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ABSTRACT 
 

Essential mechanical properties of materials can be assessed via the reverse analysis based on load-
displacement curves of dual indenters of different geometries. Two models namely the artificial 
neural networks (ANN) involving empirical risk minimization and  the least squares support vector 
machines (LS-SVM) of the structural risk optimization group are constructed to determine the 
material properties via the load-indentation curves. The mapping of the load-indentation parameters 
to the material properties is formed and calibrated using function approximation procedure. Extensive 
large strain-large deformation finite element analyses were carried out to simulate the indentation of 
elasto-plastic materials obeying power law-strain hardening using both Berkovich and conical 
indenters. The study covers the material properties of a wide practical range with 680 datasets for 
each indenter. The results are displayed as surfaces describing the variations of load-indentation 
parameters and employed as inputs to the proposed neural network models. Both networks are robust 
and directly relate the the load-indentation parameters to the elasto-plastic material properties without 
involving iterative procedure. The method has wide potential applications on material 
characterization in semi-conductor and thin film industries including MEMS and NEMS. 
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INTRODUCTION 
 
The instrumented indentation test can be adopted to extract essential mechanical properties 
of materials. The advent of the high precision instrumented indentation equipment and the 
need to characterize small volume of materials at micron and sub-micron levels inspired 
many researchers to carry out their work in the past decade (Oliver and Pharr. 1992). 
Forward and reverse analyses based on finite element results were proposed by Dao et al. 
(2001). The approach was extended to results based on dual indenters by Bucaille et al. 
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(2003), and Swaddiwudhipong et al. (2005c). Tho et al. (2004) demonstrated that the latter is 
necessary for uniqueness of reverse analysis.  
 Neural network models (Huber et al, 2002 and Suykens et al, 2002) formulated based 
on statistical learning theory are adopted to relate the characteristics of load-indentation 
curves with the mechanical properties of materials. Both traditional artificial neural networks 
(ANN) based on empirical risk minimization and  the support vector machines (SVM) of the 
structural risk minimization group are employed to extract the material properties from the 
characteristics of the load-displacement response of dual indenters of different geometries. 
The sets of information used for training and verification of the neural network models are 
obtained from extensive large strain-large deformation finite element analyses simulating the 
indentation of elasto-plastic materials obeying power law-strain hardening using both 
Berkovich and conical indenters. The extent of material properties included in the study 
covers the wide practical range of this class of materials. The tuned models will be shown to 
be able to predict the properties of a new set of materials reasonably accurately. Both 
proposed models are able to relate the characteristics of the load-indentation curves to the 
elasto-plastic material properties without resorting to any iterative procedure. 
 
SIMULATED INDENTATION TESTS 
 
Berkovich indentation is simulated by 3-D finite element analyses using ABAQUS (2002). 
Only one-sixth of the target materials have to be modeled as the Berkovich indenter 
possesses a three-fold symmetry. The indenter is idealized as a rigid body while the target 
material as deformable solids. A series of solid elements, C3D20-C3D27, is adopted to 
model the target materials with finer mesh in the vicinity of the contact region where high 
stress gradient is expected and gradually further away from the region. Convergence studies 
and the insensitivity to the far-field effect from boundary conditions have earlier been carried 
out by Swaddiwudhipong (2005a, 2006). For indentation depth of up to 5 microns, Tho 
(2005) has shown that both can be satisfied if 5338 second-order solid elements are 
employed for the domain size of 115.5, 200 and 150 micron for length AH, HI and AJ 
indicated in figure 1 respectively. Conical indentation tests have also been simulated via 
ABAQUS (2002). To satisfy the above 2 requirements at the same indentation depth of 5 
µm, the target bulk materials of 200x200 µm2 are modelled as 28900 four-node, bilinear 
axisymmetric quadrilateral elements.  
 Materials considered in this study are those obeying power law strain-hardening with 
the uniaxial true stress-true strain relationship expressed in Eq.(1). 
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Dao et al (2001) reported that the effect of indenter elasticity can be considered by replacing 
the Young’s modulus, E, of the target materials by a reduced value, E*, expressed in Eq.(2). 
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Y is the yield stress, n the strain-hardening power and v  the Poisson’s ratio of the target 
materials while subscript ( )i implies those of the indenter. A Poisson’s ratio of 0.33 which is 
common for the class of material considered is adopted. Smooth contact is assumed in this 
study as the effect of friction for indenters with half-angle larger than 60° can be ignored 
(Bucaille et al. 2003).  

