
 11

PRODUCT MODEL BASED COLLABORATION

R. J. Scherer
Technische Universität Dresden, Institute of Construction Informatics, Dresden, Germany

ABSTRACT: In collaborative design, we can distinguish between synchronous and asynchronous methods of collabora-
tive working. Both are important and complementary in AEC. We will show that an explicit product model and a multi-
layered system, with components linked together by an information logistics system, are the necessary prerequisites to
effectively tackle the complexity of the information flow for asynchronous collaborative working. The information flow
requires well-grounded model-based coordination to enable transparent and guided discussion and decision-making
processes. The corresponding product model management services are identified and discussed. These are (1) model
view extraction, (2) mapping to design specific models, (3) backward mapping after the design session, (4) identifica-
tion of design changes through matching, (5) reintegration of extracted and changed models and (6) merging of the
mutual design changes and identification of conflicts.

1 INTRODUCTION

Collaboration can be supported by methods to improve
the exchange of information, the communication, or the
coordination of two or more persons cooperating in intra-
or inter-enterprise teams. Collaboration is goal-oriented
and hence the coordination of activities and intentions of
all persons involved is the main objective of the support-
ing actions. This includes also tracking the fulfilment of
past activities and the conflicts arising from them. Hence,
conflict management is an important issue of collabora-
tive work (Scherer et al 1997).
In the past, collaboration support was mainly focused on
the improvement of communication including multi-
media representation forms, like video-conferencing,
drawings, virtual reality and diagrams and complemented
through coordinated formalized common workflows. Un-
til recently, the retrieval of the right information, the set-
up and continuous adaptation of the workflow according
to the evolving work process and in particular to the work
content had to be done by the persons themselves through
interpretation of the communicated information. This was
not only time-consuming but also led to misinterpreta-
tions (i.e. different interpretations due to the different
perceptions of the involved persons), and often resulted in
bad coordination or even discoordination.
Product models available today provide the advantage to
better evaluate the contents of the collaboration issue and
thereby deduce various coordination-related supportive
means. They provide for representing the information
content in a formalized way, which allows the computer
(program) to interpret properly the information (avoiding
different interpretation by different programs), to reason
about it by logic or by algorithmic reasoning methods,
and to activate related workflow patterns. Since nowadays
product models are well developed and applied in various

domains of design but they are in a very early stage with
regard to the production process and in a similar, slightly
more advanced state in the domain of facilities manage-
ment (IAI 2006), we will concentrate our further consid-
erations on the design domain.

2 COLLABORATIVE TEAMWORK

In distributed teamwork, we have to distinguish between
two main ways of collaborative working, namely(Scherer
2004):

- synchronous collaborative teamwork, and
- asynchronous collaborative teamwork.

Synchronous collaborative teamwork means that all
members of a team are working on the same product at
the same time and exchanging their expert knowledge
simultaneously for problem solving. This is a relatively
rare case in AEC practice. Such collaborative work is
mostly employed to search for a new innovative design
solution or for the solution of very complex problems.
The complexity of a design problem and/or the degree of
novelty calls for personal communication, discussion and
inspiration among the team members. Communication
happens in the “human world”.
Asynchronous collaborative work means that expert
knowledge from all team members is necessary and they
may work at the same time on the some product compo-
nent, but it is sufficient that they provide their contribu-
tions without direct and immediate communication with
other team members. Communication can occur via com-
puter in a formalized way, by exchanging ideas and sug-
gestions such as the inherent knowledge in written,
graphical and multi-media representation, or nowadays in
product model data form. When communication takes

place asynchronously in the “computer world”, it does not
necessarily mean that the team members do not inspire
each other but that inspiration may happen on a lower
level than by synchronous working. Asynchronous work-
ing is sufficient for most routine design tasks, which is the
bulk of design work carried out in the AEC domain. Usu-
ally, the design process in AEC requires that different
experts develop their work in parallel but independently,
using roundtable meetings at specific discrete points in
time to coordinate their work as illustrated in Fig. 2.1
(Scherer 1997 et al, Katranuschkov 2001). Today such
round-table meetings are carried out as physical meetings
or as video conferences. The latter only works satisfacto-
rily if minor technical problems have to be solved.

 12

Asynchronous collaborative teamwork provides an envi-
ronment that enables concentrated and efficient work of
all team members. It protects team members from perma-
nent communication requests so that every designer con-
centrates on his/her own specific tasks but at the same
time will be informed and keeps track of others’ solutions
and informs the others about his/her decisions in a timely
fashion, individually deciding upon when and how to
spend time on keeping track. The shortcoming of asyn-
chronous teamwork is that the coordination between the
coordination points is weak. Hence, that coordination has
to be done more often and preferably all designers should
take part in it. A requirement that often can not be ful-
filled on such a quality level.
The main difference between synchronous and asynchro-
nous work is that in the first case communication among
team members takes place predominantly in the “human
communication world” whereas in the second case it oc-
curs in the “computer communication world”, via infor-
mation and knowledge represented in semantically highly
structured data, as provided by product models. Modern
computer communication is understood as the representa-
tion of information and knowledge in data structures on
high semantic level, and not as the application of com-
puters and networks transferring only low-structured text
and multi-media data, or even pixel files. The goal is to
increase the quality of the computer-communicated in-
formation, its expressiveness and its granularity, and
hence the retrieval of the actually needed information
pieces. Computer communication does not require the
experts to communicate with each other at the same time
because the information content is now stored and can be
retrieved – repeatedly – later on, with any appropriate
time-shift by each team member depending on his/her
specific needs to share knowledge and data. Therefore,
computer communication can be considered a one-sided
communication on demand.
However, communication and coordination via computer
is only one of the two major aspects that are necessary to
make asynchronous collaborative working happen. The
second aspect is the management of the time-stretched
discussion process. This can be carried out manually, in a
very time-consuming way by a person, e.g. the team
leader, or with the help of organizational collaboration
tools supporting him. Such tools can remarkably reduce
the organizational workload on the team leader and at the
same time minimise errors that might occur by overlook-
ing or misunderstanding something. They will also reduce
the workload on every team member who searches for the

