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ABSTRACT 
The paper concerns design engineering problems involving multiple criteria and, in 
particular, the development of a formal trade-off strategy that can be employed by designers 
to mutually satisfy conflicting criteria as best as possible. A Pareto-optimal exchange 
analysis technique is adapted from the theory of social welfare economics as the basis for a 
search methodology to identify good-quality compromise designs. The concepts are 
presented for the two-criteria design problem so that the main ideas can be given a geometric 
interpretation. Curve-fitting, equation-discovery and equation-solving software are employed 
along with welfare economics analysis to find competitive general equilibrium states 
corresponding to Pareto-optimal compromise designs of a flexural plate governed by 
conflicting weight and deflection criteria.  
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INTRODUCTION 
One of the difficulties in engineering design is that there are generally several conflicting 
criteria, which forces the designer to look for good compromise designs by performing trade-
off studies between them. As the conflicting criteria are often non-commensurable and their 
relative importance is generally not easy to establish, this suggests the use of non-dominated 
optimization to identify a set of designs that are equal-rank optimal in the sense that no 
design in the set is dominated by any other feasible design for all criteria. This approach is 
referred to as ‘Pareto’ optimization and has been extensively applied in the literature 
concerned with multi-criteria engineering design (e.g., Koski 1994, Grierson and Khajehpour 
2002). The number of Pareto-optimal designs so found can still be quite large, however, and 
it is yet necessary to select the best compromise design(s) from among them. 

Koski (1994) briefly reviews several methods for searching among Pareto optima to 
identify one or more good compromise designs. The final selection generally depends on the 
designer’s personal preferences. This study employs a Pareto trade-off analysis technique 
adapted from the theory of social welfare economics to identify one or more competitive 
general equilibrium states of the conflicting criteria that represent good compromise designs; 
i.e., designs that represent a Pareto-optimal compromise between designer preferences for the 
various criteria. The trade-off strategy is developed for the two-criteria problem so that the 
concepts can be given a geometric interpretation. A flexural plate design involving 
conflicting weight and deflection criteria serves to illustrate the main ideas.  
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WELFARE ECONOMICS  

UTILITY FUNCTIONS 
In the theory of welfare economics involving multiple goods, utility functions are used to 
describe consumer preferences for different bundles of the goods. For an economy involving 
two goods, x1 and x2, a utility function assigns a number to every possible consumption 
bundle (x1,x2) such that more-preferred bundles get assigned larger numbers than less-
preferred bundles. The utility assignment is ‘ordinal’ in that it serves only to rank the 
different consumption bundles, while the size of the utility difference between any two 
bundles isn’t meaningful. 

In the space of the two goods x1 and x2, a certain consumption bundle (x1,x2) lies on the 
boundary of the set of all bundles that the consumer perceives as being preferred to it. This 
implies that the consumer is indifferent to all bundles that lie on the set boundary itself, 
which is called an indifference curve. Utility functions are used to define (label) indifference 
curves such that those which are associated with greater preferences get assigned higher 
utility numbers. They can take on a variety of forms (a specific utility function form is 
considered later in the paper). 

For any incremental changes dx1 and dx2 of the two goods along an indifference curve 
defined by utility function u(x1,x2), there is no change in the value of the utility function. 
Mathematically, this may be expressed as (Varian 1992), 
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Equation (1) may be reorganized to find the slope of the indifference curve as, 
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which is known as the marginal rate of substitution (MRS) that measures the rate at which 
the consumer is willing to substitute good x2 for good x1. The negative sign indicates that if 
the amount of good x1  increases then the amount of good x2 decreases in order to keep the 
same level of utility, and vice versa. 

