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ABSTRACT 
Traditional spectral-based methods of extracting urban land cover and land use information 
from remote sensing imagery have proven to be unsuitable for high spatial resolution images. 
Texture has been widely investigated as a supplement to spectral data for the analysis of 
complex urban scenes. This research evaluates the Grey Level Co-occurrence Matrix 
(GLCM) texture analysis technique and the Maximum Likelihood Classification approach 
for the extraction of texture features to be combined with spectral data, as a method for 
obtaining more accurate urban land cover and land use information from high spatial 
resolution images. Classifications were performed on IKONOS imagery using three datasets: 
a spatial dataset consisting of three texture images (mean, homogeneity and dissimilarity), a 
spectral dataset consisting of four spectral images (red, green, blue and N-IR), and a 
combination dataset (spatial and spectral). Results show that the combination dataset 
produced the highest overall classification accuracy of 86.1%, an improvement of 7.2% over 
the spectral dataset. 
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INTRODUCTION 

As pressures increase for better land management, due to conflicting land use demands, high-
resolution satellite imagery are providing more detailed urban land cover and land use data. 
As spatial and spectral resolutions of the remote sensor systems increase, however, image-
processing algorithms have to be developed in order to determine how to exploit the raising 
volume of data efficiently in order to extract the desired information. 

With the launch of the IKONOS satellites, images with higher spatial resolutions have 
contributed to improved land assessments. In the field of urban planning, these images are 
becoming a real alternative to aerial photography. However, traditional techniques used in 
multispectral classifications are not suitable for higher-resolution imagery. These methods 
are based on the spectral signatures present in the image, which is adequate for the 
classification of spectrally homogeneous object classes. Urban scenes, however, are much 
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more complex; for example, residential areas are typically seen from above as a mixture of 
tree crowns, rooftops, lawns, paved streets, driveways and parking lots. It is the composite of 
these features, rather than an inventory of the individual components, that is often of interest. 
Consequently, for applications involving the mapping of heterogeneous features in complex 
urban scenes, results obtained from such methods are unsatisfactory. This is mainly because 
the contribution of spectral information is limited since urban objects are distinguished better 
through their spatial properties rather than their spectral properties (Kiema 2002). 

A significant drawback of these conventional classification approaches is that while the 
information content of the imagery increases with spatial resolution, the accuracy of the land 
use classification may decrease (Shaban and Dikshit 2001). This is due to a higher number of 
detectable sub-class elements resulting in increasing spectral variability within the classes, 
inherent in more detailed, higher spatial resolution data. Another obstacle is that landscapes 
are composed of natural and artificial materials that sometimes present close or even 
identical spectral properties, which can introduce confusion between classes. This confusion 
can also be caused by the fact that groups of pixels representing the same land cover type 
will not necessarily have the same spectral information due to noise in the data, atmospheric 
effects, and natural variation within the land cover type (Smith and Fuller 2001).  

Texture has been widely investigated as a possible source of unique information to 
supplement spectral data. Both aerial photograph interpreters and digital image analysts have 
long since recognized image texture as a powerful source of information in remote sensing 
analysis (Moskal and Franklin 2001). One approach to overcome the obstacles of spectral 
classification of satellite imagery is to integrate textural data into the classification process. 
However, the efficiency of texture when applied to high-resolution images of complex urban 
scenes has yet to be determined. This research study proposes the extraction of texture 
information from high-resolution IKONOS imagery through the grey level co-occurrence 
matrix texture analysis method, and classification using the texture information combined 
with the spectral data through the maximum likelihood classification technique, in order to 
provide a more precise classification of complex urban objects from the high-resolution 
imagery.  

