
A COURSE IN COMPUTER-AIDED ENGINEERING FUNDAMENTALS

Ian F.C. Smith1 and John Miles2

1Ecole Polytechnique Fédérale de Lausanne (EPFL), Structural Engineering Institute, Station 18
1015 Lausanne EPFL,Switzerland, Ian.Smith@epfl.ch
2Cardiff University, School of Engineering, The Parade, Cardiff CF24 3AA, UK

Abstract

Civil Engineers have over the last 50 years moved from being pioneers in the use of computers to
being the least computer literate and the least progressive of all engineers. This paper looks briefly
at the reasons for this transformation, linking part of the problem to standard civil-engineering
computing education. Computing education of engineers should be structured so that it provides an
appreciation of the basic aspects of computing and information science. A set of teaching modules
is proposed in order to improve teamwork with computer scientists in the workplace, increase
capacity for informed purchase decisions and provide more technical agility for future
developments in information technology.

Introduction

Engineers have difficulties performing tasks that involve computing because they lack a
fundamental knowledge of computer science and software engineering. This means that when they
use standard computer packages, they fail to understand strengths and weaknesses because of a lack
of fundamental knowledge of basic concepts such as data structures and computational complexity.
Also, a lack of knowledge of the range of available techniques leads them to use inappropriate
methods. For example engineers may attempt to search for good solutions using unsystematic
repetitive runs of simulation packages rather than, for example, stochastic search algorithms. After
generation of a small number of simulation results they thus claim to have found the optimum
solution. Such lack of knowledge results in badly thought out and poor quality solutions for clients.

While teaching computational mechanics within engineering degree schemes is well developed,
fundamental computing education is scarce at the undergraduate level. This paper looks at a new
approach to computing education for engineers. Rather than, as occurs in many universities, create
under-trained programmers and engineers who have a rudimentary knowledge of a few current or
legacy software tools, this course aims to provide a fundamental understanding of important and
fundamental topics in computing. Engineers should think before they type. Computing is both a
science and an engineering discipline, not just a skill.

On July 14, 2005 the Global Center for Excellence in Computing [1] was formally established in
Cancun Mexico by the American Society of Civil Engineers. Its mission is to provide global
leadership in research, education and technology transfer and to encourage the best possible use of
computing in civil engineering. Although initially seed funded by the American Society of Civil
Engineers, one goal of the Center is to become self sustaining financially within the next three
years. This will be done through revenue from a one week ASCE Certificate Course on the
fundamentals of computing. Funds from teaching activities will be used to sponsor global research
projects. This paper describes the outline of the first version of this course that is intended initially
for practicing engineers.

June 14-16, 2006 - Montréal, Canada
Joint International Conference on Computing and Decision Making in Civil and Building Engineering

Page 430

Motivation

Although civil engineers were the first engineers to use computers in 1956, they have been slow to
adopt new methods and technologies. One explanation for this could be described as the paradox of
being first. Early use has lead to complacency regarding the importance of advances in information
technology and this has subsequently lead to inappropriate use and unnecessary costs. Also, the
control of computing education in most civil engineering departments has been in the hands of the
computational mechanics community who see little need for anything but FORTRAN (C and Java
for the more adventurous) and algorithms are limited to those associated with finite element
analysis.

Thus to many academics, computing is a relatively simple subject consisting of the teaching of
loops, input and output and conditional statements. Such a simple and well established topic is not
the sort of material that should be taught in a high level degree scheme and this has damaged the
image of computing in civil engineering resulting in insufficient allocation of appropriate teaching
time within undergraduate curricula. Our young engineers are ill prepared to recognize
opportunities and benefit from new technologies. In practice, the use of computing for high value-
added activities in civil engineering is now the lowest of all engineering domains. Having been the
first engineers to apply computing, we are now last in terms of our comprehension of the science
and use of the technology.

Over the past decade, attempts to remedy this situation have met with mixed results. For example,
arguing that civil engineers rarely program computers in their professional lives, some universities
have eliminated programming courses from their study programs. In their place, courses in
specialized areas, such as construction, have been given more time to introduce special purpose
software tools for use in project courses.

While such training may make engineering students more immediately useful, uncontrollable
events may make these efforts futile. For example, new software versions may be released,
software companies could go bankrupt and employers may adopt other software for their work.
Also this sort of training, where one is mechanically taught to use a tool rather than understand and
appreciate the technology, is the sort of training one would expect to be given to technicians rather
than professional engineers. Finally from a long-term perspective, such education is a weak
preparation for future developments in information technologies.