PARETO EXCHANGE & COMPETITIVE EQUILIBRIUM 
Consider now a pure exchange economy in which two consumers A and B are seeking to 
achieve an optimal trade-off between goods x1 and x2 (Boadway and Bruce 1984). The total 
supply of good x1 is x1

* , while that for good x2 is x2
*.  Suppose that consumer A’s initial 

endowment consists of the entire supply of good x1, as indicated by the distance between the 
origin 0A and point x1

*  along the horizontal axis in Figure 1. Her initial utility level is uA
0. If 

consumer A is offered a relative price of good x1 in terms of good x2 as given by the 
(absolute) value of the slope of the terms-of-trade line (TLA) passing through her endowment 
point x1

*, she will choose to trade x1
*-x1A units of good x1 in exchange for x2A units of good x2 

and, thereby, achieve increased utility level uA
1 (note that utility increases with distance from 

the origin 0A).  
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Figure 1: Two-Good Exchange Economy (Boadway and Bruce 1984) 

 
By offering consumer A different relative prices of good x1 in terms of good x2, her offer 

curve (OCA) can be traced out by rotating the terms-of-trade line through her endowment 
point and drawing the locus of equilibrium points E chosen. The highest indifference curve 
(utility) available to consumer A at each relative price is tangent to the terms-of-trade line at 
its intersection with the offer curve. Offer curves indicate the willingness of consumers to 
exchange a certain amount of one good for a given amount of another good at any relative 
price. They can take on a variety of forms (a specific offer curve is considered later in the 
paper). 

We can draw a similar diagram for consumer B by supposing that his initial endowment 
consists of the entire supply of good x2. Upon doing that, the competitive equilibrium of the 
two-consumer and two-good exchange economy can be analytically examined by 
constructing the Edgeworth box2 diagram in Figure 2, the horizontal and vertical dimensions 
for which are equal to the total supplies x1

*and x2
* of goods x1 and x2, respectively. The 

origins for consumers A and B are 0A and 0B, respectively. Their initial endowment points 
A(x1

*, 0) and B(0 , x2
*) are both located at the lower right-hand corner of the box (note that 

consumer B’s axes are inverted since they are drawn with respect to origin 0B). 
 

                                                           
2  Named in honor of English economist F. Y. Edgeworth (1845-1926), who was among the first to use this 

analytical tool. 
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Figure 2: Welfare Economics Edgeworth Box (Boadway and Bruce 1984) 

 
Of special interest is the contract curve3, which is the locus of all allocations of the two 
goods such that the indifference curves of consumer A are tangent to those of consumer B. 
That is, the marginal rate of substitution between goods x1 and x2 for consumer A is equal to 
that for consumer B at each point on the contract curve, but not at any other point off the 
curve. This suggests the possibility for mutually beneficial trade. 

The initial indifference curves uA
0and uB

0 shown in Figure 2 form a lens-shaped area 
within which lie points that are Pareto superior to the initial endowment point and which can 
be reached by consumers A and B through trading goods x1 and x2 between themselves. Once 
they have traded to a point on the contract curve no further Pareto improvements are 
possible, since then one consumer can gain utility only at the expense of the other. That is, 
any point on the contract curve segment FG is a Pareto-optimal allocation of goods x1 and x2 

                                                           
3  Each point on the contract curve is obtained by maximizing the utility of one consumer while holding that 

for the other consumer fixed: e.g., point G in Figure 2 is found by maximizing uA(x1A,x2A) subject to 
uB(x1B,x2B)=uB

0, x1A+x1B=x1
* and x2A+x2B=x2

*. 
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between consumers A and B. But some points are better than others depending on the 
consumer; namely, all points from F up to almost E are unacceptable to consumer A because 
they do not lie on her offer curve and have smaller utility than desired, while the same 
situation applies for consumer B for all points from G up to almost E. It is only at the 
intersection point E of their offer curves OCA and OCB  that consumers A and B are mutually 
satisfied with their highest attainable utilities uA

1 and  uB
1, respectively. Point E is a 

competitive general equilibrium Pareto-optimal allocation of goods x1 and x2.  
That point E lies on the contract curve follows from the fact the two offer curves at that 

point have the same marginal rate of substitution. In other words, as indicated in Figure 2, 
there exists a common terms-of-trade line TLA =TLB that affords consumers A and B the 
opportunity to trade from their initial endowment to point E. This opportunity to directly 
proceed to a Pareto-optimal competitive general equilibrium state is exploited in the 
following concerning multi-criteria design engineering. 

