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ABSTRACT 
A finite element program, ABAQUS, is used to simulate the fractural behaviour of grade C30 
concrete beams under a three-point loading configuration, at the ages of 1, 2, 7, and 28 days. 
Based on the Crack Band model, a bi-linear strain-softening curve was derived with the 
parameters determined by curve fitting for the three-point bending tests. The simulated 
LOAD-CMOD curve and the experimental results show a good agreement. Furthermore, the 
numerically simulated LOAD-CMOD curves also match the experimental LOAD-
Displacement curves of the concrete beam at different ages. By applying the LEFM method, 
the critical stress intensity factor s

cK Ι and the critical crack tip opening displacement ( cCTOD ) of 
concrete are determined and compared with those of the experimental values, and excellent 
agreement is found. 
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INTRODUCTION  
Most of the cracks within concrete members were caused by thermal stress, self-shrinkage, 
drying shrinkage and external load. Therefore, the concrete structures were prone to fail 
before concrete hardening, which especially will affect the durability and service life. So it is 
very essential to give more attention to the cracking of early-concrete. 

Many foregoing researches on early-concrete laid particular stress on the properties of 
material, but less on such mechanics behaviors as damage and fracture. In this paper, based 
on the two-parameters mode test recommended by RILEM, and by the general finite element 
code ABAQUS, a numerical analysis to the formation and propagation of cracks within 
early-concrete under external load was implemented. 

TWO-PARAMETERS MODEL TEST 
Materials and Mix Proportion 

Cement: ASTM I Portland cement, with the density 3 150 kg/m3, specific surface area 385 
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m2/kg, the average grain size 19.98μm; Fine aggregate: with the fineness modulus 2.3, the 
density of natural river sand 2 660 kg/m3; Coarse aggregate: with the maximum grain size 10 
mm, the density of crushed stone 2570 kg/m3; Water: tap water. The mix proportion of this 
concrete is 0.55. 
Experiment 

At least four beams were tested in every group fracture with the specimen size 75 mm×150 
mm ×750 mm, the depth of the notch 0a 50 mm, the width of the notch 3 mm. The span 
length S (the clear distance between two supports) is 600mm, and the depth of the three-point 
bending beam D is 150mm.More details can be seen in fig1. All the specimens expect one 
day age specimen were demoulded after one day, which then were cured under the 
temperature (23±2)℃ and the relative humidity 100%. The fracture test apparatus used here 
is MTS810, as shown in fig2. the maximum load 250kN can be gained and the crack mouth 
opening displacement (CMOD) was taken as the feedback to keep stabilization of the failure.  

 

 

 

Figure 1: Specimen size and typical curve                             Figure2:  MTS810 apparatus 
Two-parameter Model 
In this model, the critical stress intensity, s

ICK , the critical crack tip opening displacement 

cCTOD and the modulus of elasticity can be calculated as follows (Jenq and Shah,1985): 
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where,  S, 0a , D, B is shown in fig1; iC :the initial flexibility, 
)/()( 000 HDHa ++=α ; 0H : the thickness of the clamp; )(1 αV : the shape function 

about α , 232
1 )1/(66.004.287.328.276.0)( ααααα −+−+−=V ; maxP : the ultimate load; 

W : the self-weight of beam; ea : the critical effective crack length:  

))(6/( 1
2

ue αSVBDECa = ; uC :  the unloading flexibility; )(αF : the shape function about α  

( ) ( ) ( ) ( )( )3/ 22[1.99 1 2.15 3.93 2.7 ]/[ π 1 2 1 ]F α α α α α α α= − − − + + −  

where, Da /e=α ； e0 / aa=β  
The test results can be found in table 1. 

Table 1: TPM results for concrete of C30 
 

ages / d s
ICK /( 0.5mMPa • ) cCTOD / mm  '

cf / MPa  

1 d 0.415 0.0109 10.46 

2 d 0.707 0.0146 15.30 

7 d 0.977 0.0143 25.66 

28d 1.263 0.0159 35.97 

 
More details about this test can be found in the literature(Xianyu Jin et al. 2005). 
 
NUMERICAL  ANALYSIS 
The Finite Element Model 
The crack band model proposed by Bazant (2002) was applied to take into account the 
element size effect of concrete. In the case of plane stress, when two cracks occurred on a 
gauss point of an element, along the cracking direction, the incremental form stress-strain 
relationship can be expressed as: 
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where , nnσ  and nnε  are respectively the positive stress and strain of crack 1, while ttσ  
and ttε  are respectively the positive stress and strain of crack 2. ntσ and ntε are respectively 
the shear stress and strain. The rest had such meanings as follows: 

0E : the initial modulus of elasticity; 0G : the initial modulus of shear; 1,softk : the 
tension crack softening coefficient of crack 1; 2,softk : the tension crack softening coefficient 
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of crack 2; β : shear transfer factor, and it reveals the interlocking action between the 
surfaces of the crack. Due to the experiment being type I fracture model, post-shear effect is 
neglected. 

