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ABSTRACT 
The limitations of the standard interaction formula for biaxial bending can be shown by the 
results of the analytical method in structural analysis. The analytical method utilizes the 
known stress/strain properties of the materials and the geometry of the rectangular tubular 
section. With this method it is possible to solve for the capacity of the rectangular section for 
biaxial bending at any position of its capacity axis from the horizontal to the vertical.  

In contrast, the standard flexure and interaction formula determine capacities at the 
horizontal and vertical positions only and thus incapable of directly solving the capacity for 
biaxial bending. 

The tabulations will show that the standard interaction formula for biaxial bending can 
only capture about 50% of capacity while the analytical method can capture 100%. 
Moreover, biaxial bending capacity is only about 80% of the uniaxial capacity in steel 
manuals and hence may be risky to use in design practice. 

This paper will alert structural engineers that the analytical method is a more accurate 
tool to use than the standard interaction formula for biaxial bending. The availability of 
computers can easily handle the solution of hundreds of equations required to solve the 
capacity of a given rectangular section. 
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INTRODUCTION  

Steel Tubular columns can be hollow or concrete-filled. For concrete-filled steel tubular 
section, the concrete core is allowed to develop its ultimate strength. In this condition of 
stress/strain in the concrete, the steel shell reaches the yield stress since steel strain is less 
than that of the concrete. For hollow section the outermost part of the shell from the neutral 
axis is allowed to reach yield stress. In this presentation we will assume this condition 
prevails. 

To implement the analytical method, all variable parameters should be accounted for in 
the analysis. These variables are the dimensions of the rectangular steel tubular section and 
the ultimate and yield stress of concrete and steel respectively. The rectangular steel tubular 
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section can then be drawn and these parameters labeled. In addition a line is drawn through 
the center of the section with an inclination anywhere between the horizontal axis and the 
vertical axis. This line is designated as the capacity axis. For practical purposes, this line 
should lie along the diagonal of the rectangular section as a limit since most resultant 
external load will lie within the sector defined by the horizontal axis and the diagonal. The 
line perpendicular to this capacity axis will designated as the moment axis. The values of 
bending moments obtained will be parallel to the capacity axis and represents the component 
of the resultant moment.  To obtain the resultant moment capacity of the section, moments 
about the capacity axis is also calculated. The square root of the sum of the squares of these 
moments is the value of the resultant bending moment for biaxial bending capacity of the 
section. 

It will require hundreds of equations to complete the expressions for the forces and 
moments which the section can develop at its ultimate strength conditions. Most of these 
equations have been published and listed in papers presented by the author in several 
international conferences in structural engineering and construction. However, the basic 
formulations in the derivations will be shown to enable the reader to verify the published 
equations if he or she chooses to do so. There are no other references to cite except the 
author�s published works since standard literature uses the traditional interaction formula for 
biaxial bending. It is only by using the results of the analytical method that a comparison can 
be made to expose the crudeness of the current one-line equation standard interaction 
formula for biaxial bending. 

DERIVATION 

HOLLOW STEELTUBULAR SECTION 
 
Figure 1 shows a rectangular steel tubular section with dimensions b and d. The thickness of 
the shell is designated as t and the column capacity axis as the X-axis and the moment axis as 
the Z-axis. The inclination of the capacity axis is designated as θ from the horizontal. Draw 
lines perpendicular to the X-axis and passing through the corners and the centre of the outer 
rectangle. These will divide the section into three main stress volumes designated as V1, V2 
and V3 and their corresponding bending moments V1x1, V2x2 and V3x3. Designate the sides of 
the rectangle as lines z1, z2, z3 and z4. Designate the ordinate of the outer rectangle as zm and 
the abscissa as h/2. Using the point-slope form of the straight line from analytic geometry, 
write the equations of the sides of the rectangle. 
     In the XY plane draw the stress/strain for steel. The equation of the steel stress/strain 
diagram is that of a straight line also and can be easily written as above. Draw this line for a 
typical compressive depth and designate its distance from the compressive edge as c.  
     The intersections of the steel stress diagram with the lines from the corners and centre of 
the rectangular section will define the limits of the different boundaries of the stress volumes 
and thus the forces and moments to be calculated. For this column section there will be at 
least five ranges of values for c to be calculated. 
      Write the first set of equations for the outer rectangular section and then the inner 
rectangular section will have the same number of equations. There are 96 equations to write 