DESIGN ENGINEERING  

FLEXURAL PLATE DESIGN 
Consider the simply-supported plate with uniformly distributed loading shown in Figure 3, 
for which length L = 600 mm, load P =0.4 N/mm2, material density ρ = 7800 kg/m3, Young’s 
modulus Eym = 206×103 N/mm2, and Poisson’s ratio ν = 0.3 (Koski 1994). It is required to 
design the plate for the two conflicting criteria of minimum weight (W-criterion), and 
minimum deflection (∆-criterion) at midpoint M. 

The analysis model for the plate is defined by the mesh of 36 finite elements shown in 
Figure 4(a). The plate thicknesses of the six zones indicated in the design model for the plate 
shown in Figure 4(b) are taken as the design variables. The (von Mises) stress σi (i =1, 2, …, 
36) for each finite element is constrained to be less than or at most equal to 140 MPa, while 
the thickness tj (j =1, 2, …, 6) for each plate zone is constrained to be in the range of 2-40 mm.  

p 

 
 

M 

L

L 

∆ 

∆ 
p 

Figure 3: Flexural Plate - Loading & Deflection (Koski 1994) 
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Figure 4: Quarter-Plate (a) Analysis Model, (b) Design Model (Koski 1994)  

 
The 2-criteria design optimization problem statement is: 

i

j

Minimize:  F( t ) [W( t ), ( t )]          
Subject to:   140      ( i 1,2,...,36 )
                   2 t 40    ( j 1,2,...,6 )

⎫=
⎪≤ = ⎬
⎪≤ ≤ = ⎭

∆
σ                                                      (3) 

A variety of optimization methods are available to find a Pareto-optimal design set for the 
problem posed by Eqs.(3). A genetic algorithm could be applied for solution (Grierson and 
Khajehpour 2002). Alternatively, Koski (1994) used sequential quadratic programming to 
find the ten Pareto-optimal designs having variously different plate thicknesses listed in 
Table 1. It can be seen from the last two table columns that no one design is dominated by 
any other design for both the W-criterion and the ∆-criterion. The ten Pareto-optimal designs 
define the Pareto curve in Figure 5; in fact, any point along this curve corresponds to a 
Pareto design. Shown are sketches of the Pareto designs corresponding to Wmin, point 5 and 
∆min. It remains to select a good-quality compromise design from among the set of Pareto 
designs in accordance with the preferences of the design team.  

Table 1: Pareto-Optimal Flexural Plate Designs (Koski 1994) 

Design 
Point 

t1
(mm) 

t2
(mm) 

t3
(mm) 

t4
(mm) 

t5
(mm) 

t6
(mm) 

W 
(kg) 

∆ 
(mm) 

1 20.6 19.7 18.4 16.4 13.8 8.6 39.4 2.73 
2 26.1 20.8 18.4 16.4 13.8 8.6 40.0 2.50 
3 30.2 26.1 20.6 16.4 13.8 8.6 42.4 2.00 
4 31.0 28.9 24.7 19.4 14.1 8.6 46.8 1.50 
5 37.3 34.3 26.8 22.1 16.3 9.8 53.3 1.00 
6 40.0 37.1 30.2 24.0 18.3 10.8 58.8 0.75 
7 40.0 40.0 36.4 27.8 21.0 12.8 67.6 0.50 
8 40.0 40.0 40.0 32.6 24.6 14.4 75.6 0.375 
9 40.0 40.0 40.0 40.0 33.5 20.5 90.8 0.25 
10 40.0 40.0 40.0 40.0 40.0 40.0 112.3 0.1746 

M
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t5t3t1
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Figure 5: Pareto-Optimal Flexural Plate Designs (Koski 1994) 

PARETO-OPTIMAL DESIGN COMPROMISE 
A formal trade-off strategy based on the welfare economics analysis4 presented earlier is 
applied in the following to identify a compromise plate design for which designer 
preferences concerning the conflicting W and ∆ criteria are Pareto optimal (in fact, two such 
designs are identified). 