The conception of band width in this model was equal to the characteristic element 
length in ABAQUS, which is dependent of the element geometry shape: for beam and truss 
elements, it is the length between gauss points; for shell and plane elements, it is the square 
root of gauss points; for solid elements it is the cube root of gauss points. CPS4R(plane stress 
4—node simplified integral element) in ABAQUS element family was adopted in this 
simulation, the sum of the elements and nodes are 3 702 and 3 905 respectively. A 
modified Riks iterative method was used here to find the descending branch. Fine gridding 
was adopted within the crack band and supports. The supports and the loading bar were 
simulated by analytical rigid bodies. The detailed gridding partitions are shown in fig3: 
 

 
 
 

 

Figure 3:  FEM of three-point bending beam 
 
The Determination of Two-Linearly Tension Softening Curve 
As we all know, there exists a fracture process zone in front of the crack tip, which will 
arouse a phenomenon termed as tension softening. This characteristic played an very 
important role on finding the ultimate load and the descending curve. 

The primitive work was completed by Hillerborg, he suggested an exponential decay 
softening curve with the separate displacement w independent variable (see fig4). Thereafter, 
based on large amounts of experiments, Petersson gave an two-linearly softening curve, as is 
shown in fig5. Many succedent experiments and numerical analysis indicated that it is 
adequate for two-linearly curve to describe this softening phenomenon. 

 
Figure 4: Stress distribution of FPZ and soften curve      Figure 5: Two linearly tension soften stress

－displacement curve  

June 14-16, 2006 - Montréal, Canada
Joint International Conference on Computing and Decision Making in Civil and Building Engineering

Page 3620



 

The stress value at the slope transition is usually taken as 0.15 tf ～ 3tf , and the area under 
the stress-separate displacement curve, denoted as ( )wf , represents the required energy to 
develop every one unit area crack, denoted as FG (N/m), while fG  represents the area under 
initial slope. Planas and Bazant et al.(1997 ) pointed out that it is the fG that determines the 
ultimate load. The value of fG  in TPM is equal to the critical strain energy release rate, 
denoted as s

ICG . Since the stress at slope transition was determined, with the values of FG  
and fG , the shape of the two-linearly tension softening curve could be gained. Assuming the 
stress at slope transition is tfψ , two equations below can be easily got by area calculations: 

t

f
0

2
f
G

W =                                                                   (5) 

                                                  ( )[ ]fF
t

f 12 GG
f

W ψ
ψ

−−=                                                      (6) 

By trial and errors, Petersson’s suggestion was adopted, that is, 3/1=ψ . Since FG  

cannot be directly derived from the TPM test, it can only be got from conversion of s
ICK  

directly gained from this test. 
First, S

ICG  can be determined by the equation below: 

                                                                  EKG /2s
IC

s
IC =                                                               (7) 

then, based on the conclusions proposed by Planas and Guinea ()1992, 1994), an approximate 
equation affirmed by Bazant and Becq－Giraudon et al.can be gained that 

s
ICfF 5.25.2 GGG =≈ .                           (8) 

which had been taken as the optimal database among different labs including 238 series of 
tests in all. 

As to FG , based on the productions presented by Planas and Elices(1997), the 
follow expression can be taken as: 
                                   

s
ICF GG α=                                       (9)  

where, 2≥α . In practice, assuming FG ＝2.5 fG . For the general ratio of tension 
strength to compression strength is 1/12 ～ 1/10, thus 0W and fW  can be completely 
determined. In order to keep the fracture energy unique and avoid the gridding sensitivity, 

0W and fW  were adapted to the crack band width h (the characteristic element length in 
ABAQUS), and the equations（5）、（6）can be rewritten as: 
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Results Analysis 
Taking an 28d three-point bending concrete beam for example, its cracking process and 
nephograms of stress distribution are as follows: 

 

 
 
Figure 6:  Initial cracking deformations and     Figure 7:  Cracking deformations of maximum 
nephogram of the maximum principle stress               load and nephogram of the maximum principle stress 

 

Figure 8: Ultimate cracking deformations and       Figure  9:  Stress－strain curve of the first     
 nephogram of the maximum principle stress     element integral point above the notch 
 
It can be seen from fig6,fig7 and fig8 that the opening displacement is gradually increasing 
and with the increasing load, the maximum tension stress is developing upwards into the 
ligament of beam along the notch. For the existence of the fracture process zone, the tension 
stress is not rapidly decreasing to zero, that is, a fraction of stress still remains. Taking out 
the first cracking element above the notch, draw a stress-strain curve of integral point as 
shown in fig9. 

By the post output of ABAQUS, the 1、2、7、28d LOAD-CMOD comparison curves 

can be derived as fig10 shows: 
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(a) C30-28d-1                                    (b) C30-28d-2                             (c) C30－7d－1  
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(d) C30－7d－2                               (e) C30－2d                                         (f) C30－1d   

Figure10: Comparisons between the simulated LOAD-CMOD curve and the experimental 
results 
 
As is shown in fig10, in the ascending segment of the curves, the numerical results matched 
up to the test. However, as to the descending segment, it was not the case for such reasons as 
follows: 

 Because of the uploading process occurring in the TPM test, energy loss cannot be 
avoided; 

 The crack band theoretics assumes that FG  can only be dissipated by crack band, while 
all deformations out of this band are elastic, which cannot dissipate the fracture energy. 
However, it can be clearly seen from fig6,fig7 and fig8 that there did exist some plastic 
deformations near the supports, which by all means dissipated the fracture energy. 