RESEARCH DATA 

High spatial resolution images of the city of Sherbrooke, Quebec, Canada, located between 
45º18′ and 45º27′ latitude north, and 71º48′ and 72º02′ longitude west, were acquired on 
May 20th, 2001 at 10:50 am local time by the IKONOS-2 satellite of Space Imaging. This 
study site was selected for its various types of land use and land cover, which provide a good 
region for the purposes of urban classification analysis. The scenes have an image dimension 
of approximately 12x13 km and consist of four multispectral 4x4 meter bands in red, green, 
blue, and N-IR, and one panchromatic 1x1 meter band. Supplementary data used in this study 
were obtained from the National Topographic Data Bank of the Sherbrooke region and a 
topographic map of the Sherbrooke area, both at a scale of 1:50 000, produced in 2000 by 
Natural Resources Canada, black and white aerial photographs of the area taken in 
September 1998 and August 2000, at a scale of 1:15 000 and 1:40 000 respectively, obtained 
from the Québec Ministry of Natural Resources, as well as data collected during field visits. 

June 14-16, 2006 - Montréal, Canada
Joint International Conference on Computing and Decision Making in Civil and Building Engineering

Page 327



 

 

  

3

METHODS AND RESULTS  

In this study, high-resolution IKONOS imagery was processed using the grey level co-
occurrence matrix textural analysis method and then classified through the maximum 
likelihood classification technique. Three datasets were created in order to evaluate the 
effectiveness of the texture information on the classification of the complex urban objects in 
the high-resolution imagery: a spectral dataset consisting of the original red, green, blue and 
NIR images, a spatial dataset consisting of texture images and a combined dataset consisting 
of the multispectral and texture images. 

Statistical texture methods analyze the spatial distribution of grey values by computing 
local features at each point in the image, and deriving a set of statistics from the distributions 
of the local features. Second-order statistics operate on a probability function that measures 
the probability of co-occurrence of two pixel grey values in the image, separated by a certain 
distance and direction; this function is also known as the grey level co-occurrence matrix 
(GLCM) (Haralick et al. 1973).  

In order to derive the texture images, the variation coefficient for each object class was 
calculated as a function of the window size using the randomly chosen homogeneity texture 
feature. This revealed the most appropriate window size to be 11x11 pixels. The direction of 
0º between pixels was used since it is the most common choice found in literature. For the 
pixel distance, small distances have been found to produce the best results (Karathanassi et 
al. 2000); as such, a distance of 1 pixel was employed. Using the 11x11 window, the 
direction of 0º between pixels and a distance of 1 pixel, eight texture features were extracted 
from the original panchromatic image:  contrast, correlation, dissimilarity, entropy, 
homogeneity, mean, second moment, and variance (Figure 1).  

 

   
Mean Variance Homogeneity Contrast 

    
Dissimilarity Second Moment Entropy Correlation 

Figure 1: Texture Images of the Eight GLCM Features  
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Since many of these texture features contain the same information, an elimination process 
was employed in order to choose the most useful features for good urban class 
discrimination. For the first step in the process of elimination, the visual quality of these 
texture images was analysed and three features, correlation, entropy, and second moment, 
were initially considered for discarding; these features were found to be unsuitable for more 
heterogeneous classes. After displaying the histograms of the texture images, it was 
confirmed that the three features, correlation, entropy, and second moment, were to be 
eliminated due to the minimal amount of information they presented. The possible 
elimination of another two features, contrast and variance, was also considered from the 
histogram analysis because of the same reason. Finally, through calculation of the correlation 
matrix, it was confirmed that the two features, contrast and variance, as well as the first three 
features, correlation, entropy, and second moment, were to be discarded due to their 
relatively high correlation with the other features. As a result, only three texture features, 
dissimilarity, homogeneity, and mean, were selected for use. 

Supervised classification techniques use suitable algorithms to label the pixels in an 
image as representing particular ground cover types, or classes (Richards and Jia 1999). They 
require a priori knowledge of the object classes in the image in order to create training sites, 
which are then used to “train” the system in order to generate the spectral signatures for these 
classes. The system thereafter labels all pixels belonging to each particular class according to 
a decision rule. The maximum likelihood classification (MLC) technique calculates the 
greatest probability that a pixel belongs to a given class, thus minimizing pixel 
misclassifications. In this study, training and verification sites for the following twelve urban 
land use and land cover classes were created: Agriculture, Asphalt and Parking Lot, Bare 
Soil, Commercial Area, Coniferous Forest, Deep Water, Deciduous Forest, Grass, 
Residential Area, Road Networks, Shallow Water, Shrubs. Each of the three datasets was 
then classified into these twelve object classes.  