How can civil engineers benefit the most from current and future information technologies? This
course provides a solution. Civil engineers need to have a better knowledge of those fundamental
aspects of computer science that are relevant to civil engineering. Such aspects are the basis of
advances downstream when new information technologies are developed. In this way engineers
become better prepared to judge current and future proposals. Furthermore, while most engineers
may not program, many will be asked to participate in teams with computer specialists for tasks
such as information representation, project support, knowledge management and purchase of
computer infrastructure. Since teamwork is most effective when players have close technological
cultures, in addition to showing engineers how they need to participate, this course will help build
trust between team members and thus avoid costly mistakes.

The course, which is described below, is organized into modules that are derived from fundamental
topics in computer science. Taught by civil engineers with much practical experience, examples are
drawn from civil engineering cases and practical experience. At the end of modules, exercises give
students the opportunity to apply what they have learned to civil engineering situations.

June 14-16, 2006 - Montréal, Canada
Joint International Conference on Computing and Decision Making in Civil and Building Engineering

Page 431

Teaching Plan

A one-week course has been created to be given to engineers working in practice at the end of this
year. The total course time is 32 hours over 4.5 days (Monday morning to Friday noon). In its first
version, it is a distillation of a course given at EPFL [2] and Cardiff University. The following nine
modules will be offered using many civil-engineering examples. Apart from the examples, the
material is core knowledge within computer science courses that may be given over 1-2 semesters.
Only knowledge that is unquestionably relevant to computer-aided engineering has been retained.
After each 2-3 hour package of lectures, students receive an hour to complete exercises that were
largely inspired from civil-engineering tasks. All exercises are performed in the classroom in the
absence of a computer. This serves to underline that many concepts are independent of hardware
and software technologies and more importantly, that much thinking is beneficial when it is done
upstream from computer use.

1. Identifying the type of problem (3 hours)

• Fundamental logic in open and closed worlds
• Importance of abductive tasks and their difference with respect to simulation and analysis

tasks
• Engineering tasks – identification of deductive, inductive and abductive tasks in engineering
• Setting the scope for computer-aided engineering challenges of the future

Exercises: Matching engineering tasks to types of logic

2. The limits of computing - dealing with complexity, who / what makes the decisions (4 hours)

• Why computers cannot do everything: estimating trends in execution time, why computers
can do some things very well

• Big O notation
• Why bigger computers will sometimes not help: classification of functions
• Tractability and algorithm optimality
• Determining the complexity of tasks
• P, NP and NP completeness
• What do engineers do?

Exercises: Using O-Notation to estimate the effect of task size

3. Representing information (5 hours)

• Garbage in garbage out
• Data structures – lists, graphs, trees, stacks, queues
• Knowledge structures
• OOP – classes, encapsulation, abstract, polymorphism, message passing, decomposition

hierarchies, agents
• Ontologies – creation, incremental growth, maintenance

Exercises: Cycles in message passing, ontology creation

4. Designing relational data bases (4 hours)

• Relational model
• Functional dependencies
• Normal forms
• Up-date anomalies

Exercises: Design of a robust database from functional dependencies

June 14-16, 2006 - Montréal, Canada
Joint International Conference on Computing and Decision Making in Civil and Building Engineering

Page 432

5. Optimization, search and exploration (6 hours)
• Although engineers can rarely optimize in an open world, some mathematical techniques

help the search for good solutions
• Types of optimization problems
• Objective functions, goals and constraints
• Gradient methods
• Stochastic search – evolutionary algorithms, simulated annealing, probabilistic methods
• Multi-criteria optimization: Pareto and other approaches

Exercises: Gradient optimization, solution space creation, stochastic search

6. Learning from experience (4 hours)

• Company experience is valuable
• Case based reasoning – five stages – difference between CBR and information retrieval
• Statistical learning - ANN
• Inductive learning – ID3, Entropy
• Data mining

Exercises: Case based reasoning, ANN, Entropy

7. Decision support (2 hours)

• Why keep knowledge?
• Types of knowledge
• Rule bases – chaining
• Linking to analysis software
• Appropriate presentation of information
• Agents
• Challenges and risks

Exercises: Rule chaining, updating, agent information cycling

8. Graphics and geometrical modeling (2 hours)

• Why bad graphics leads to higher costs
• Geometrical representation: Parametric CAD, sweep, Bézier, boundary representations,

winged edge representations, geometric solid modeling
• Displaying information: projections, shading, lighting, textures

9. Distributed systems (2 hours)

• What is wrong with mainframes?
• Why link computers together?
• Client-server architectures
• World Wide Web,
• Grid computing
• Peer-to-peer networks
• Computer Supported Collaborative Work
• Agents