information required to make his contributions to the right
problems at the right time. Common teamwork or discus-
sion panel tools can be beneficially applied and are al-
ready widely used in practice (Schulz 1996, Weisberg
2001). However, the development of specific tools for
AEC based upon a common conflict management system
as outlined below has the potential to enhance strongly
collaboration as such tools can be tailored to the specific
culture of the domain.
 coordination

point j

design
session

designer 1

alternative 1

alternative 2

designer 2

persistent
common
data model j

temporary
info

coordination

check-incheck-out

local
consolidated
design

Figure 2.1. Asynchronous collaborative teamwork with manda-
tory coordination points.

3 THE COORDINATION PROCESS

The collaboration processes can be described by coordi-
nation scenarios. Fig. 2.1 shows the standard coordination
scenario with common coordination points that are man-
datory for all. It is typical for today’s roundtable meetings
where all accumulated conflicts and open issues are dis-
cussed and solved at once, or at least solutions and dead-
lines are agreed upon. This means that conflicts have to
be managed explicitly by the team members – individu-
ally, or by a central responsible person, the project man-
ager or a specialised conflict or risk manager. The latter
was practised e.g. by the British Airport Authority (BAA)
for the design and construction of the fast subway connec-
tion from Heathrow Airport to central London as well as
for Terminal V of Heathrow Airport (John Gill 1998,
2002). Basically, conflict management is performed with
the help of evolving to-do lists, or in a more elaborated
form by risk lists (open issues) and contingency plans
(solution strategies expressed by a workflow containing
the first tasks at least), using paper, spread sheets or spe-
cialised data management systems (Fig. 3.1). In all cases,
the cognitive work is solely done by humans. However, if
the computer were able to understand and reason about
the content, valuable parts of this work could be taken
over by the computer, namely the definition of problems,
the set-up of solution workflows – but not the solution
content –, and the management of the solution workflow.

Figure 3.1. Complementing the common data model with a con-
flict management system.

pe
com

rsistent
mon

ta model i

coordination
point i

da

coordination
point j

design
session

designer 1

alternative 1

alternative 2

designer 2

persistent
common
data model j

temporary
info

coordination

check-incheck-out

pe
com

rsistent
mon

ta model i

coordination
point i

da

local
consolidated
design

common
data model

conflict
repository

retrieval

common
data model

conflict
repository

retrieval

This demands a workflow system, a conflict repository
and a conflict management system. With these three IT
components, we would be able to disband the constraints
of common mandatory coordination points, substituting
them by more flexible coordination lines aligned with the
evolving model data (Fig. 3.2), and the product model
will become the basis of a real building information man-
agement system. In such a system, coordination will be
individualized. Each team member can decide upon when
and what he wants to coordinate with the help of the sys-
tem and hence, via the system, with all other team mem-
bers over time-stretched coordination lines.

 13

Figure 3.2. Disbanding common to individual co-ordination
points thanks to the conflict management system.

Going more into detail and taking into account more seri-
ous and complex conflict problems that may be not solv-
able solely by formalized information exchange, we will
finally come up with the coordination scenario shown in
Fig. 3.3 where mandatory coordination points still exist
but with considerably longer time spans between them in
comparison to the traditional scenario from Fig. 3.1. They
are introduced to consolidate the common data model and
in addition to benefit from eye-to-eye communication, i.e.
synchronous collaboration on demand. Between these
coordination points, non eye-to-eye collaboration proce-
dures of asynchronous working are applied to benefit
from the individualized coordination process, where sce-
narios for individual work and close teamwork are shown.

Figure 3.3. Hybrid local and global co-ordination points accord-
ing to the kind of working (conflict system avoided for conven-
ience).

4 COORDINATION SUPPORT

From the scenarios above (Fig. 3.1 – Fig. 3.3) the re-
quirements on the product model and the coordination
supporting IT services can be drawn. The first supporting
service would be to provide the designer with the infor-
mation of all his design modifications he has to inform
other designers about, and to classify them into (1) prob-
lematic modifications and (2) normal modifications that
have just to be approved. Both these are conflicts, but the
first ones are identified as expected conflicts, whereas the
second are only potential conflicts. They have to be re-
corded in a checklist or, as suggested above, in a conflict
repository. Until today this has to be done by hand, which
is a highly time-consuming task. Therefore, the designer
usually prefers to draw all his modifications in a separate

file, which is then sent either to all other designers for
approval or to the design team coordinator, typically the
architect, who does the approval on behalf of the other
designers and only requests additional approvals from
them on demand.
This task may be taken over by one or several computer
services. These services must first find out all modifica-
tion done in a design session. Secondly, they have to clas-
sify the design modifications into three classes, namely
the two above-mentioned classes “for approval”, and an
“approval free” class. The latter comprises design modifi-
cations that are only in the responsibility of the designer
himself. This is the case for instance by the design of the
reinforcement in a RC element. A further support would
be, if not all modifications for approval have to be sent to
everybody, but are classified according to the designers
who have to approve the modifications. This would be
also very helpful in the case when a design coordinator is
doing the approvals on behalf of the other designers, in
order to reduce error or avoid overlooking something.
Precise checklists can be very helpful here as well, reduc-
ing errors to zero and reducing time for the check.

