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ABSTRACT 
Construction performance modeling is an integral part of managing risk on construction 
projects. Traditionally, estimating cost, schedule and productivity are carried out assuming 
the uncertainty involved in these elements is purely probabilistic. However, in most real-life 
problem scenarios, uncertainties encountered can not be described exclusively by statistical 
means.  There are many factors that affect construction performance, which cause uncertainty 
due to vagueness rather than randomness. The theory of fuzzy sets provides a mathematical 
technique to capture and model uncertainty caused by vagueness using membership 
functions. However, knowledge acquisition from construction experts, in a systematic 
manner, remains one of the challenges of using fuzzy set theory in an effective manner. This 
paper presents a systematic methodology to elicit and represent qualitative construction 
performance knowledge from a group of experts. The novelty of this approach lies in the way 
how subjective estimates are represented.  Use is made of an example project to illustrate the 
modeling concepts presented.   
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INTRODUCTION  
Construction performance modeling is an integral part of managing risk on construction 
projects. Traditionally, estimating cost, schedule and productivity are carried out assuming 
the uncertainty involved in these elements is purely probabilistic, for example, using 
traditional techniques such as range estimating and stochastic scheduling. However, in most 
real-life problem scenarios, uncertainties encountered can not be described exclusively by 
statistical means.  There are many factors that affect construction performance, such as 
weather conditions, crew skill and experience, ground conditions, and site congestion, all of 
which cause uncertainty due to vagueness rather than randomness. The construction 
management team’s knowledge about the context and factors that affect performance is 
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mainly available in qualitative form rather than quantitative or mathematical terms. Both the 
parameters affecting performance (e.g., cold temperature, average skill, poor ground 
conditions) and their relationships (e.g., cold temperature and over-manning have a strong 
influence on labour productivity) can be more easily defined in linguistic terms rather than 
mathematical means. Thus modeling construction performance can benefit from a technique 
that has the ability to compute with words. The theory of fuzzy sets (Zadeh 1965; Zadeh 
1975) provides a mathematical technique to capture and reason with linguistic variables 
(words) using membership functions.  

Knowledge acquisition from construction experts, in a systematic manner, remains one of 
the challenges of using fuzzy set theory effectivly. This paper presents a systematic 
methodology to elicit and represent qualitative construction performance knowledge from a 
group of construction experts.  

CONSTRUCTION PERFORMANCE DIAGNOSIS  
Construction performance diagnosis involves identifying causes of performance deviations. 
To ensure efficient performance of a diagnostic reasoning system, the acquisition and 
representation of knowledge from domain experts becomes the most essential task in the 
development process. Construction projects are managed by a group of experts, ranging from 
frontline supervisor, representing each trade, to the construction manager who oversees the 
entire project operations. The first step towards identifying causes of performance deviations 
is to assess the working conditions on a daily basis.  The study presented in this paper is 
designed to collect data to reason about construction productivity at the activity-level (and 
summarizing upwards). Thus knowledge acquisition is carried out at the front-line 
supervision level. A structured approach is required to obtain subjective assessments (i.e., 
fuzzy linguistic estimates) of daily working conditions from multiple experts. Furthermore, 
this approach should facilitate the aggregation of subjective assessments across multiple 
experts and across different time intervals as well.  

Generally, in most studies, a unipolar scale (e.g., 0 to 10, zero being the lowest and 10 
being the highest) is selected to represent an individual’s subjective judgment. This paper 
presents a measurement technique that is based on bipolar scales, named as the semantic 
differential technique for structuring subjective assessments of construction performance 
variables. The rationale in selecting a bipolar scale, instead of a traditional unipoar scale is 
presented in the next section. 

SEMANTIC DIFFERENTIAL ANALYSIS 

The method of Semantic Differential (Osgood et al. 1957) offers a simple, reliable and 
widely used method to measure the connotative meaning of objects, events and concepts. It is 
a type of rating scale defined using bipolar adjectives (e.g., cold-warm, light-heavy, etc.). 
The adjectives are usually scaled in 7 steps, represented by seven linguistic hedges, as shown 
in Figure1. 
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(concept)

polar term X polar term Y
1 2 3 4 5 6 7

1. extremely X
2. quite X
3. slightly X
4. neither X nor Y; equally X and  Y
5. slightly Y
6. quite Y
7. extremely Y

 
Figure 1. Bipolar scale. 