 To begin, normalize the data for the W and ∆ criteria in the last two columns of Table 1 to 
be as given by the x1 and x2 values in the fourth and fifth columns of Table 2. Note that the 
largest value of each of the normalized criteria x1 and x2 is unity (i.e., x1

*= x2
*=1.0). Then 

consider two designers A and B who are seeking between themselves to achieve an optimal 
trade-off of the two criteria x1 and x2 for the plate design. Suppose that designer A’s initial 
endowment is the largest value x1

*=1.0 of criterion x1, while that for designer B  is the largest 
value x2

*=1.0 of criterion x2. 
Similar to that in Figure 2, the competitive equilibrium of the two-designer and two-

criterion trade-off exercise can be analytically examined by constructing the normalized 
Edgeworth box diagram in Figure 6, the horizontal and vertical dimensions for which are 
both equal to unity. The origins for designers A and B are 0A and 0B, respectively, and their 
initial endowment points A(1,0) and B(0, 1) are both located at the lower right-hand corner of 
the box. Designer A’s offer curve OCA is a plot of the data points (x1,x2) in the fourth and fifth 
columns of Table 2 (i.e., a  normalized plot of the Pareto curve in Figure 5), while designer 
B’s offer curve OCB  is a plot of the data points (1-x1, 1-x2) in the last two columns of Table 2.  

                                                           
4  Here: consumers ≡ designers; goods ≡ criteria; x1 ≡W-criterion; x2 ≡ ∆-criterion 
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Table 2: Data for Flexural Plate Design Trade-Off Analysis 

Design 
Point 

Weight 
(W) 

Deflection
(∆) 

x1
(W/Wmax)

x2
(∆/∆max) (1-x1) (1-x2) 

1 39.4 2.73 0.351 1.000 0.649 0.000 
2 40.0 2.50 0.356 0.916 0.644 0.084 
3 42.4 2.00 0.378 0.733 0.622 0.267 
4 46.8 1.50 0.417 0.549 0.583 0.451 
5 53.3 1.00 0.475 0.366 0.525 0.634 
6 58.8 0.75 0.524 0.275 0.476 0.725 
7 67.6 0.50 0.602 0.183 0.398 0.817 
8 75.6 0.375 0.673 0.137 0.327 0.863 
9 90.8 0.25 0.801 0.092 0.199 0.908 
10 112.3 0.1746 1.000 0.064 0.000 0.936 
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Figure 6: Design Engineering Edgeworth Box 
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Competitive General Equilibrium
It is observed in Figure 6 that there are two competitive general equilibrium points E1 and E2 
defined by the intersections of the two offer curves OCA and OCB, the coordinates for which 
are found as follows. Upon applying curve-fitting/equation-discovery software to the data 
points (x1,x2) in the fourth and fifth columns of Table 2, designer A’s offer curve OCA is 
found to be accurately represented (r2 = 0.999) by the function (TableCurve2D v5.01),5

2
1 2 217.15x x  - 1.1x  - 1 = 0                                                                       (4) 

Hence, designer B’s offer curve OCB is represented by the function, 
2

1 2 217.15(1-x ) (1-x ) - 1.1(1-x ) - 1 = 0                                                         (5) 

Substitute for x2 from Eq.(4) into Eq.(5) to obtain the function,  
4 3 2
1 1 1 19.021x - 18.042x  + 6.812x  + 2.209x  - 1 = 0                                           (6) 

Equation (6) is solved to find the meaningful roots x1 = 0.367 and x1= 0.633 (MATLAB 7.0), 
and then the corresponding roots x2 = 0.8267 and x2 = 0.1733 are found through Eq.(4). That 
is, as shown in Figure 6, the  equilibrium points are E1(0.367, 0.8267) and E2(0.633, 0.1733).      