data

conflicts

data

conflicts

In cases when more than one designer has to approve a
design modification, a workflow must be set up. How-
ever, even in the case of one designer there is already a
workflow, namely with the one worktask “approval”.
When a real conflict occurs, i.e. when the approval is not
positive and the design modification is rejected, a conflict
procedure has to be set up. This is a workflow containing
at least one worktask for the original designer with the
request of a design change, complemented with a change
proposal. It is conceivable that several cycles of proposals
and approvals may follow that cannot be all defined in
advance, but are evolving, i.e. we do have an evolving
workflow. It is also a recursive workflow that has to be
monitored by the design coordinator to ensure that it
comes to an end. Each design modification to be ap-
proved by another designer is a potential design conflict,
and due to its recursive, non-foreseeable duration, it is a
potential risk for the design process as well. Therefore, it
is reasonable to handle serious design conflicts as design
risks. This kind of working has been proven by BAA for
the fast subway connection (Gill 1998) and the Terminal
V of the Heathrow Airport (Gill 2002). Such risks may
influence the overall workflow seriously. Therefore, the
monitoring of design risks and the optimal merging of the
related consecutive workflows in the overall design proc-
ess have to be supported by appropriate risk management
methods as we develop in an ongoing research project
(Sharmak et al. 2007).

Individual work

Team work

Global
Coordination point

Individual work

Team work

Global
Coordination point

In the last years, we developed a procedure that does not
require a separate approval file but merges the modifica-
tions directly in the common product model (Weise
2006). This strategy was selected in order to (1) circum-
vent locking of parts of the model during a check-out, i.e.
during a so-called long transaction, and (2) avoid dead-
locks due to not having a valid product model or diverg-
ing evolving conflicts. Thereby it is important that there
exists only one common model, which is binding for all
designers and which is complemented by a separate con-
flict repository that contains the above-defined conflicts
resulting from parallel working and design alternatives,
here also formulated as conflicts. Thus, each designer has

a sound ground and can individually inform himself about
open design issues, i.e. open conflicts and design alterna-
tives, stored in the conflict repository.
However, a consistent common data model cannot be
achieved by simply checking-in the modified shared
model data that was checked out and modified by the de-
signer for and during his design session. At first changes
of the data has to be classified in (1) design modifications
and (2) alterations done by the design tools. The latter has
to be taken into account because it would not be possible
to implement totally error-free product model interfaces.
An interface is not only the technical implementation of
the product model classes but contains also a model map-
ping from the external (common) data model to the inter-
nal one. Even if external and internal models are based on
the same data schema, they may show different versions.
Therefore, the service has to identify design tool altera-
tions and correct them. These automatic corrections have
to be shown to the designer for approval (Fig. 4.1, top
level).

Common Model
k

automatically
adapted
changes

i+1

changes
i

visual
inspection

modified
adapted
changes

i+1

modified
adapted
changes

i+n

Common Model
K+1

approved

visual
inspection

visual
inspection

Common Model
k-1

Common Model
k

automatically
adapted
changes

i+1

changes
i

visual
inspection

modified
adapted
changes

i+1

modified
adapted
changes

i+n

Common Model
K+1

approved

visual
inspection

visual
inspection

Common Model
k-1

Figure 4.1. Visual inspection cycles in the context of model
merging.

The approved design modifications are merged in the
common data model in the next step. In order to achieve
consistency, several modifications are necessary (1) due
to the propagation of design modification into the com-
mon model, and (2) due to the fact that the common
model was modified several times by other designers
since the check-out, as indicated in Fig. 3.2. All automati-
cally generated modifications done to achieve consistency
and all open conflicts where a unique solution can be
generated have to be presented to the designer for ap-
proval, or for finding an alternative solution. This can
lead to approval cycles as indicated by the lower level on
Fig. 4.1, before the modified data set is merged in the
common product model and the remaining conflicts are
stored in the conflict repository.

5 PRODUCT MODEL MANAGEMENT METHODS

Product data management has to provide several impor-
tant functions for cooperative work as discussed in the
previous chapter. Their availability and quality is essen-
tial for the value of collaborative working because they
should warrant the consistency of the data for the typical
long transactions in AEC without data locks. Thus, we
have to deal with check-out/check-in cycles where the
same data can be modified asynchronously and in paral-
lel, changes have to be properly tracked and managed,
and users have to be notified in accordance with their
roles. Such functions must also be appropriately synchro-
nised with other information management services, e.g.
organised around a dedicated project portal. We argue
that they may be provided by one or more third-party
vendors as web services and may not be tightly integrated
with any particular Model Server. Thus, instead of devel-
oping a new mode-based project environment we aim to
provide these functions as a set of basic product data
management services.

Figure 5.1. Generalised cooperation scenario to support long
transactions.

Each design session, starting with a check-out activity and
ending with a check-in activity comprises up to 6 func-
tions including the coordination step with the other de-
signers (Scherer et al 1997b). They correspond to the 7
activities of the generalized cooperation scenario shown
on Fig. 5.1, except for activity 3, which is the design
modification carried out by the designer with his special-
ised design tool.

1. Model view extraction:
Msi = extractView (Mi , viewDef (Mi))

2. Mapping of the model view Msi to the discipline-
specific, in most cases proprietary model Si, which is
an instantiation of the data model S:
Si = map (Msi , mappingDef (M, S))

3. Modification by the user of Si to Si+1 via some legacy
application, which can be expressed abstractly as:
Si+1 = userModify (Si , useApplication (A , Si))

4. Backward mapping of Si+1 to Msi+1, i.e.:
Msi+1 = map (Si+1, mappingDef (S , M))

5. Matching of Msi and Msi+1 to find the differences:
ΔMsi+1,i = match (Msi , Msi+1)

6. Reintegration of ΔMsi+1,i into the model:
Mi+1 = reintegrate (Mi , ΔMsi+1,i)

7. Merging of the final consistent model Mi+1 with the
data of other users that may concurrently have
changed the model, to obtain a new stable model state,
i.e.
Mi+c = merge (Mi+1, Mi+2, … , Mi+k),
with k = the number of concurrently changed checked
out models.

