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Abstract 
Numerous factors affect water quality in the distribution networks and the interactions 

amongst them are complex and often not well understood. Water quality failures in 
distribution systems are scarce, which make statistically significant generalizations difficult. 
However, the rarity of water quality failures belies their seriousness, since each failure 
indicates the potential for harmful public health effects and increased public mistrust and 
complaints. In such data-sparse circumstances, expert knowledge and judgment can serve as 
an alternative source of information. 

Fuzzy cognitive map (FCM) is, as the name suggests, a map of interconnected factors, 
each of which can interact with some or all of the others, to represent a specific process or 
behaviour of a network or system. A predictive model based on a FCM is a plausible way to 
comprehend ill-defined and complex relationships that govern water quality in the 
distribution network. The proposed FCM model is defined in two levels to help reduce the 
complexity of the system. At the modular (lower) level, rule-based FCMs are proposed for 
various deterioration mechanisms, which contribute to water quality failure in distribution 
networks. At supervisory (higher) level, a FCM is proposed, which employs fuzzy measures 
to interpret activation signals generated from modular FCMs to predict various types of water 
quality failures in distribution networks. 

Key words 
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INTRODUCTION 
Complex systems that consist of a large number of interacting entities may be broken down 
into factors or concepts. In the paper, the terms factor and concept are used interchangeably 
to represent nodes of the complex system. Complex systems usually have high nonlinearity 
and cannot be derived from sheer summation of the behaviour of individual factors. The 
modelling of complex dynamic systems requires methods that combine human knowledge 
and experience as well as expert judgment. 

Bayesian networks can represent expert knowledge in domains where knowledge is 
uncertain, ambiguous, and/or incomplete. Pearl (1982) claimed that classical probability 
theory is a reliable method to represent uncertainty, around which an expert system 
methodology – the Bayesian network – can be built. However, Bayesian networks have 
limitations in obtaining reliable conditional probabilities, and may lead to computational 
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intractability, and inability to model vagueness and ambiguity. In Bayesian networks, all 
events in a system are considered equal and assigned the same binary value - yes or no. This 
approach has very little resemblance to most real-world problems as pointed out by Liu 
(2002). 

Eden et al. (1992) defined a cognitive map as a “…directed graph characterized by a 
hierarchical structure which is most often in the form of a means/end graph.” Cognitive maps 
express the judgment that certain events or actions will lead to particular outcomes. 
Cognitive maps have been successfully used for decision-making, prediction, explanation 
and strategic planning (Sadiq et al. 2004a). 

FUZZY COGNITIVE MAPS (FCMS) 
Fuzzy cognitive map (FCM), an extension of cognitive map, is an illustrative causative 
representation of the description and model of complex systems (Kosko 1997). FCM draws a 
causal representation among all identified factors or concepts of any specific system. FCM is 
interactive in the sense that all factors interact with each other dynamically. A complex 
system represented by FCM can incorporate human experience, understanding and 
knowledge of the system.  

FCM consists of nodes (factors, concepts) and weighted arcs (causal strength, connection, 
edge), which are graphically illustrated as signed weighted graph(s) with optional feedback 
loops. Nodes on the graph represent concepts describing behavioural characteristics of the 
system. Concepts can be inputs, outputs, variables, states, events, actions, goals, and trends 
of the system. Signed weighted arcs represent causal relationships that exist among concepts. 

Kosko (1997) proposed an inferencing method to calculate the value of each concept 
(factor) based on the influence of the interconnected concepts (factors):  
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where wij ∈ [-1, 1] represents the causal relationship between concept i and concept j, and the 
negative sign represents the inverse causation. At

j is the normalized (At
j ∈ [0, 1]) value (a.k.a. 

activation level) of concept Cj at time step t, and f(⋅) is known as the threshold function. 

Generally, a sigmoid function ( )
xe

xf
λ−+

=
1

1 is used to constrain the value of f (x) in the 

interval [0, 1], where λ > 0 represents the steepness of f (x). The coefficient ki
1 expresses the 

influence of interconnected concepts in the configuration of the new value of concept Ai. 
Similarly, kj

2 accounts for the importance of a concept itself being at its activation level in the 
previous time step. The selection of coefficients ki

1 and kj
2 depends on the nature and type of 

each concept, and may naturally differ from concept to concept. Kosko (1997) suggested that 
the previous value of each concept did not participate in the calculation of the new value of a 
concept (i.e., kj

