-
tified. The parallel line type clusters with free space be-
tween groups misleadingly point to a correlation between 
certain variables. This is due to the fact that the variable X 
takes discrete values only. 

 
Figure 5a. Clusters visualized using Principal Component 
Analysis (at tolerance limit of 50%). 
 

 
Figure 5b. Clusters visualized using Principal Component 
Analysis (at tolerance limit of 95%). 
The additional candidate models in the second case (toler-
ance limit 95%) are those that are not identified when the 
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tolerance limit is 50%). Results show that it is useful to 
include error characterization in the objective function in 
order to identify candidate models within model genera-
tion module (Figure 2). 
The previous objective function (Section 3.3) did not in-
clude statistical reasoning for choosing threshold values. 
Therefore, a threshold value is chosen without estimating 
the risk of losing potential candidate models. To illustrate 
this, consider Table 4, which gives the parameter values 
for the case study model and four of the candidate models 
obtained. Model 1 is a candidate model that is identified 
when the statistical tolerance limit is set to 95%. How-
ever, it was ignored when the statistical tolerance limit is 
50%. The proposed method enables the selection of a 
error threshold according to the level of confidence re-
quired in the identification process. 
Table 4. Description of four candidate models. 

 
 
Table 4 also illustrates that errors from different sources 
may compensate each other such that predictions of bad 
models match measurements. Model 1 is the right candi-
date model since it is very close to the case study struc-
ture. However, models 3 and 4 are among other candidate 
models that are identified. Depending upon the error val-
ues, either one of these models could have been adopted 
as the right model if one was to simply minimize the error 
difference. While the candidate model set includes bad 
models these can be filtered through further measure-
ments. 
 
 
7 CONCLUSIONS 

Conclusions of this research are: 
- An explicit statistical formulation of the objective 

function provides a useful basis for identifying candi-
date model sets. 

- Since various types of errors may compensate one an-
other, it is risky to accept model predictions based on 
comparisons that assume no errors. When error char-
acteristics are known, including high tolerance limits 
expands the set of candidate models. Probabilistic 
characterizations of errors ensure an estimate of the 
reliability that the candidate model set includes the 
correct model.  

Future work involves experimental error quantification 
using full scale studies. Experiments in controlled envi-
ronments are required to estimate probability density 
functions for measurement and modeling errors. Subse-
quent tasks in multiple-model system identification in-
clude data mining in order to classify them into clusters 

and engineer-computer interaction for improved knowl-
edge visualization. 
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