The final step of the classification is the evaluation of the accuracy of the results 
obtained, which indicates how well the classification performed. Once the spectral space is 
segmented into different regions associated with classes of objects, each pixel of the 
verification sites is assigned the label of the class that represents it in the segmented spectral 
space.  The overall result of this process is presented in the form of a confusion matrix. From 
this matrix many classification precision indexes can be calculated. From a comparative 
study done on the different methods of evaluating the classification accuracy, it was found 
that the most appropriate index to provide classification precision is the Kappa coefficient, 
because it takes account of all the elements of the confusion matrix (Fung and Ledrew 1988).  

CLASSIFICATION RESULTS 

The results obtained from the classification stage of this research show that the classification 
done with the purely spatial dataset of mean, homogeneity and dissimilarity texture bands, 
produced limited accuracies ranging from 59.8% to 84.9% for all classes, with an overall 
accuracy of 73.5%. The best accuracies obtained for this dataset are for the Deep Water, Bare 
Soil, and Grass classes, which have 84.9%, 73.9% and 72.5% accuracies respectively. 
Classes that produced low accuracies are the Commercial class, Coniferous Forest, Asphalt 
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and Parking Lot, Residential, and Shrubs classes, with 59.8%, 61.1%, 61.2%, 61.4% and 
61.8% accuracies respectively. 

The classification of the purely spectral dataset of red, green, blue and NIR bands 
produced somewhat higher accuracies for all of the classes compared to the spatial dataset. 
Here, the accuracies range from 62.4% to 87.5% for all classes, with an overall accuracy of 
78.9%. This indicates an increase in accuracy ranging from 0.3% to 6.1% for each class and 
an overall increase of 5.4%. The highest classification accuracies obtained with this dataset 
was for the Deep Water 87.5%, and Grass 77.3% classes. The Asphalt and Parking Lot 
64.3%, Coniferous Forest 62.4%, and Shrubs 62.4% classes once again produced the lowest 
accuracies. 

The highest accuracies obtained in this study were with the classification of the combined 
spectral and spatial datasets, which produced accuracies ranging from 70.6% to 90.9% for all 
classes and an overall accuracy of 86.1%. The improvement in classification accuracies with 
this dataset over the spectral dataset ranges from 3.4% to 22.2% for each class with an 
overall increase of 7.2%. For this dataset also, the Deep Water and Grass classes once more 
have the highest classification accuracies at 90.9% and 89.0% respectively. The classes that 
saw the greatest improvement with the combined dataset are the Asphalt and Parking Lot 
class, and the Commercial class; due to the irregular patterns of these classes, as well as their 
high spectral variance, combination of the data improved their discrimination. 

The classification accuracies obtained for each of the three datasets, as well as the overall 
accuracies and Kappa coefficients are presented in Table 1.  

Table 1: Classification Accuracies  

 Spectral Dataset Spatial Dataset Combined Dataset 

Kappa Coefficient 0.74 0.68 0.83 
Overall Accuracy (%) 78.9 73.5 86.1 
Classes Classification Accuracies (%) 
Agriculture Land 73.9 70.6 88.9 
Asphalt and Parking Lot 64.3 61.2 86.5 
Bare Soil 74.2 73.9 84.3 
Commercial, Industrial & Institutional 68.5 59.8 83.1 
Coniferous Forest 62.4 61.1 70.6 
Deciduous Forest 73.9 67.8 82.7 
Deep Water 87.5 84.9 90.9 
Grass 77.3 72.5 89.0 
Residential Area 65.8 61.4 82.8 
Road Network 68.2 62.6 82.1 
Shallow Water 74.7 70.7 80.9 
Shrubs 62.4 61.8 71.9 
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Interpretation of Results 