The subject's placement of the concept on the adjectival scale indicates the connotative 
meaning of the concept. Studies carried out by Osgood et.al. (1957) on a large number of 
different subjects in many different experiments, found that “with seven alternatives all of 
them tend to be used and with roughly, if not exactly, equal frequencies. When nine 
alternatives were used, where “quite” is broken into “considerably” and “somewhat” on both 
sides of the neutral position, it was found that all three discriminative positions on each side 
had much lower frequencies”. This finding is consistent with Saaty’s (Saaty 1980.)seven 
point scale. To each of the seven positions on the bipolar scales, a digit is assigned 
arbitrarily. These digits may be either 1,2,3,4,5,6,7 or -3,-2,-1,0,1,2,3. For mathematical 
descriptions (described later), the choice makes no difference. In a 1 to 7 scale, as shown in 
Figure 1, “4” corresponds to the neutral point, in -3 to +3 scale, 0 represents the neutral point. 

The choice of bipolar scales to represent the experts’ evaluation (i.e., fuzzy linguistic 
estimates) has several advantages:  
1. Intensity and Direction: Bioplar scales represent intensity as well as the direction of the 

fuzzy estimate while a traditional unipolar only provides the intensity. 
2. Multidimensionality: If we use a unipolar scale, we presume that the factor in question 

can be represented unidimentional.  In other words, the best reason to use unidimensional 
scaling is because we believe the concept we are measuring really is unidimensional in 
reality.  Factors such as site congestion, for example, can be represented by both 
manpower density and equipment mobility. In such situations, we can use bipolar scales 
to capture the multidimentionality of such factors. 

3. Planned conditions: In some cases, the neutral values of the bipolar scale (i.e., number 
4) represent the planned conditions of the causal factors (e.g., temperature, wind), which 
can be used to identify implicit planned working conditions. This information can be 
useful in conducting variance analysis using fuzzy linguistic estimates. 
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DAILY WORKING CONDITION ASSESSMENT 
This section describes an approach that provides a well-defined methodology for 
construction managers to assess daily working conditions using fuzzy linguistic estimates 
based on semantic differentials.  

Figure 2 shows a sample daily working condition report. “Steel erection” is selected as 
the activity, R, for illustration. 

 

 

 

Figure 2. Sample working condition report. 
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This working condition report, RC , represents the multidimensional space of the concept: 
daily working condition for steel erection. The list of causal factors (Lk , k=1 to m, where m 
is the total number of causal factors in CR) represent the dimensions of the semantic space. 
Each dimension (i.e., each causal factor) is represented using a bipolar scale assumed to 
represent a straight line function that passes through the origin of the space. A sample of such 
scales then represents a multidimensional space. Raw data obtained from “daily working 
condition report” are a collection of check marks against bipolar scales, k

pS , where 
{ }7,6,5,4,3,2,1∈p . As shown in Figure 2, the scale values are labeled using seven linguistic 

hedges to help experts make adequate distinctions amongst them.  
Assume that n frontline supervisors that represent RC  reported their fuzzy linguistic 

estimates on  kL  (k= 1 to m, where m is total number of causal factors) on day t.  This results 
in a set of pairs k

piL Sx
k ,, , where 

KLx  represents the corresponding objective measure of the 

causal factor kL  on the period concerned (e.g., daily). k

pi
S

,
represent the fuzzy linguistic 

estimate provided by expert i on variable kL , ( { }7,6,5,4,3,2,1∈p , fuzzy linguistic estimate). 
As illustrated in Figure 3, for a given activity on a certain day, the working condition 

report RC  provides n*m matrix of data points. An alternative representation of the n*m 
matrix is shown in figure 4. 

 

 
Figure 3. Multiple fuzzy linguistic estimates from daily working condition report 
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Figure 4. Matrix representation of multiple fuzzy linguistic estimates  

When the fuzzy linguistic estimates are obtained over a period of time, T, the resulting 
matrix of data (n*m*T) can be represented as shown in Figure 5. Each cell in this matrix of 
data represents the judgment of a particular causal factor by a particular expert on day t; each 
of the n slices represents the complete judgment of a single expert (i.e., one daily working condition 
report. Each of the m slices represents the assessment of a particular causal factor over the 
duration T.  

 

 

Figure 5. Rectangular solid of data representing experts’ assesment over a period of T. 

AGGREGATION OF DATA 
There are three possible scenarios that may need aggregation of fuzzy linguistic estimates.  

1. Mean response of group of experts: This is a case where the group estimate is required. 
Assume that we have n number of experts providing fuzzy linguistic estimates on causal 
factor kL .  
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Let ∑
=

=
n

i

k
ip

k
p S

n
S

1

1      (1) 

k
pS  represents the mean response of the group of experts. It may be viewed as a 

probabilistic interpretation of the (mean) bipolar score. Equation 1 can be generalized by 
allowing one to distinguish degrees of competence, ci, of the individual experts (Klir and 
Yuan 1995). This results in the formula 

∑
=

⋅=
n

i

k
ipi

k
p ScS

1

     (2) 

 
2. Weekly (or monthly) averages: This is a case where data need to be aggregated across 
time (e.g., in the case where weekly averages are obtained from daily values). In this case; 

∑
=

=
T

i

k
p

k
p S

T
S

1

1      (3) 

where T is total number of days across the time period concerned. 
 