June 14-16, 2006 - Montréal, Canada
Joint International Conference on Computing and Decision Making in Civil and Building Engineering

Page 504



 

for the solution of the yield capacity curve of the rectangular steel tubing (Jarquio 2005). The 
steel forces and moments for the steel tubing are obtained by subtracting the values of the 
inner rectangular section from the outer rectangular section. Some basic formulations before 
the integration of the stress volumes and their corresponding bending moments can be 
performed are as follows: 

Figure 1: Rectangular Steel Tubing 
 

The equations of the lines of the outer rectangle are represented by the following expressions: 

z1 = -tan θ (x - h/2) + zm                                        (1) 

z2 = cot θ (x - h/2) + zm                   (2) 

z3 = -tan θ (x + h/2) - zm                   (3) 
z4 = cot θ (x + h/2) - zm                                                                           (4) 

The equation of the stress diagram is  
y = (fy/c)[x + (c - h/2)]                                        (5) 

x2 = (1/2)(d sin θ - b cos θ)                                                       (6) 

h = b cos θ + d sin θ                                          (7) 
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zm = (1/2)(d cos θ - b sin θ)                    (8) 
With the above basic equations to start the derivation, we can proceed to use integral 

calculus to derive the forces and moments which can be developed in a rectangular section. 
These equations represent the solution for the capacity of any rectangular steel tubing. These 
equations are set up in Excel spreadsheets to generate the values at specific position of the 
compressive depth c at any chosen position of the capacity axis. For square tubing use b = d 
in the above derived equations to obtain the yield capacity curve for this case. 
 
CONCRETE-FILLED STEEL TUBULAR COLUMN 
 
Figure 2 is a concrete-filled rectangular steel tubular column with similar notations except for 
the stress volume notations plus the concrete core inside the tube. Here, the stress diagram is 
that of the CRSI (Concrete Reinforcing Steel Institute), wherein the compressive and tensile 
steel stresses are mostly in yield conditions when the compressive depth of concrete c is less 
than that at balanced conditions. This is different from the author�s published solution in his 
book (Jarquio, 2004) in which the tensile stress at the farthest point from the neutral axis is 
held at the value of the yield stress and decreases as the compressive depth is decreased from 
balanced condition.  

As before, we draw lines perpendicular to the X-axis from the corners and center of the 
rectangular section. This is done to delineate the stress volumes V1, V2 and V3 together with 
their corresponding bending moments V1x1, V2x2 and V3x3 to be calculated. There will be 
twice as much number of ranges of values for the compressive depth c as was in the hollow 
steel case above.  

We can use the same initial equations as before in the integration of steel forces and 
moments. First determine the equations for the steel forces and moments applicable to the 
outer rectangular section. This procedure will yield the steel forces and bending moments 
which can be developed at the ultimate condition of the concrete core. The limiting concrete 
strain = 0.003 is the reference for corresponding steel strains in the column section. The steel 
forces and moments are then computed. The same procedure is followed for the inner 
rectangular steel section.  

This ultimate strength capacity is represented by a curve of plotted values from the Excel 
spreadsheets. The vertical scale is for the axial capacity, P and the horizontal scale is for the 
bending moment capacity, M of the column section. The eccentricity, e = M/P represents the 
displacement of the column section with respect to the plumb line due to buckling of the 
column length. When buckling is not present as in a stub column, the eccentricity represents 
the equivalent position of the axial load from the plumb line.  

The capacity curve show the dependence of the axial capacity with the bending moment, 
i.e., when the bending moment is increased, the axial capacity is decreased. On the other 
hand, when the axial capacity is increased, the bending moment is decreased. The accidental 
eccentricity due to out of plumbness of the column section itself, plus deviation of the 
application of the external axial and bending moment loads at supports will add external 
bending moment acting on the section. When this occurs, the internal capacity of the section, 
i.e. the axial capacity should also be reduced. For this reason, the final external axial and 
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bending moment loads determined by the structural engineer are the pair of values to be 
plotted on the capacity curve to determine adequacy of the given section to support these 
loads. 