The essence of these functions is shortly explained in the
following sections. They can be offered by a product data

 14

management system or as dedicated services, which can
be flexibly orchestrated and integrated into existing col-
laboration systems such as today’s Web-based project
environments.

5.1 Model view extraction

Model View Extraction is the first step in the generalized
collaboration scenario shown on Fig. 5.1. To be usefully
applied, a model view should (1) be easily definable with
as few as possible formal statements, (2) allow for ade-
quate (run-time) flexibility on instance and attribute level
and (3) provide adequate constructs for subsequent rein-
tegration of the data into the originating model. To meet
these requirements, a Generalised Model Subset Defini-
tion Schema (GMSD) has been developed (Weise et. al.
2003). It is a neutral definition format for EXPRESS-
based models comprised of two subparts, which are al-
most independent of each other with regard to the data but
are strongly inter-related in the overall process. These two
parts are: (1) object selection, and (2) view definition. The
first is purely focused on the selection of object instances,
such as all objects belonging to storey 2 using set theory
as baseline. The second is intended for post-processing
(filtering, projection, folding) of the selected data in ac-
cordance with the specific partial model view, such as
only class column and only attribute height. Fig. 5.2
shows the top-level entities of the GMSD schema and
illustrates the envisaged method of its use in a run-time
model server environment. More details on GMSD are
provided in (Weise et al. 2003) and (Weise 2006), along
with references to other related efforts such as the PMQL
language developed by Adachi (Adachi 2002).

Figure 5.2. Top-level entities of the GMSD schema (left) and its
principal use in a model server environment (right).

5.2 Model mapping

Model Mapping is needed by the transformation of the
data from one model schema to another. Typically, this
would happen in the transition from/to an agreed shared
model or model view to/from the proprietary model of the
application the user works with (Figure 5.1). The overall
mapping process consists of four steps: (1) Detection of
schema overlaps, (2) Detection of inter-schema conflicts,
(3) Definition of the inter-schema correspondences with
the help of formal mapping specifications, and (4) Use of
appropriate mapping methods for the actual trans-
formations on entity instance level at run-time.
Mapping patterns allow understanding the mapping task
better and to formalize what and how has to be mapped in
each particular case. By examining the theoretical back-
ground of object-oriented modelling the following types
of mapping patterns can be identified: (1) Unconditional

class level mapping patterns, depicting the most general
high-level mappings, (2) Conditional instance level map-
ping patterns, including logical conditions to select the set
of instances to map from the full set of instances in the
source model, and (3) Attribute level mapping patterns,
specifying how an attribute with a given data type should
be mapped. For each of these categories, several sub-
cases have been identified in (Katranuschkov 2001). Ex-
amples on attribute level include simple equivalence, set
equivalence, functional equivalence, transitive mapping,
inverse transitive mapping, functional generative map-
ping, and so on.
All mapping patterns can be defined by means of the de-
veloped formal mapping language CSML (Katranuschkov
2001) or by another suitable specification language such
as VML (Amor 1997). Performing the mappings is typi-
cally done with the help of a Mapping Engine. In general,
this is a difficult task but there exist several known sup-
port tools that can be drawn up to tackle the issue (Katra-
nuschkov 2001, Weise et al. 2004).

5.3 User modifications on the model view

User modifications on the model view can hardly be ac-
complished as reusable generic services. They represent
an essential part of the actual value-adding work of each
designer in the development and iterative detailing of the
design solution. With common software tools the user
works on his sub model and makes changes in that model
in accordance to his field of activity, e.g. on the architec-
ture or the HVAC systems of the designed building. This
work often leads to inconsistencies between the separate
used model views, especially if two or more users make
parallel changes to the design.
Whilst this subtask of the overall cooperation process
cannot be supported by any generic product data man-
agement methods, it can be well aligned in the scenario
and consequently its integration with the other services
can be generalised within a common framework.

5.4 Backward mapping

Backward mapping is needed to translate the application
data representing the changed design state back into the
data schema of the shared model in order to create a new
model view that can then be matched with its initial ver-
sion created in the first step of the cooperative work proc-
ess, i.e. Model View extraction (Fig. 5.1).
In principle, there is no difference between this step and
the forward mapping outlined in section 5.2 above. Some
mapping languages as e.g. CSML require for that step a
separate mapping specification whereas others, such as
VML, claim to be capable of directly specifying bi-
directional mapping. However, in both cases the mapping
process is basically the same. It requires the same map-
ping tools and has the same position in the overall sce-
nario. Moreover, the same mapping service can be used
for both the forward and the backward mapping tasks.
If not an explicit mapping to/from the specific design
model is made but an implicit one, encapsulated in the
design tool, a model normalization has to be carried out
(Weise 2006) in order to flatten the alteration of the de-

 15

sign tool and to prepare the shared data model for match-
ing.