3. Composite causal factor score: In cases where multi-level representations are required 
and composite factors are identified, to obtain composite causal factor scores, the (root) 
causal factor scores are summed and average over the scales. The composite causal factor 
score is  

∑
=

=
q

i

k
p

k
p S

q
S

1

ˆ 1      (4) 

Above equations provide a strategy to aggregate linguistic assessments when necessary. 

FIELD STUDY  
A field study was designed and conducted to test and validate the concepts presented above. 
This field study is carried out at a pipe module fabrication facility of a leading industrial 
contractor, located in Edmonton, Alberta. A total number of fifteen front line supervisors 
representing 5 trades (ironworkers, pipefitters, equipment operators, electricians, and 
carpenters) and 9 different activities (i.e., steel erection, pipe fitting and installation, welding, 
hydrotesting, glycol tracing, material handling, equipment operation, carpentry/scaffolding, 
and electrical) completed the study over a sixty workday period (during the summer of 2005. 
The experience of the group of experts (frontline supervisors, otherwise known as foremen) 
ranged from 6 to 32 years in the trade, averaging 20 years.  

ANALYSIS OF FUZZY LINGUISTIC ESTIMATES 

To determine the effectiveness of the proposed semantic differential scales to obtain fuzzy 
linguistic estimates, an analysis was carried out on selected causal factors. Results related to 
the causal factor “temperature” are discussed in this section. Figure 6 shows how daytime 
average temperature varied over the period of study. Temperature values were collected at 
the site by setting up a professional wireless mini-weather station (Model: WS-2315AL by 
La Crosse Technology).  
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Figure 6. Day time average temperature (degrees Celsius) 

 
Figure 7 shows the average fuzzy estimates aggregate from all experts (assuming equal 

competency levels) against the daytime average temperature. Note that multiple dots for the 
same x-axis values (i.e., degrees Celsius) indicate that the same daytime average temperature 
was recorded on multiple days during the period studied.  

 

 
Figure 7. Mean estimated values for temperature 

 
Multiple dots for the same temperature value also indicate that different expert 

evaluations were obtained for the same value of temperature (on different days of the 
month/season). However, as shown in Figure 6, in most cases the variation of the fuzzy 
estimates is low and remained in between two linguistic values. For example, the value of 18 
degrees Celsius is recorded 5 times during the study period. The mean value of fuzzy 

June 14-16, 2006 - Montréal, Canada
Joint International Conference on Computing and Decision Making in Civil and Building Engineering

Page 3536



 

linguistic estimates for all five days remained in between “neither cold/warm” and “slightly 
warm”. Similar results were observed for the temperature values 12, 13, 14, 15, 17, 21, and 
24. This indicates that, for the period studied (i.e., summer 2005), the mean estimates (of the 
group) are nearly consistent.  

A sample activity level analysis (for structural steel erection) for the same causal factor 
(i.e., temperature) is shown in Figure 7. The subjectiveness of individual assessments is 
clearly visible in the Figure 7. Nonetheless, the assessments are still in between two linguistic 
values in 85 percent (18 out of 25) of the cases. 

 
Figure 8. Individual estimated values for temperature by Steel erection experts 

 
A similar type of analysis was carried out for twenty causal factors across four different 

activities. The consistency of the experts’ linguistic assessments was above 72 percent in all 
of the cases, which indicates that the proposed methodology is a practical tool for acquiring 
and representing subjective assessments from a group of individuals for construction 
performance diagnosis. 

These fuzzy linguistic assessments can be directly used for a number of purposes, for 
example (1) to identify and evaluate implicit planned working conditions, and (2) to identify 
the causal factors that vary considerably. Additionally, these linguistic assessments can be 
transformed into sample membership values so that can be used as input to fuzzy logic based 
systems. 

SUMMARY 
In this paper, a structured approach to elicit and represent construction experts’ assessments 
on daily working conditions using semantic differential measurements is proposed. 
Algorithms are proposed to aggregate linguistic assessment to represent information at 
different levels, such as group estimates and weekly average values. Currently research is 
underway to construct fuzzy membership functions using sample membership values 
obtained using semantic differential approach proposed in this paper to develop construction 
performance diagnostic reasoning systems.  
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NOTATION 
The following symbols are used in this paper;  

RC  = working condition report of Activity R. 
i = expert; 

kL  = causal factor 
m = total number of causal factors 
n = total number of experts 

{ }7,6,5,4,3,2,1∈p = values that represent the linguistic hedges of bipolar scale S. 
q = total number of sub causal factors consists in the composite factor 
R = activity 
S = bipolar scale 

k

pi
S

,
 = linguistic assessment of causal factor kL  by expert i 

k
pS ˆ  = composite causal factor score 

KLx  = objective measurement of causal factor kL  
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