The combination dataset classification produced the highest increases in accuracy, the results 
of which are presented in the form of a thematic map in Figure 2. The Asphalt and Parking 
Lot class, as well as the Commercial class, showed the most increase in classification 
accuracy with the combination dataset. Other classes that also produced comparably high 
increases in accuracy are the Residential and Road Network classes. This is the expected 
performance of the input of textural data in the multispectral classification, since these 
classes obtained relatively poor accuracies with the spectral and textural datasets alone. The 
lowest increases in classification accuracy with the combined data were obtained by the 
classes that produced relatively high accuracies with the purely spectral and textural datasets. 
The Deep Water class saw an increase in accuracy of only 3.4% and the Shallow Water class 
only 6.2%. Since these classes are spatially and spectrally distinguishable anyhow, the 
addition of texture did not make much of a contribution. This indicates that the combination 
of textural and spectral information is needed for those classes that produce low accuracies 
with purely spectral or textural data. 

 

Figure 2: Classification of Combined Dataset 

 

 Agricultural 
Asphalt & Parking 

 Bare Soil 
 Commercial 
 Coniferous Forest  
 Deciduous Forest  
 Shrubs 
 Shallow Water 
 Road Network 
 Residential Area 
 Grass 

 Deep Water 

The lowest classification accuracies produced for the combination dataset was for the 
Coniferous Forest and Shrubs classes. These relatively low accuracies are reflected in the low 
percentages covered by these two classes in the image, where the Coniferous Forest class 
comprises only 7.5% and the Shrubs class 15.0%. The Deciduous Forest class, on the other 
hand, is shown to occupy more than 30% of the whole image. The Coniferous Forest class 
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should actually make up almost half of the total of the two Forest classes. This indicates that 
many pixels belonging to the Coniferous Forest class were misclassified as Deciduous 
Forest, which may be due to the small window size employed. The combined dataset 
classifications of some specific classes are shown in Figure 3. 

 
Residential area 

 

Road network 
 

Forest 
 

Water network 

Figure 3: Combined Dataset Classification of Certain Classes 

The Deep Water, Bare Soil, and Grass classes obtained the highest accuracies in the spatial 
classification. The lowest classification accuracies obtained with this dataset are by the 
Commercial, Asphalt and Parking Lot, Residential, Coniferous Forest, and Shrubs classes. 
The textural heterogeneity of the Commercial class can be explained by the irregular 
structures of the buildings, as well as the presence of more than one building intermingled 
with parking areas, such as the case of colleges and universities. The Asphalt and Parking 
Lot class presents heterogeneous textures because of the presence of vehicles, which, 
especially in the case of parking lots, do not always have an even distribution. For the 
Residential class, the random mixture of roofs and treetops is likely the cause of the varying 
textures. As for the heterogeneity of the textures described by the Coniferous Forest and 
Shrubs classes, this may well be due to the fact that these two classes, as well as the 
Deciduous Forest class, do not occupy distinct areas of the image; most of the forests in the 
images are a composite of these three classes. The low classification accuracies of all these 
classes indicate that they need the input of spectral information for greater discrimination. 

In the spectral classification, the classes that produced the highest accuracies are again 
the Deep Water and Grass classes, which mean that with either spatial or spectral 
information, these classes are highly discriminable. The classes that produced the lowest 
classification accuracies with the spectral data are the Asphalt and Parking Lot, Coniferous 
Forest, and Shrubs classes. This means that these classes are not easily distinguishable 
spectrally. The inability to produce representative spectral signatures for these classes may be 
due to various reasons. In the case of the Asphalt and Parking Lot class, this is most likely 
due to the presence of vehicles, which produce spurious diffuse and specular reflections that 
degrade the spectral signature of the pixels in this class. The fact that the forests in the image 
are generally mixed is probably the reason that the Coniferous Forest and Shrubs classes 
failed to produce representative spectral signatures. Since these classes also produced low 
accuracies with the spatial dataset, this means that they are not distinguishable with only 
spectral or textural data alone.  
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In Figure 4, some examples taken from the classified image of the combined dataset are 
presented. Figure 4(a) shows an irrigation pond on an agricultural plot taken from the 
original panchromatic image and Figure 4(b) is the corresponding section from the classified 
image. Also taken from the panchromatic image, Figure 4(c) shows reserved water in a 
gravel production company at the corner of Bel-Horizon and Dunant streets, and Figure 4(d) 
is the classified section that corresponds to it. Both of these examples demonstrate the 
Shallow Water classification. Figure 4(e) presents a segment of the Magog River and Figure 
4(f) shows part of the Saint François River near Sherbrooke North; these are examples of the 
Shallow Water and Deep Water classes. Figure 4(g) shows the intersection of highways 10 
and 216 and Figure 4(f) shows the Jacques-Cartier Bridge; these examples demonstrate the 
Road Network classification. 