5.5 Model matching

Model matching has to deal with the identification of the
changes made by the user in his design session with the
help of one or more design tools (Fig 5.1). This may be
done by a dedicated client application but a much more
natural implementation is a server-side procedure.
In our approach, matching exploits the object structure
without considering its semantic meaning (Weise et al.
2004). Hence, it can be applied to different data models
and different engineering tasks. It does not require nor
involve specific engineering knowledge.
Comparison of the model data of the old and new model
versions begins with the identification of pairs of poten-
tially matching objects, established by using their unique
identifiers or some other key value. However, identifiers
may not always be available for all objects due to short-
comings in the data model, e.g. most of the resource ob-
jects in IFC do not have identifiers or the identifiers are
not properly implemented in IFC interfaces. Such uniden-
tifiable objects may be shared via references from differ-
ent identifiable objects. The general complexity of this
problem is shown in (Spinner 1989) where a fully generic
tree-matching algorithm is shown to be NP-complete.
Therefore, we have developed a pragmatic algorithm that
provides a simple scalable way for finding matching data
objects. Its essence is in the iterative generation of corre-
sponding object pairs by evaluating equivalent references
of already validated object pairs. The first set of valid
object pairs is built by unambiguously definable object
pairs. Any new found object pair is then validated in a
following iteration cycle, depending on its weighting fac-
tor derived from the type of the reference responsible for
its creation. Attribute values are only used if ambiguities
of aggregated references do not allow the generation of
new object pairs. To avoid costly evaluation of attribute
values a hash code is used indicating identical references.
In this way, the pairwise comparison of objects can be
significantly reduced.
Fig. 5.3 illustrates the outlined procedure. Before starting
any comparison of objects the set VP of validated object
pairs and the set UO of unidentifiable objects are initially
created using available unique identifiers. After that, the
object pairs of VP are compared as shown on the right
side of the figure for {A1, A2}. Using their equivalent
references has_material, a new object pair can be as-
sumed for the objects E1 and G2 of UO.

Figure 5.3. Schematic presentation of the model mapping proc-
ess.

A weighting factor indicating the quality of this assump-
tion is then applied according to the reference type of
has_material and added to the newly created object pair,
which is then placed in the set AP containing all such
derived matching pairs. After comparison of all object
pairs of VP, the highest weighted object pairs of AP are
moved from AP (and UO) to VP and a new iteration cycle
is started. Now the weighting factors of the new created
object pairs can be combined with the weighting factors
of already validated object pairs from which they have
been deduced, thereby allowing for a global ordering.
More details on the developed algorithm along with an
overview of related efforts are provided in (Weise 2006).

5.6 Model re-integration

Reintegration of the changed model data is always neces-
sary when model views are used, as shown in the general-
ized collaboration scenario in Fig. 5.4. Model view ex-
traction creates a model view by removing data objects,
cutting off or reducing references, filtering attributes etc.
Reintegration means to invert the process, i.e. to add in a
consistent way removed data objects, restore cut-off or
reduced references and re-create filtered out attributes
considering all related design changes. In other words, the
design changes altering cut-off parts of the product model
have to be propagated into the common model. This de-
mands automatic adaption and propagation of design
changes, which have to be approved by the designer (Fig.
4.1) This is strongly dependent on the model view defini-
tion achieved via GMSD, the results of the model com-
parison and the adopted version management.
Figure 5.4 illustrates the reintegration process on an ex-
ample, assuming that by applying a GMSD-based ex-
tractView() operation to a given model some objects and
attributes will be removed. For object O1 this results in a
new version OS1 in which the simple reference ‘a’ is re-
moved and the aggregated reference ‘b’ is downsized by
one element. This object is then modified externally by
some user application to OS2 which differs from OS1 in
the aggregated reference ‘b’, downsized by another ele-
ment, and the simple references ‘c’ and ‘d’. The reintegra-
tion process adds all objects and attributes from O1 that
have been removed according to the model view defini-
tion. In this particular case, this will recreate the
cut/downsized references ‘a’ and ‘b’. However, it will
take care not to add objects/attributes that have been
modified by the used application.

Figure 5.4. Example of the re-integration process.

Whilst this procedure is quite clear and more or less the
same for various different scenarios, there exist several
detailed problems that have to be dealt with. They can be
sub-divided into: (1) structural problems (1:m version
relationships for reference attributes, n:1 version relation-
ships, change of the object type in a version relationship),
and (2) semantic problems. The latter cannot be resolved

 16

solely by generic server-side procedures but require do-
main knowledge and respective user interaction. They
occur typically when a change to a model view requires
propagation of changes to another part of the overall
model in order to restore consistency. In such cases, data
consistency must be evaluated by all involved actors dur-
ing a final merging process (Weise et al 2004; Weise
2006).

5.7 Model merging

Model Merging has to deal with the consistency of con-
currently changed data that exist in two or more shared
models. It should be performed at a commonly agreed
coordination point in cooperation of all involved users in
order to reduce complexity. The aim is to provide a pro-
cedure by which modifications can be reconciled and ap-
propriately adjusted to a consistent new model state,
marking the beginning of a new collaboration cycle.
The method developed (Weise 2006) is based on a com-
monly agreed data model Mi as shown in Fig. 5.3. All
changes carried out by the participating designers are rep-
resented as delta values. Conflicts on attribute, object and
object topology levels are resolved in an automatic way
based upon predefined rules, such as (1) an object is de-
leted if it was deleted by all designers, (2) an object is
deleted if it was deleted by one designer and no other de-
signer changed it in any way, (3) an object that was
changed by only one designer and not modified by any
other designer is integrated with these changes, (4) if an
object is changed by two designers, all the attributes
changed are integrated.
It is obvious that a commonly acceptable data model can-
not be achieved automatically. Hence alterations that are
not in line with a designer’s intention hold potential con-
flicts and need inspection cycles as outlined in Fig. 4.1.
Remaining conflicts have to be stored in the conflict re-
pository and resolved later on in collaborative workflows.
Not all designers need to be involved for all conflicts but
based upon resolution workflows, their authorization and
the modifications they have carried out, the conflict set
can be portioned into sub-sets of mutually involved 2, 3
and so on designers. Starting phase of these evolving
workflows can be automatically set up and propagated to
the individual work lists of each designer. In the scenario
sketched in Fig. 5.3, designer A and B had carried out
currently design modification. However due to authoriza-
tion demands designer T has to be involved in the co-
ordination process, here solved through a pre-merging
step.

Mi M(i+1).A

Designer T
Designer A

Designer S

M(i+1).S

Mi+2

Reconciliation
upon agreement
b/n A , S and T

Mi M(i+1).A

Designer T
Designer A

Designer S

M(i+1).S

Mi+2

Reconciliation
upon agreement
b/n A , S and T

Figure 5.5. Schematic presentation of the model merging proc-
ess.