 

Figure 2: Rectangular CFT Steel Column 
 

 
CAPACITY CURVES 
 
For any position of the capacity axis from horizontal to the vertical position, a capacity curve 
is generated that is unique to this particular position. Values of the bending moments will 
decrease from the horizontal position to the vertical position of the capacity axis. For a 
rectangular section, the diagonal is chosen as the axis to use for biaxial bending since most of 
the external resultant load will fall within the sector defined by the horizontal and the 
diagonal.  
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This capability of the analytical method can not be matched by the standard interaction 
formula for biaxial bending. The analytical method can determine the centroid of the internal  
capacity of the section at every particular position of the compressive depth c of concrete. A 
structural engineer can demonstrate the equilibrium conditions of external and internal loads 
by the analytical method while the standard interaction formula has no such capability. 
 

Example 1: Plot the capacity curve along the diagonal of a hollow rectangular steel 
tubular column 203.2 mm.(8 inches) x 304.8 mm.(12 inches) with shell thickness 12.7 mm. 
(0.50 inch) and fy = 248 MPa (36 kips per square inch). Figure 3 is the plot of the capacity 
curve for this example steel tubular column. 
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Figure 3: Capacity Curve of a Hollow Rectangular Steel Tubular Column 
 

Figure 4 is the schematic location of the key points with their stress conditions in the capacity 
curve. Wo inside the envelope of the capacity curve represents a plot of a set of external load 
consisting of a pair of axial and bending moment. The selected section in this case is 
adequate to support the external load.  
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The part of the curve that is useful in structural analysis is the portion above the 
horizontal line at zero value of axial capacity. This could be either compression or tensile 
capacity as the case maybe since steel material can develop either strength equally. The 
lower part of the curve indicates tension capacity when part of the section is still subjected to 
compressive stresses. This condition of tension in the section occurs when the compressive 
depth c is less than that at balanced condition.  
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Figure 4: Schematic Locations of Key Points with Indicated Values 
 

Example 2: Plot the capacity curve along the diagonal of a concrete-filled rectangular 
steel tubular column with the concrete core dimension b = 254 mm. (10 inches) and d = 
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355.6 mm. (14 inches) with shell thickness = 25.4 mm. (one inch) and fc� = 32 MPa (5 kips 
per square inch), fy = 345 MPa (50 kips per square inch). Figure 5 is the plot of the capacity 
curve from Excel spreadsheets with indicated values of the axial capacity which can be 
developed as a function of the compressive depth c.  
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Figure 5: Plot of the Capacity Curve of the CFT Column 
 
 
COMPARISON  
 
Comparison between the analytical method and the standard interaction formula for biaxial 
bending can be made by using the results obtained above. The standard interaction formula 
for biaxial bending uses the sum of the ratios of the moments at orthogonal axes not to 
exceed unity or one.  

Table 1 will show the results of example 1 and apply the standard interaction formula 
using the values as follows: At key point S, MR = 96 kN-m., P = 1521 kN, θ = 0.588 radian, 
M1 = 127 kN-m., M2 = 100 kN-m., Pmax = 3042 kN.  
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The table is constructed such that M1� = MR� cos θ; M2� = MR� sin θ; R1 = M1�/M1; R2 = 
M2�/M2 ; R = MR�/MR. 

 
Table 1: Limitations of the Standard Interaction Formula for Biaxial Bending for Steel 

Tubing 
 

M1' M2' MR' R1 R2 R1 + R2 R %
80 53 96 0.629 0.533 1.161 1.00 100
78 52 94 0.616 0.521 1.137 0.98 98
77 51 92 0.603 0.510 1.113 0.96 96
75 50 90 0.590 0.499 1.089 0.94 94
73 49 88 0.577 0.488 1.065 0.92 92
72 48 86 0.563 0.477 1.040 0.90 90
70 47 84 0.550 0.466 1.016 0.88 88
68 45 82 0.537 0.455 0.992 0.85 85
67 44 80 0.524 0.444 0.968 0.83 83
65 43 78 0.511 0.433 0.944 0.81 81
63 42 76 0.498 0.422 0.919 0.79 79
62 41 74 0.485 0.410 0.895 0.77 77
60 40 72 0.472 0.399 0.871 0.75 75
58 39 70 0.459 0.388 0.847 0.73 73
57 38 68 0.446 0.377 0.823 0.71 71
55 37 66 0.432 0.366 0.799 0.69 69
53 36 64 0.419 0.355 0.774 0.67 67
52 34 62 0.406 0.344 0.750 0.65 65
50 33 60 0.393 0.333 0.726 0.63 63
48 32 58 0.380 0.322 0.702 0.60 60
47 31 56 0.367 0.311 0.678 0.58 58
45 30 54 0.354 0.300 0.653 0.56 56
43 29 52 0.341 0.288 0.629 0.54 54
42 28 50 0.328 0.277 0.605 0.52 52
40 27 48 0.314 0.266 0.581 0.50 50
38 26 46 0.301 0.255 0.557 0.48 48
37 24 44 0.288 0.244 0.532 0.46 46
35 23 42 0.275 0.233 0.508 0.44 44
33 22 40 0.262 0.222 0.484 0.42 42
32 21 38 0.249 0.211 0.460 0.40 40
30 20 36 0.236 0.200 0.436 0.38 38  