Design Utility 
Equilibrium point E1 corresponds to a plate design intermediate to designs 2 and 3 in Table 1 
that has weight W = (0.367)(112.3) = 41.21 kg and deflection ∆ = (0.8267)(2.73) = 2.26 mm, 
while point E2 corresponds to a plate design intermediate to designs 7 and 8 in Table 1 that 
has weight W = (0.633)(112.3) = 71.09 kg and deflection ∆ = (0.1733)(2.73) = 0.473 mm. Each 
of these two designs is a Pareto-optimal compromise design of the plate. It remains to 
determine their utilities from the perspective of the designers’ preferences for the two 
conflicting criteria. 

This study adopts the commonly used Cobb-Douglas utility function (Varian 1992), 

     (7)c 1-c
1 2 1 2u(x ,x ) = x x

where the exponent c is a function of the point at which the utility is being measured. Upon 
observing in Figure 6 that for both designers the marginal rate of substitution at any point 
(x1,x2) is MRS= x2/(1-x1), is it found from Eqs. (2) and (7) that the utility functions for  
designers A and B can be expressed as, 

1 1x 1-x
A 1 2 1 2u (x ,x ) = x x   ;     2 2x 1-x

B 1 2 1 2u (x ,x ) = (1-x ) (1-x )                           (8a,b) 

The utility levels uA and uB indicated in Figure 6 are found by evaluating Eqs.(8) for the two 
sets of (x1, x2) coordinates (0.367, 0.8267) and (0.633, 0.1733) corresponding to equilibrium 
points E1 and E2, respectively. As expected, utility uA is greater at E1 than at E2 (i.e., 0.6136 > 
0.3935) because the plate weight W  there is less (i.e., 41.21 kg < 71.09 kg ). Conversely, utility uB 
                                                           
5  Note that in Table 2 and Eqs.(4)-(8) the coordinates x1 and x2 are measured from the origin point 0A in 

Figure 6; i.e., x1 =x1A and x2 =x2A , and therefore (1-x1) =x1B and (1-x2) = x2B . 

 

June 14-16, 2006 - Montréal, Canada
Joint International Conference on Computing and Decision Making in Civil and Building Engineering

Page 3704



is greater at E2 than at E1 (i.e., 0.7182 > 0.5057) because the plate deflection ∆ there is less (i.e., 
0.473 mm < 2.26 mm). Presuming that designer A is the advocate for the W-criterion, she will 
opt for the plate design at point E1 because it provides her greatest  utility uA = 0.6136. 
However, as the advocate for the ∆-criterion, designer B will alternatively opt for the plate 
design at point E2 because it provides his greatest utility uB = 0.7182. This poses a dilemma, 
which may be overcome if the two designers agree to act together as a team that simply opts 
for the design having the maximum utility level umax from all among all four utility levels 
associated with the two equilibrium points. That is, they would select the plate design at 
point E2 having weight W = 71.09 kg, deflection ∆ = 0.473 mm, and utility  umax = 0.7182.    

CONCLUDING REMARKS 
This research is in its early stages and at present prompts fewer conclusions than it does 
questions, some of which are as follows. Does the form of the utility function have an 
influence on the results? When there are multiple general equilibrium points, what is the 
veracity of taking the solution to be that particular equilibrium point having the maximum 
utility level from all among all utility levels associated with all equilibrium points? Can the 
methodology be applied to design problems involving three or more conflicting criteria? 
These and other lines of enquiry will be pursued by the ongoing research program. 
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