2 = 0) and also proposed ki
1 = 1. Therefore, Equation (1) reduces to simple 

sigmoid transformation of weighted arithmetic mean,  
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If the FCM model has no feedback system (i.e., directed acyclic graph, DAG), the above 
equation can be written as 
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 Alternatively, the inferencing of FCM nodes can be generalized using any disjunctive 
operator (or an s-norm) and conjunctive operator (or a t-norm) instead of sum-product 
inferencing in Equation (3). A classical example is the use of minimum (t-norm) and 
maximum (s-norm) operators, where Equation (3) can be re-written as   
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Traditionally, causal connections in FCMs are used to describe the relationships in a 
forward-inferencing and monotonic way (Khan and Khor 2004). For example, if there is a 
positive causal link of certain strength (wij) between a causal node Ci and effect node Cj, the 
state value Aj will increase (decrease) with any increase (decrease) in the state value Ai. In 
rule-based modeling framework this concept can be translated into fuzzy rules. 

For example, the negative causality (monotonically decreasing) can be represented by 
fuzzy rules such as: “If Ci is high (low, medium) then Cj is low (high, medium)” (wij < 0 in 
traditional FCM). Conversely, the positive causality (monotonically increasing) can be 
represented by fuzzy rules such as: “If Ci is low (high, medium) then Cj is low (high, 
medium)” (wij > 0 in traditional FCM). 

However, real-world problems are often non-monotonic, which cannot always be dealt 
within traditional FCMs, but could be efficiently handled through fuzzy rule-based 
relationships (Khan and Khor 2004). For example, the non-monotonic causality can be 
represented by fuzzy rules such as: “If Ci is low (high, medium) then Cj is low (low, medium 
or high)”. 

In the case of multiple causal nodes, inferencing can be made in two possible ways, 
namely, rule-based FCMs i.e., either through the use of aggregation (weighting) of SISO 
(single-input-single-output) or MISO (multiple-inputs-single-output) fuzzy models. Proper 
choices are made by keeping the dimensionality issues of causal nodes in mind. The 
elaborations on these two models are beyond the scope of this paper (Khan and Khor 2004; 
Kleiner et al. 2005).  

FUZZY MEASURES THEORY 
A significant aspect of ‘aggregation’ is the assignation of weights to the different factors. 
Until recently, the most often used weighted aggregation operators were averaging operators, 
such as the quasi-linear means as in Equation (3). However, the weighted arithmetic means 
and, more generally, the quasi-linear means present some drawbacks. None of these 
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operators are able to consider interaction between factors (concepts) in some comprehensive 
manner, which makes them unsuitable.   

The term fuzzy measure was first introduced by Sugeno (1974). However, this term 
referred to a notion named ‘capacity’ which was first introduced by Choquet (1953). Over 
the years the same notion has been referred to by many different names, such as ‘confidence 
measure’ (Dubois and Prade 1980), ‘non-additive probability’ (Schmeidler 1986; 1989), and 
‘weighting function’ (Tversky and Kahneman 1992). Complex interaction between factors 
(i.e., sub- and super-additive) are best introduced by assigning a non-additive set function 
that permits the definition of weights to a subset of factors rather than to an individual factor. 

FUZZY MEASURES 
It is widely accepted that additivity is not suitable as a required property of set functions in 
many real situations, due to the lack of additivity in many facets of human reasoning (Ross 
2004). Sugeno (1974, 1977) proposed to replace the additivity property by a weaker one - 
monotonicity and called these non-additive (monotonic) measures ‘fuzzy measures’. 
However, it is important to note that fuzzy measures are non-related to fuzzy sets, typically 
used to express human subjectivity (Sugeno 1974). 

For a discrete set x of n elements x = {x1,…, xn}, a (discrete) fuzzy measure on θ is a set 
function µ: 2⏐x⏐ → [0, 1] satisfying the following conditions (where ⏐x⏐is the cardinality of 
a discrete set) 

• µ(φ) = 0, µ(x) = 1, (where φ is a null subset) 
• S ⊆ T ⇒ µ(S) ≤ µ(T). (monotonicity) 

For any S ⊆ X, µ(S) can be viewed as the weight or strength of the combination S for the 
particular decision problem under consideration. Thus, in addition to the usual weights on 
criteria taken separately, weights on any combination of criteria can also be defined. 
Monotonicity then means that adding a new element to a combination cannot decrease its 
importance (Marichal 1999). For example, S ={x1} and T = {x1, x2} are the (sub)sets of 
x = {x1, x2, x3}. The corresponding fuzzy measures, e.g., µ({x1})  = 0.5 and µ({x1, x2}) = 0.7 
fulfill the monotonicity condition. The fuzzy measure µ({x1, x2, x3}) of the discrete set x (or 
sample space) will always be 1. 