 
Note that the sum of the ratios for biaxial bending can capture 85% of the capacity of the 

section. The ratio of the axial loads is equal to 1521/3042 = 0.50. When this ratio is added to 
R1 + R2 we have to go down under this column to obtain about only 44% of capacity. Also, 
the biaxial bending capacity is (96/127) x100% = 76 % of the uniaxial capacity.  

Similarly For example 2 we have the analytical results as follows: At key point U, MR = 
1047 kN-m., P = 1268 kN, M1 = 1229 kN-m., M2 = 993 kN-m and Pmax = 9485 kN.  θ = 
0.62025 radian. These values are used to construct Table 2 below. 
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Table 2: Limitations of the Standard Interaction Formula for Biaxial Bending for CFT 
Rectangular Column 

 
M1' M2' MR' R1 R2 R1 + R2 R3 R1 + R2  + R3 R %
852 609 1047 0.693 0.613 1.306 0.134 1.440 1.00 100
834 596 1025 0.679 0.600 1.279 0.134 1.412 0.98 98
814 581 1000 0.662 0.585 1.247 0.134 1.381 0.96 96
793 567 975 0.646 0.571 1.216 0.134 1.350 0.93 93
773 552 950 0.629 0.556 1.185 0.134 1.319 0.91 91
753 538 925 0.612 0.541 1.154 0.134 1.288 0.88 88
732 523 900 0.596 0.527 1.123 0.134 1.256 0.86 86
712 509 875 0.579 0.512 1.092 0.134 1.225 0.84 84
692 494 850 0.563 0.498 1.060 0.134 1.194 0.81 81
671 480 825 0.546 0.483 1.029 0.134 1.163 0.79 79
651 465 800 0.530 0.468 0.998 0.134 1.132 0.76 76
631 450 775 0.513 0.454 0.967 0.134 1.100 0.74 74
610 436 750 0.497 0.439 0.936 0.134 1.069 0.72 72
590 421 725 0.480 0.424 0.904 0.134 1.038 0.69 69
570 407 700 0.463 0.410 0.873 0.134 1.007 0.67 67
549 392 675 0.447 0.395 0.842 0.134 0.976 0.64 64
529 378 650 0.430 0.380 0.811 0.134 0.945 0.62 62
509 363 625 0.414 0.366 0.780 0.134 0.913 0.60 60
488 349 600 0.397 0.351 0.748 0.134 0.882 0.57 57
468 334 575 0.381 0.337 0.717 0.134 0.851 0.55 55
448 320 550 0.364 0.322 0.686 0.134 0.820 0.53 53
427 305 525 0.348 0.307 0.655 0.134 0.789 0.50 50
407 291 500 0.331 0.293 0.624 0.134 0.757 0.48 48
387 276 475 0.315 0.278 0.593 0.134 0.726 0.45 45
366 262 450 0.298 0.263 0.561 0.134 0.695 0.43 43
346 247 425 0.281 0.249 0.530 0.134 0.664 0.41 41
325 232 400 0.265 0.234 0.499 0.134 0.633 0.38 38  

 
Again, the standard interaction formula for biaxial bending can only capture 64% of the 

potential capacity of the rectangular CFT column section. 
 
CONCLUSION 
 
The standard interaction formula for biaxial bending should no longer be included in all 
structural calculations since the analytical method has been proven to be the more accurate 
and efficient method of analysis for the capacity of rectangular steel tubular columns. 
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