Within all of these modules, several recurrent themes emerge. Firstly, software has to be designed
so that it is robust in terms of modifications and changes. Since the most dominant constant in civil
engineering practice is the fact that everything changes, representations and reasoning strategies
must be selected so that typical modifications require a minimum of modifications elsewhere and
that no information is lost. For example, relational data bases in their first and second normal forms

June 14-16, 2006 - Montréal, Canada
Joint International Conference on Computing and Decision Making in Civil and Building Engineering

Page 433

should be avoided, changes should not induce exponential complexity in algorithms and gradient
search strategies should not be exposed to changed objective functions that have multiple local
minima.

A second theme is that even though practicing civil engineers may never carry out a full-scale
computing implementation alone, they must participate with computer specialists in order to ensure
that civil-engineering knowledge is modeled correctly. For example, only civil engineers can
provide the domain knowledge necessary to formulate heuristics for NP complete problems,
functional dependencies for relational data-base design, data structures for the right internal
representation and the best design for client-server configurations. Leaving these decisions to
computer specialists is a recipe for poor returns on investment. While testing may ensure that
systems run satisfactorily at the beginning, high maintenance costs eventually cripple systems that
do not adequately account for the way engineers work and the way engineering information has
been represented and understood by the profession.

A third recurrent theme is that black-box computing, where engineers provide input and collect the
output without knowledge of how the output was created, is not appropriate for full-scale practical
systems. Engineers perform abductive tasks in open worlds where they are legally responsible for
their decisions. They need to know exactly how, and under which assumptions, computer output is
created. They must also be able to introduce information at intermediate stages. This means that,
for example, data structures should be as close as possible to those currently employed in codes of
practice, constraints on search spaces should reflect realistic design constraints, visualization
should be as realistic as possible and user interfaces should be compatible with the knowledge and
capacity of professional civil engineers.

A fourth theme involves justifying complication. There are many ways to do the same thing with
different combinations of representations and reasoning strategies. Engineers need to choose the
simplest possible combination for the task at hand. Greater complication has to be justified. For
example, for an optimization task, if the objective function is monotonic, only boundaries need to
be explored for optimal values. If there is only one minimum (maximum) within the problem
constraints, gradient optimization methods are sufficient. Stochastic (evolutionary) methods are
justified only when it is known that that there are multiple local minima (maxima) within problem
constraints that define large search spaces. If the search space is small, exhaustive search is best.

All of these themes are treated in several places throughout course. In this way, the course modules
are not understood to be independent capsules of unrelated bits of information science for
engineers. Through such recurrent ideas, civil engineers are shown that the have an essential role in
the development of computer systems in civil engineering. For large computer systems, they also
see how their knowledge must be integrated into a team effort with computer specialists in order to
ensure successful long-term results.

Conclusions

Even after decades of advances in IT, applications in civil engineering are often unsystematic
combinations of commercial tools and macro programs that are developed in-house for personal
use. There is also a woeful lack of knowledge regarding what representations and reasoning
strategies are available and in what contexts these techniques are best suited. In spite of this, the
importance of computing is increasing as engineering firms strive to maintain competitiveness. It is
therefore important to offer fundamental computing courses to practicing engineers and to
modernize engineering curricula. Faced with the unknown future of computing applications,
knowledge of computing fundamentals is important for engineers to maintain technical agility and
to avoid unnecessary costs due to poorly performing and inappropriate computer systems.

June 14-16, 2006 - Montréal, Canada
Joint International Conference on Computing and Decision Making in Civil and Building Engineering

Page 434

Acknowledgements

Professor Tomasz Arciszewski (George Mason University) was instrumental in the formation of the
ASCE Global Center for Excellence in Computing and all members of the Executive Committee of
the Technical Council for Computing and Information Technology, ASCE have given their full
support. While they were at EPFL, Prof. B. Raphael (NUS, Singapore) and Prof. K. Shea (TU
Munich, Germany) helped develop the postgraduate seminar that has eventually led to the
development of much of this course material. Also, contributions from Prof. S. Fenves, Dr. B.
Domer and Dr. Y. Robert-Nicoud are gratefully recognized.

References

[1] http://www.asceGlobalCenter.org/
[2] Raphael, B and Smith, I.F.C. "Fundamentals of Computer-Aided Engineering", John Wiley,
2003, 306p.

June 14-16, 2006 - Montréal, Canada
Joint International Conference on Computing and Decision Making in Civil and Building Engineering

Page 435

http://www.asceglobalcenter.org/