FUZZY INTEGRALS 

Sugeno (1974, 1977) also introduced the concept of fuzzy integrals to develop tools capable 
of integrating all values of a function in terms of the underlying fuzzy measure (μ). An 
integral of fuzzy measures in a sense represents an aggregation operator, which contrary to 
the weighted arithmetic means, describes interactions between criteria ranging from 
redundancy (negative interaction, i.e., sub-additive) to synergy (positive interaction, i.e., 
super-additive). Several classes of fuzzy integrals exist, among which the most 
representatives are those suggested by Sugeno and Choquet (Marichal 1999). 

The Choquet integral Cμ(x), first proposed by Schmeidler (1986) and later by Murofushi 
and Sugeno (1989, 1991), is based on an idea introduced in “capacity theory” by Choquet 
(1953). Cμ(x) is an aggregation operator, where the integrand is a set of n values 
x = {x1,…, xn}. The Choquet integral of a function x with respect to µ is defined by 
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where x(1) ≥  x(2)  ≥ …  ≥  x(n) represent the order of xi (also called utility values) in set x in 
descending order. The utilities x1,…, xn in our case can be replaced by activation levels of 
causal nodes. Therefore, Choquet integral can be used for inferencing in FCMs and can be 
re-written using Equations (3) and (5),  
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where ( ))()2()1( ,{ iAAA Lμ  are fuzzy measures similar to causal weights (wij). Interested 
readers should refer to Grabisch (1996) for details.  

WATER QUALITY IN DISTRIBUTION NETWORKS 

Water quality is generally defined by a collection of upper and lower limits on selected 
performance indicators (Maier 1999). A water quality failure is often defined as an 
exceedance of one or more water quality indicators from specific regulations, or in the 
absence of regulations, exceedance of guidelines or self-imposed limits driven by customer 
service needs (Sadiq et al. 2004b). 

A typical modern water supply is a complex system that comprises water source(s), 
treatment plant(s), transmission mains, and the distribution network, which includes pipes, 
pumps and distribution tanks. While water quality can be compromised at any component, 
failure at the distribution level can be critical because it is closest to the point of delivery and, 
with the exception of rare filter devices at the consumer level, there are virtually no safety 
barriers before consumption. Water quality failures that compromise either the safety or the 
aesthetics of water in distribution networks, can generally be classified into the following 
major categories (Kleiner 1998): 

• Intrusion of contaminants into the distribution network through system components 
whose integrity is compromised or through misuse or cross-connection or intentional 
introduction of harmful substances in the water distribution network 

• Regrowth of microorganisms in the distribution network. 

• Microbial (and/or chemical) breakthrough and by-products, and residual chemicals from 
the water treatment plant. 

• Leaching of chemicals and corrosion byproducts from system components into the 
water. 

• Permeation of organic compounds from the soil through system components into the 
water supplies. 

Water distribution networks may comprise (depending on the size of the water utility) 
thousands of kilometres of pipes, which can vary in age, material, installation practices and 
operational and environmental conditions. Since the pipes are not visible, it is relatively 
difficult and expensive to collect data on their performance and deterioration, and therefore 
few field data are typically available. Further, it is often difficult to determine or validate the 
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exact cause of a water contamination event or an outbreak of a waterborne disease because 
such episodes are often investigated after the occurrence has ended. This multitude of water 
quality failure types, combined with the inherent complexity of the distribution networks, 
makes risk analysis a highly challenging task and subject to substantial uncertainties.  

NESTED FUZZY COGNITIVE MAP FOR PREDICTING WATER QUALITY FAILURES 
We have identified more than fifty key concepts (factors) to model water quality 
deterioration in aging water mains. These concepts are essential for building a reliable model. 
Although one can conceive additional factors for FCM model, which may influence water 
quality in distribution networks, but it does not necessarily mean results become more 
reliable. We abided to the principle of Occam’s razor, “one should not increase, beyond what 
is necessary, the number of entities required to explain anything”, for the selection of 
concepts for the FCM model.  

Figure 1 describes the complexity of proposed FCM. The model is developed using 
nested FCMs in two levels. At lower level, 7 modules containing MISO type rule-based 
FCMs for deterioration mechanisms are identified, which include potential for intrusion (PI), 
internal corrosion (IC), potential for leaching (PL), potential for biofilm formation (PB), 
disinfection loss and disinfection byproducts formation (DD), potential for permeation (PP) 
and water treatment breakthrough and insufficient treatment (TB). Each module contains 
multitude of basic concepts (nodes or factors). For example, a rule-based FCM for “potential 
for intrusion” is shown in Figure 1A. The arrow sign (→) shows basic inputs for which the 
information is required. Multiple rule-bases (Ri) are identified in this FCM (Figure 1A) to 
estimate the potential for intrusion. Similar rule-based FCMs are proposed for the other 
deterioration mechanisms. The inferencing from each of these FCMs provides an activation 
signal to the supervisory FCM, which is used to predict water quality failures (Figure 1B) at 
the supervisory (higher) level. Discussion on the inferencing method used in rule-based 
FCMs is beyond the scope of this paper, however the interested readers are referred to Khan 
and Khor (2004).  