6 ARCHITECTURE OF A COLLABORATION SYS-
TEM

In the previous chapter, we identified various basic meth-
ods that are needed for efficient product model based col-
laboration. These methods can be best implemented in the
form of software services, exploiting the flexibility,
adaptability and extensibility of the modern Service-
Oriented Architecture (SOA) approach, in the spirit of a
model-based IT environment (Carter 2007). App-
ropriately orchestrated, the services can be used for a va-
riety of complex AEC tasks, especially in conjunction
with the IDM approach of using Building Information
Models (Wix 2005).
Various platform configurations can be envisaged for the
realisation of such orchestration and coherent service use
– from low-level “classical” client-server architectures
(Scherer 1995) with their typical bottleneck problems to
dedicated multi-server systems (Scherer 1998), project
portals (Scherer 2000, Katranuschkov 2001), P2P sys-
tems, and modern Grid-based architectures at the high
end. However, due to the nature of construction projects,
typically performed by ad hoc created virtual organisa-
tions, the Grid-based approach is considered the one pro-
viding greatest benefits (Turk et al. 2006). Fig. 6.1 below
shows the suggested principal architecture of a grid-based
service-oriented platform. It is comprised of four layers to
which an external client application layer is “plugged in”
at the front end, and an external data storage layer is inter-
linked at the back end.
In principle, it should be possible to plug in any kind of
client applications to the platform using one and the same
approach. However, greatest advantages and most consis-
tent integrated use of the collaboration services can be
achieved by using a Workflow or Process Management
Client that provides for direct goal-oriented support of the
discussed collaboration scenarios. The principal function-
ality of such a client is outlined in the next chapter.

Figure 6.1. Principal System Architecture.

“Plugging-in” of all external applications to the platform
is realised with the help of the services on the Generic
Application Services Layer, which act as proxies to the
external applications, thereby enabling their interoperabil-
ity with the “deeper” platform services via high-level
WSDL-based interfaces.
The Middleware Service Layer ensures the basic operabil-
ity of the platform by a set of services ensuring the ade-
quate use of the underlying Grid technology, based e.g.

 17

on Globus or Unicore. Via these services, the connection
of the client applications to the layer of (distributed) core
semantic services of the platform can be established and
efficiently managed. These Core Services include in par-
ticular the product model management methods described
in Chapter 5, but can also be extended by dedicated
document management, process management and espe-
cially conflict management services (Gehre et al 2007).
They are responsible for the proper management, interpre-
tation and processing of the shared project data on the
Project Data Storage Layer, as well as for their external
links to further data sources such as regulations, best
practice cases and templates, local organisational knowl-
edge bases etc.
This stepwise delegation of tasks between the service
layers considerably reduces the complexity of the overall
platform and improves its manageability, maintainability
and extensibility. However, this alone is not sufficient for
achievement of adequate semantic interoperability as re-
quired by any more sophisticated data management meth-
ods. For that purpose, a high level, environment wide
process-centred ontology framework encompassing all
entities of the IT system is suggested. It can provide the
necessary semantic proxies of the entities in the “real”
AEC environment, which allows to capture semantic
meta-data about all “things” in the environment in a co-
herent way, and appropriately delegate detailed process-
ing tasks to the specialised collaboration services using
high-level concepts defined e.g. in the OWL language and
communicated via WSDL interfaces, SPARQL queries or
other suitable methods (Gehre et al. 2007).
A successful prototype of such process-centred environ-
ment ontology has been realised recently in the EU pro-
ject InteliGrid (Gehre et al. 2006, Gehre et al. 2007).

7 WORKFLOW MANAGEMENT SYSTEM

For an efficient error-prone quality-controlled design
process, the work of the members of a distributed virtual
team must be organized in terms of worktasks (Wasser-
fuhr & Scherer 1997). Worktasks are globally identifiable
(like other objects of the environment) and linked to actor
roles (e.g. architect, structural engineer, etc.), to the re-
quired input (documents, product data), to the expected or
delivered output (documents/views of the product
model/single objects of the product model), and to the
time schedule of a project.
Tasks are grouped into different levels as shown in Fig.
7.1 starting from project level and ending on the Internet
level:

- Services are typically web services.
- Activities include one or more services. They are car-

ried out by one person with one role. They can be
modelled as business process objects (Gehre 2007).

- Worktasks consist of one or more activities. They are
carried out by one or more persons owning different
roles.

- Workflows include one or more worktasks. Several
workflows of the same type may be performed in one
project. The workflows themselves can be derived
from process patterns defined by means of a process

ontology and then respectively adapted and configured
e.g. by the project manager. They may be applicable
for the whole project (cross-company) or company
specific (Katranuschkov et al. 2006).

- Process Patterns consist of one or more workflows
that are company-specific instantiations of process
modules but are generic from the company’s point of
view.

- Process Modules are company-independent descrip-
tions of work and consist of one or more process pat-
terns (Keller 2007).

- Process Module Chains consist of one or more proc-
ess patterns and are project-specific.

- Service packages consist of one or more process mod-
ule chains and structure the project process as value
chains.

During the overall work process, the process management
system continuously updates the work lists for the differ-
ent users, which contain exactly those worktasks that are
relevant for that user.
The user indicates that he wants to start the execution of a
task by activating the corresponding worktask in his work
list. Then the system provides him with a list of all rele-
vant documents , shared data models and the correspond-
ing tools, from which he can select a document, a shared
data model or an appropriate tool – e.g. CAD, a structural
analysis tool, or an office application. When the user fin-
ishes a worktask, he assigns the results to the process
management tool, which then updates the status of all
possible follow-up worktasks for all other users.

Figure 7.1. Hierarchical sub-structuring of value chains down
the web services.