 
(a) 

 
(b) (c) 

 
(d) 

(e) 
 

(f) 

 
(g) 

 
(h) 

Figure 4:  Classification Examples Taken from Classified Image 

A statistical representation of the classification done with the combined data can be seen in 
Table 2. It shows how many pixels belong to each class and what percent of the image each 
class occupies. 
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Table 2: Statistics of the Combined Dataset Classification 

Classes Number of Pixels Percentage (%) of Whole Image 
Agricultural Land  12 292 332 10.16 
Bare Soil  2 193 414 1.81 
Commercial  8 756 036 7.24 
Coniferous Forest 9 055 436 7.48 
Deciduous Forest 36 916 561 30.51 
Deep Water  675 924 0.56 
Grass  4 315 099 3.57 
Parking Lot  2 633 992 2.18 
Residential Area  15 340 348 12.68 
Road Network  9 581 520 7.92 
Shallow Water  1 136 101 0.94 
Shrubs  18 103 237 14.96 
Total 121 000 000 100.00 

CONCLUSION AND DISCUSSION  

This study has produced results that show classifications based only on textural information 
provide lower accuracies than classifications performed with purely spectral data. The 
combination of both types of data for classification, however, produces the highest 
classification accuracies. These findings are supportive of the concept proposed in this study, 
that both texture channels and high spatial resolution imagery can provide improved spectral 
classification accuracies. 

Overall, the results of this research work support previous studies (Moskal and Franklin 
2001, Shaban and Dikshit 2001, and Kiema 2002) in respect to the improvement of spectral 
classifications through the addition of textural data, though they differ somewhat in areas that 
are directly related to the texture analysis stage, and mainly from previous research 
conducted with imagery of a lower spatial resolution. As such, the use of GLCM texture 
analysis on high spatial resolution IKONOS imagery, combined with the MLC approach, for 
the improvement of spectral classifications of urban land cover and land use classes provides 
some interesting results, such as better discrimination for classes that have high spatial and 
spectral variation, and not much improvement for classes that are already spectrally distinct, 
as well as the need for a different window size for large classes. 

Future studies within the GLCM texture analysis approach can, therefore, focus on the 
use of different pixel distances and directions, and various window sizes in order to examine 
their relationship to different types of urban land cover and land use classes for the 
determination of their contribution to urban texture discrimination of high spatial resolution 
imagery. Another study also within the scope of texture analysis that may prove to be very 
interesting is the separate assessment of the most useful texture features to determine their 
role in the classification, which might provide some insight into which ground classes they 
complement the most, and their impact on urban classifications. 

The application of GLCM texture analysis and multispectral MLC techniques for the 
classification of combined spatial and spectral data for the urban land use and land cover 
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classification of high spatial resolution IKONOS imagery produced very promising results. 
Some problem areas were encountered, however, related to the limitations of this study. The 
texture analysis applied in this study was not comprehensive as it relied on the use of only 
one window size, which did not permit good textural discrimination of certain ground cover 
classes, and the use of only one direction and distance between pixels, the effects of which 
have not been determined. These aspects need to be further studied, based on smaller samples 
to avoid large computational costs, in order to optimize their application to high spatial 
resolution imagery.  
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