 

 

 

 

 

 

 

                                                  

Swaddiwudhipong et al (2005c) showed via the relationship derived by Luk et al (1991) and 
Cheng and Cheng (1998) for results obtained from Berkovich and conical indentations 
respectively that 
 

                                                                   (3) 
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C represents the constant curvature of the loading protion, WT and WU are the areas under the 
loading and unloading curves respectively.as shown in figure 2 and the subscripts ( )B and 
( )C indicate the types of indenters used. Based on the results obtained from dual indenters, i.e. 
(i) Berkovich and (ii) conical of 60° half angle, 
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Figure 1:  Berkovich indentation model. Figure 2: Load-Indentation Relation 
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The functions f1B(E*/Y, n), f2B(E*/Y, n), f1C(E*/Y, n), f2C(E*/Y, n) and f3(E*/Y, n) are 
established based on the finite element results and the surfaces describing these functions are 
depicted in figures 3 to 5 respectively. Each small circle in the figures represent a numerical 
data point. Swaddiwudhipong et al (2005a) and Tho et al (2004a) demonstrated that the 
reverse analysis based on dual indenters leads to unique solutions of E*/Y and n and hence a 
one-to-one mapping of (CB)/(CC), (WR/WT) B and (WR/WT) C to E*/Y and n. 
 
NEURAL NETWORK MODELS 

 
The reverse analysis to extract material mechanical properties is usually carried out through 
an iterative process. Analytical closed form solutions, if possible, are difficult to establish 
due to the complexity of the highly nonlinear problem involved in the reverse analyses. A 
viable alternative is to establish analytically the functions relating the load-indentation 
parameters to the material characteristics and then calibrate them numerically through 
function approximation procedure. The latter can be conveniently handled through artificial 
neural network (ANN) approach as adopted by Huber et al. (2000, 2002) for material 
characterization of thin film on substrate based on results from a single indenter. The method 
was later extended to characterize elasto-plastic materials with power-law strain hardening 
using the results obtained from dual indenters by Tho et al. (2004a). The latter requires the 
construction of 2 artificial neural networks (ANN1 and ANN2) as 2 stages of mapping have 
to be performed. The flow chart for the reverse analysis via ANNs is depicted in figure 6. 
Each ANN model created by Neural Network Toolbox (Matlab V6.5) comprises 3 layers, 
namely, (i) an input, (ii) a hidden and (iii) an output layers. The tangent sigmoid transfer 
function is employed in the hidden layer while the output layer adopts the linear transfer 
function. The numbers of input and output parameters dictate the numbers of neurons used in 
the corresponding layer. The number of neurons in the hidden layer is calibrated based on the 
training and validation processes. 

The information used for training and verification of the neural network models may be 
obtained from either actual or simulated dual indentation tests based on a large number of 
data covering the wide practical range of material properties. In the present study, numerical 
results from 1360 (680 for each indenter) finite element analyses covering a domain of E*/Y 
from 10 to 1500 and n varying from 0.0 to 0.6 are adopted for the training and validation of 
the neural network models. The ranges of the values cover most metallic materials obeying 
power law strain-hardening. About 550 training inputs are randomly selected from the 680 
datasets of finite element results while the remaining 130 data points which were concealed 
during the training of the models are adopted for validation purpose. 
    Training methods for traditional neural network architectures occasionally suffer from the 
existence of local minima and the number of neurons required for a given task has to be 
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tuned carefully to ensure neither over-fitting nor under-fitting. In support vector machines, a 
unique solution is obtained and the number of weights follows automatically from a convex 
program. However, kernel functions and parameters have to be selected carefully such that a 
bound is minimized.  The least-squares support vector machines (LS-SVM) established by 
Suykens et al (2002) are proposed for material characterization based on simulated load-
displacement response of dual indenters of different geometries (Swaddiwudhipong et al. 
2005b).  The approach is a class of learning algorithms motivated by results from statistical 
learning theory (Vapnik, 1995). The method is an efficient and robust tool for multi-
dimensional function approximation. The primary advantage of the latter approach is its 
insusceptibility to over-fitting which could occur in the case of an artificial neural network 
model.  
      Four least-squares support vector machines LS-SVM are constructed for the 
interpretation of the instrumented indentation results.  The solution algorithm is depicted in 
figure 7. They are created using LS-SVMlab1.5 toolbox implemented in MatlabV6.5 
package (Pelckmans et al, 2002).  In order to conduct a LS-SVM model effectively, the 
appropriate values of the two control parameters, γ and σ2, have to be evaluated using the 
tunelssvm function in the  toolbox for a minimum associated cost function and the values 
reported in Table 2. The former, γ, is the regularization parameter determining the trade-off 
between the fitting error minimization and smoothness while σ2 is the bandwidth for the 
radial basis function (RBF) kernel. Once again, the data adopted are results from extensive 
finite element analyses carried out to investigate the response of elasto-plastic materials 
obeying power law strain-hardening during indentation of two indenters of different 
geometries. A similar number of randomly re-selected datasets used earlier for the training 
and validation of the artificial neural networks (ANNs) is employed in the same operations 
involving the proposed least-squares support vector machines. Both proposed models (ANNs 
and LS-SVMs) are robust and directly relate the characteristics of the indentation load-
displacement curve to the elasto-plastic material properties without resorting to any iterative 
procedure. 
 