Figure 1B describes supervisory FCM at higher level, which takes inputs from individual 
rule-based FCMs. Many basic concepts are common in more than one of these rule-based 
FCMs, which demonstrate a strong interconnectedness among the activation signals. Fuzzy 
measures are proposed for inferencing to account for this interconnectedness.  

An aesthetic water quality failure (A-WQF) is used in this paper as an example to 
describe the applicability of the proposed methodology for supervisory FCM. Figure 1B 
shows how the activation signals from internal corrosion (IC), potential for leaching (PL), 
potential for biofilm formation (PB), and water treatment breakthrough (TB) feed into a node 
of an aesthetic water quality failure (A-WQF). Therefore, the sample space for A-WQF is θ = 
{IC, PL, PB, TB}. The power set 2⏐θ⏐requires defining 16 fuzzy measures as summarized in 
Table 1. Lattice representations of the power set of A-WQF are also shown in Table 1. Sub-
additive (redundant) relationship refers to a case when individual rule-based FCMs contain 
many basic factors which are in common in the modular FCMs, whereas super-additive 
(synergetic) relationships refers to a case when there are very few (or none) basic factors in 
common. The fuzzy measures provided in Table 1 are derived here arbitrarily based on 
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semantics (expert judgment). However, many alternative objective methods exist in the 
literature to derive these measures (Grabisch 1996). 

Assume that the activation signals (using rule-based FCMs) for internal corrosion (IC), 
potential for leaching (PL), potential for biofilm formation potential (PB) and water 
treatment breakthrough (TB) are as 0.4, 0.1, 0.5 and 0, respectively, i.e., 

A{IC} = 0.4 A{PL} = 0.1  A{PB} = 0.5  A{TB} = 0 

Re-ordering is required to use Choquet fuzzy integral. The activation signals in 
descending orders are 

A({PB}) = 0.5 A({IC}) = 0.4  A({PL}) = 0.1  A({TB})= 0 

Using Equation (6), the activation level for A-WQF can be determined as follows 

A{A-WQF} = [A({PB}) - A({IC})] × μ ({PB}) + [A({IC}) - A({PL})] × μ ({IC, PL}) + [A({PL}) - A({TB})] 
× μ ({IC, PL, PB}) + A({TB}) × μ ({IC, PL, PB, TB}) 

A{A-WQF} = [0.5 – 0.4] × 0.3 + [0.4 – 0.1] × 0.85 + [0.1 – 0] × 1 + 0 × 1 = 0.385 

Therefore, under these conditions the A-WQF is activated at a level of ≈ 0.39. 
Similarly, fuzzy measures need to be defined for physico-chemical water quality failure  

(PC-WQF) and microbial water quality failure (M-WQF). Note that for PC-WQF, 26 = 64 
fuzzy measures will be required, whereas 24 = 16 fuzzy measures are required for M-WQF.   

CONCLUSIONS 
Numerous factors affect water quality in the distribution networks and the interactions 

amongst them are complex and often not well understood. Water quality failures in 
distribution networks are scarce, which make statistically significant generalizations difficult. 
A nested predictive model using fuzzy cognitive map (FCM) is proposed to comprehend 
these ill-defined and complex relationships that govern water quality in the distribution 
network. At the modular (lower) level, seven rule-based FCMs are proposed for various 
deterioration mechanisms, which contribute to water quality failure. At supervisory (higher) 
level FCM is proposed which employs fuzzy measures to interpret activation signals of 
modular FCMs to predict water quality failures in distribution networks. 
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Table 1: Fuzzy measures for aesthetic water quality failures (A-WQF) 

Fuzzy measures μi Lattice representation of the power set of A-WQF (θ) 

 0.00 

μ ({IC}) 0.70 

μ ({PL}) 0.40 

μ ({PB}) 0.30 

μ ({TB}) 0.50 

μ ({IC, PL}) 0.80 

μ ({IC, PB}) 0.85 

μ ({IC, TB}) 0.90 

μ ({PL, PB}) 0.75 

μ ({PL, TB}) 0.85 

μ ({PB, TB}) 0.70 

μ ({IC, PL, PB}) 1.00 

μ ({IC, PL, TB}) 1.00 

μ ({PL, PB, TB}) 1.00 

μ ({IC, PB, TB}) 1.00 

μ (θ)= μ ({IC, PL, PB, TB}) 1.00 

 

θ
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