Each worktask can change its state during its life cycle.
Initially, a task is either suspended or ready for execution.
A task is suspended if it requires additional data to be
executable, e.g. the calculation of loads may be suspended
because data about the building geometry and the location
of building elements is missing. As soon as all required
input data is available, a task is marked as ready-
ForExecution. If the user actually starts it, the internal
operation fetchForUnify() is performed, ensuring exclu-
sive access to this task and changing its state to inExecu-
tion. Then, the user may switch the state between in-
Execution and interrupted, as often as he needs to.
The workflow system can be configured to check whether
a user performs tasks simultaneously, and to provide a
notice, if this happens. When a task is finished, the results

 18

are linked to that task and the state becomes finished. All
tasks, which are not finished, can be aborted. Abortion
can also be performed for the whole workflow that in-
cludes the task.
For a dynamic set-up of workflows, activities, and work-
tasks as well as their refinement on demand during run-
time, a tool named Process Wizard was designed to sup-
port project managers in the coordination of actors
(Wasserfuhr & Scherer 1997). A process definition meth-
odology was later developed to achieve a parametric de-
scription of worktask patterns, based on workflow tem-
plates as described above. Fig. 7.2 shows a screenshot of
an example session with the Process Wizard. Each task of
a user role is modelled as a worktask (a node in the proc-
ess network) and the dependencies are represented as ar-
rows. The main window (1) of the Process Wizard shows
the worktasks. By selecting a worktask, the properties of
that worktask can be modified in a separate window (2).
For each worktask, the users and roles can be specified by
selecting them from overview lists that are interrelated
according to a defined actor matrix (3).

1

2

3

Figure 7.2. Process Management Tool taken from the ToCEE
Environment.

8 CONCLUSIONS

More than 15 years of research on collaborative engineer-
ing have clearly revealed that a high human-machine in-
teraction in the sharing of work is important to tackle the
complexity. The machine has to take over cognitive parts
of the co-ordination and collaboration work but still has to
remain in the position of an assistant. Many decision sup-
ports, if not ultimately all may be taken over by the ma-
chine and decision-making can be prepared but ultimately
it has to be approved by the end-user to whom the support
is finally directed. A high level of formalization of the co-
ordination and the content of co-ordination are necessary
in order to provide the machine with generic methods and
services, applicable and adaptable to the various design
situations. Only a high-semantic presentation level, on
which all the achieved results were built in the past, has
led to an ever-growing product and process model, nowa-
days called building information model in the scope of
buildingsmart (IAI 2006), which is sometimes hard to
manage as the STEP model has already revealed. The
strict modularization of the IFC model, the smart version

management with a separate platform and extended model
versioning like 2x.3, i.e. platform version 2, extended
model, version 3 may considerably help postpone this
problem further to the future. However, descriptive inter-
operability as propagated by the IAI is limited. The re-
ported methods are based upon functional interoperability
and underpin the big advantages received. Still more
flexibility is needed and the ongoing research in applying
ontologies for data as well as service interoperability have
proved that ontologies are a promising methodology to
widen our scope in particular to more independent and
distributed data models as well as distributed data sources
and distributed functionality in form of web services, Grid
and P2P technologies. However logic reasoning ─ attrac-
tive as this may be at the first glance ─ is strongly limited
to the necessary computer power and the state of the art of
algorithms. Hybrid ontologies with a strong part of se-
mantically described knowledge, pre-evaluated in pat-
terns, may be one of the pragmatic answers to that topic.
Our recent research results in the scope of the EU project
InteliGrid (Gehre 2006) may be considered a proof of the
concept.

ACKNOWLEDGMENTS

The research work was mainly carried out together with
co-workers: Alexander Gehre, Markus Hauser, Martin
Keller, Karsten Menzel, Rainer Wasserfuhr, Matthias
Weise, and in particular with my senior researcher Peter
Katranuschkov, who has shown a never-ending enthusi-
asm. Their efforts are highly acknowledged. The research
projects were funded by the European Commission, the
German ministry of research (BMBF) and the German
research foundation (DFG) through several contracts,
which is very much appreciated.

REFERENCES

Adachi Y. (2002). Overview of Partial Model Query Language,
VTT Building and Transport / SECOM Co. Ltd., Intelligent
Systems Lab., VTT Report VTT-TEC-ADA-12.
(http://cic.vtt.fi/projects/ifcsvr/tec/VTT-TEC-ADA-12.pdf)

Amor R. (1997). A Generalised Framework for the Design and
Construction of Integrated Design Systems. Ph. D. Thesis,
University of Auckland, New Zealand, 350 p.

Carter S. (2007). The New Language of Business: SOA and Web
2.0. Prentice-Hall, ISBN 0-13195-654-X, 320 p.

Gehre A., Katranuschkov P., Wix J. & Beetz J. (2006).
InteliGrid Deliverable D31: Ontology Specification. The
InteliGrid Consortium, c/o Univ. Ljubljana, Slovenia.

Gehre A., Katranuschkov P. & Scherer R.J. (2007). Managing
Virtual Organization Processes by Semantic Web
Ontologies. To appear in: Proc. of the 24th CIB-W78
Conference, 26-29 June 2007, Maribor, Slovenia.

Gill J. (1998). Risk Management for fast subway connections
Heathrow Airport to central London (personal communica-
tion).

Gill J. (2002). Risk Management for Heathrow Airport Terminal
V (personal communication).

IAI (2006). IFC2x Edition 3 Online documentation. ©
International Alliance for Interoperability, 1996-2006.

 19

 20

(http://www.iai-
international.org/Model/R2x3_final/index.htm)

Katranuschkov P. (2001). A Mapping Language for Concurrent
Engineering Processes, Doctoral Thesis, Institute of
construction Informatics, Report 1 (Ed. R. J. Scherer),
Technische Universität Dresden, Germany, ISBN 3-86005-
280-2, 385 p.