By making a contrast statistic to 1d~28d numerical and experimental results, it was 
found that the average error was merely about 3%, which indicated that the calculations of 

fG  that determines the ultimate load was relatively exact. 
Make mutual comparisons of LOAD-CMOD curve and LOAD-Displacement curve 

among different ages, seeing fig11, fig12. 
As is shown in the two figures above, in the stable crack propagation segment, that is, 

before the ultimate load reaches, the slope is increasing with the increment of the age. While, 
in the descending segment, that is, the unstable crack propagation segment, the load is 
rapidly descending with the age increasing. Especially the early-age concrete beam, for 
example, 1d beams, the load descending is relatively slow, which to some extent behave 
plasticity. These conclusions can also be found in Jin－Keun Kim(2004). 
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Figure11: Comparisons of    LOAD-CMOD curves    Figure12: Comparisons of  LOAD 
Displacement curves 

The calculations of s
ΙcK and cCTOD  had been explained in the TPM test, and here another 

LEFM method will be applied to solve the equivalent elastic critical crack length cea . 
Consequently, s

ΙcK and cCTOD  can be gained by the crack opening displacement (COD) 
derived from simulations. The detailed processes are as follows: 

 Based on LEFM manual, for the single side notched three-point bending beams (S＝4b), 
the following equations can be gained: 
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  where, x —the vertical distance away from the bottom of beams 
b —depth of the beam 
a —length of the crack 
g —COD function of three-point bending beams（S=4b）. 

 Taking a ＝65、70、75、80、85 (mm) respectively to make function curves as shown 
in fig13. 

 Near the tip of the crack, the shape of the curves exhibit non-linearly, while it tends to be 
relatively linear far away from the tip. 

 Along the notch, take turns to choose five nodes every 10mm from the first node at the 
bottom of beams, and thus the horizontal displacement of the first node is equal to half 
the CMOD. With the numerical results, values of COD for five nodes can be got when 
reaching the ultimate load, then bring the CMOD of the first node, along with random 
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COD of the rest four nodes, into the equation（13）, an non-linear equation can be 
derived about the crack length a , and it can be easily solved by the numerical iterative 
tool MATLAB. The solution a  is the equivalent elastic critical crack length cea  
corresponding to the ultimate load. Then, bring another COD  into the equation（13）, 
and another cea  can be solved the same way. Take the average of this two cea  and the 
final cea  can be gained. 

0 10 20 30 40 50 60 70 80 90 100

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

x/mm

C
O

D
/C

M
O

D

    
Figure 13:  COD of three-point Figure        14: Comparisons of COD at peak load 
bending beam（s＝4b） 

 Based on LEFM, as to the three-point bending beam（S＝4b）, there is: 
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where,  S —net span of beams; t — thickness of beams; b —depth of beams 
Taking the solved cea  and the numerical results maxP   into the equation（15）, s

ICK  can 
be calculated. Taking the cea , 50=x mm and CMOD into the equation （13）, cCTOD  can 
be solved. 

Taking a 1d concrete beam of grade C30 for example, repeat the calculating process as 
follows: numerical maxP ＝1 138N（practical maxP ＝1 186.699N）, 0=x , CMOD＝3.661 
28×10-2mm; 10=x mm, COD＝3.240 92×10-2mm; 20=x mm, COD＝2.814 44×10-2mm. 
Bring these into the equation（13）and solve this non-linear equation, it is gained that 

10=x , cea ＝61.185 8; 20=x , cea ＝61.898 3. Thus the average cea ＝61.542mm. The 
practical cea  derived from the TPM test is 62.512 mm, and the relative error is 1.6％. Bring 

cea ＝61.542 mm, maxP ＝1138N into the equation（15）, s
ΙCK ＝0.325 6（MPa*m0.5）can 

be solved. The practical s
ICK  is 0.364 5（MPa*m0.5）, and the relative error is 10.67％. 
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Bring cea ＝61.542mm, CMOD＝3.661 28×10-2mm, 50=x mm into the equation（13）, 
cCTOD ＝0.013 102 mm can be solved. The practical cCTOD  is 0.011 689 74mm, and the 

relative error is 12.1%. Draw a COD curves when reaching the ultimate load as shown in 
fig14. 

 
CONCLUSIONS 

 The numerical results agreed well with the experimental values, and the differences 
among different ages accorded with the experiment and correlated productions of 
literatures. 

 Using the LEFM method to validate the two parameters of TPM test, it was found that 
the numerical predictions closely match those of the experimental values, which 
confirms the validity of the FEA programs. 

 By successfully carrying out the finite element analysis of beams on a three-point 
bending configuration as reported in this paper, a powerful numerical analytical tool has 
been identified for the investigation of fractural behaviour of damage and fracture in 
early-age concrete members. 
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