COMPARISON OF RESULTS 

The characteristics of the load-indentation curves obtained from the simulated indentation 
tests using a Berkovich indenter and a conical indenter of 60.0° half-angle on Al6061, 
Al7075, steel and iron based on the material properties reported earlier by Chollacoop et al. 
(2003) and Bucaille et al. (2003) respectively are given in Table 3. These values are adopted 
as inputs for the reverse analyses using the proposed ANN and LS-SVM models. The 
predictions from both models are compared with those obtained by the uni-axial compression 
tests and via the Oliver and Pharr method as reported by Dao et al. (2001) for the first 2 
materials and the values provided by Bucaille et al. (2003) for the remaining two. They show 
a more favorable agreement for the values of E* (reduced Young’s modulus) for the former 
(both Aluminium allloys), with less than 8% deviations as compared to 17-21% obtained by 
the Oliver and Pharr method. Both proposed neural network models generate reasonably 
accurate values of Y (yield strength) for all 4 materials adopted in the present study. The 
prediction of the values of the strain hardening power, n, is less accurate than those of E*  and  
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(a)                                                                                           (b) 
 

Figure 3. Variation of  (a) C/Y and (b) WR/WT based on Berkovich indenter (f1B & f2B). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a)                                                                                           (b) 
 

Figure 4. Variation of  (a) C/Y and (b) WR/WT based on conical indenter of  60° half angle (f1C & f2C). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Variation of CB/CC (f3). 
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Figure 6:  Flow Chart of Reverse  Analysis via ANNs. 
 

Table 1: Characteristics of ANNs 

Mean Square Error  Range of outputs Number of neurons 
in the hidden layer Training Validation 

ANN-1 0 – 1.5 31 5.76E-05 1.29E-04 
ANN-2 10-850 40 1.09E-02 2.48E-02 

 

Figure 7:  Material Characterization via SVMs. 

Table 2: Characteristics of LS-SVMs 

 Range of output Regularization parameter, γ RBF kernel bandwidth, σ2 

SVM-1 10-1500 10589 0.7778 
SVM-2 0-0.6 25134 2.8432 
SVM-3 10-420 41406 0.3767 
SVM-4 20-850 68161 0.4677 
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Table 3: Load-Indentation Characteristics of Al6061, Al7075, Steel and Iron  
 

Berkovich Indenter Conical Indenter Material CB (GPa) (WR/WT)B CC (GPa) (WR/WT)C 
Al6061 28.1 0.915 11.87 0.944 
Al7075 46.6 0.858 20.35 0.903 

Steel 56.9 0.938 23.907 0.96 
Iron 55.9 0.927 24.598 0.949 

 
Table 4:  Comparison of Results  

 
 Al6061 Al7075 Steel Iron 

E* [GPa]     
Actual 70.2 73.4 194.3 170.8 

ANN[% deviation] 65.1[-7.2] 77.5[+5.6] 192.5[-0.9] 169.0[-1.1] 
SVM [% deviation] 70.9 [+1.1] 71.3[-2.9] 195.7[+0.7] 172.3[+0.9] 

Oliver and Pharr Method (Dao 
et al 2001) [%Deviation] 85.0[+21.1] 86.2[+17.4] - - 

     
Y [MPa]     
Actual 284.0 500.0 500.0 300.0 

ANN[% deviation] 321.3[+13.2] 572.8[+14.6] 548.4[+9.7] 336.7[+12.2] 
SVM [% deviation] 316.8[+11.6] 586.8 [+17.4] 558.2[+11.6] 340.1 [+13.6] 

     
n     

Actual 0.080 0.122 0.1 0.25 
ANN[% deviation] 0.043[-46.1] 0.059[-52.0] 0.072[-27.7] 0.225[-10.0] 
SVM [% deviation] 0.043 [-45.8] 0.058 [-52.6] 0.068 [-31.9] 0.217 [-13.1] 

 

Y as the values of n of all materials are low ranging from 0.0 to 0.6. It is also not surprising  
that higher values of deviation for Al6061, Al7075 and steel are observed as compared to 
that of iron as the values of n for the first 3 types of materials are significantly smaller (0.1 or 
less) as compared to the higher value of 0.25 for iron.  
 

CONCLUSIONS 

Extensive finite element analyses simulating both Berkovich indentatin and conical 
indentation tests covering wide practical ranges of materials obeying strain hardening power 
law have been carried out. Characteristics of load-indentation curves have been extracted and 
depicted as surfaces spanning the wide range of key material properties. Reverse analyses 
based on dual-indenter approach have been carried out via both traditional artificial neural 
network model and lease-square support vector machines. The approach alleviates any 
iteration process as direct mapping between the characteristic values of load-indentation 
curves and material properties is adopted. Comparison of the predicted results by the 
proposed models agree reasonably well with reported experimental data. The approach has 
great potential for material characterization of thin film, MEMS and NEMS. 
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