Katranuschkov P., Scherer R.J., Turk, Z. (2001). Intelligent
Services and Tools for Concurrent Engineering - An
Approach towards the Next Generation of Collaboration
Platforms, e-journal ITcon, www.itcon.org.

Katranuschkov P. Gehre A., Keller M., Schapke S.-E. & Scherer
R.J. (2006). Ontology-Based Reusable Process Patterns for
Collaborative Work Environments in the Consutrction
Industry. In: Cunnigham P. & Cunningham M. (eds.)
“Exploiting the Knowledge Economy”, IOS Press, ISBN 1-
58603-682-3.

Keller M. (2007). Informationstechnisch unterstützte
Kooperation bei Bauprojekten (Information-technology
supported co-operation in construction project), Doctoral
Thesis, Institute of construction Informatics, Report 5 (Ed.
R. J. Scherer), Technische Universität Dresden, Germany.

Scherer R.J. (1995). COMBI ─ Overview and Objectives, Pro-
ceedings of the First European Conference on Product and
Process Modelling in the Building Industry, Oktober 1994,
Dresden, S. 503-510, R. Scherer (ed.), Balkema, Rotterdam.

Scherer R.J., Wasserfuhr R., Katranuschkov P., Hamann D.,
Amor R., Hannus M. & Turk Z. (1997a). A Concurrent
Engineering IT Environment for the Building Construction
Industry. In: Fichtner D. & MacKay R. (eds.) “Facilitating
Deployment of Information and Communication
Technologies for Competitive Manufacturing”, Proc.
IiM’97, 24-26 Sept. 1997, Dresden, Germany, ISBN 3-
86005-192-X.

Scherer R.J., Katranuschkov P.(1997b). Framework for
Interoperability of Building Product Models in
Collaborative Work Environments, Proc. of the 8th
International Conference on Civil and Building Engineering,
pp. 627 - 632, C.-K. Choi, C.-B. Yun, H.-G. Kwak (eds.),
Seoul, Korea.

Scherer, R. J. (1998). A Framework for the Concurrent
Engineering Environment. in: Amor R. (ed) „Product and
Process Modelling in the Building Industry“, Proc. of the
2nd European Conf. on Product and Process Modelling in
the Building Industry ECPPM‘98, Building Research
Establishment, Watford, 19-21 Oct. 1998, Clowes Group,
Beccles, Suffolk, UK, 1998

Scherer R. J. (2000). Towards a Personalized Concurrent
Engineering Internet Services Platform, in: Goncalves R.,
Steiger-Garcao A. & Scherer R. (eds.) “Product and Process
Modelling in Building and Construction”, Proc. of the 3rd
ECPPM 2000, Lisbon, Portugal, 25-27 Sept. 2000, A.A.
Balkema, Rotterdam, ISBN 90 5809 179 1, pp. 91-96.

Scherer R.J. (2004). Information Logistics for Supporting the
Collaborative Design Process, Chapter 7 in: Bento, J.;
Duarte, J.P.; Heitor, V. M.; Mitchell, W.J.; (eds.) Remote
Collaborative Design, Praeger Publishers, New York,
U.S.A.

Schulz R. C. (1996). Computer Mediated Communications in
Architecture, Engineering and Construction, Res. Report,
Dept. Civil Eng., Cal. State Univ., CA.

Sharmak W., Scherer R.J. & Katranuschkov P. (2007).
Configurable Knowledge-Based Risk Management Process
Model within the General Construction Project Process
Model. To appear in: Proc. of the 24th CIB-W78 Conference,
26-29 June 2007, Maribor, Slovenia.

Spinner A. (1989). Ein Lernsystem zur Erzeugung komplexer
Kommandos in Programmierumgebungen (A learning sys-
tem for generating complex commands in program envi-
ronments). Ph.D. Thesis, (in German), Technische
Hochschule Darmstadt, Germany.

Turk Z., Dolenc M., Gehre A., Katranuschkov P., Klinc R.,
Kurowski K. & Scherer R.J. (2006). A Generic Architectural
Framework for CIC. Invited paper at the “World Conference
on IT in Design and Construction”, November 15-17 2006,
New Delhi, India.

Wasserfuhr R. & Scherer R.J. (1997). Information Management
in the Concurrent Design Process. In: Proc. Int. Colloquim
IKM’97, Weimar, Germany.

Weisberg S. (2001). i-Collaboration ─ State of the Industry,
CADALYST Magazine 9/2001 (last visited at:
http://209.208.199.147:85//features/0901icollab/0901icolab.
htm).

Weise M., Katranuschkov P. & Scherer R. J. (2003).
Generalised Model Subset Definition Schema. In: Amor R.
(ed.) "Construction IT: Bridging the Distance", Proc. of the
CIB-W78 Workshop, 23-25 April 2003, Waiheke Island,
Auckland, New Zealand, ISBN 0-908689-71-3. CIB
Publication 284.

Weise M., Katranuschkov P. & Scherer R. J. (2004). Generic
Services for the Support of Evolving Building Model Data,
in: Beucke K. et al. (eds.) Proc. of the Xth Int. Conf. on
Computing in Civil and Building Engineering (ICCCBE-X),
Weimar, Germany, June 02-04, ISBN 3-86068-213-X.

Weise M. (2006). Ein Ansatz zur Abbildung von Änderungen in
der model-basierten Objektplanung. (An approach for the
representation of changes in model-based design) Ph. D.
Thesis (in German). Doctoral Thesis, Institute of
construction Informatics, Report 4 (Ed. R. J. Scherer),
Technische Universität Dresden, Germany, ISBN 3-86005-
557-7, 213 p.

Wix J. (ed), 2005. Information Delivery Manual: Using IFC to
Build Smart,
(www.iai.no/idm/learningpackage/idm_home.htm)

http://www.itcon.org/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

