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ABSTRACT 
Over the past two decades, earthquake engineers have focused considerable attention on the 
development of new technologies that promise to provide improved seismic performance.  
This represents the engineering side of the problem.  However, the more general objective 
must be to improve the disaster-resiliency of communities.  Achievement of this latter goal 
not only requires the consideration of the structural and non-structural systems that shape the 
physical environment, but also the organizational systems that define the economic and 
social character of the region. As a result, there is a need to model, understand and ultimately 
direct the behavior of a wide variety of complex multi-scale systems.  In particular, we 
consider health care facilities and networks. Clearly, this represents one of the most critical 
and complex components in shaping the overall community response following a major 
disaster. However, our emphasis is on mitigation, rather than response, with the ultimate 
objective to develop seismic decision support methodologies for individual hospitals, for 
health care networks and for regional public policy and resource allocation. Evolutionary 
methodologies may be ideally suited to study and to provide guidance on many of the 
relevant issues. In this paper, we present an initial evolutionary decision support framework 
that attempts to integrate a range of sociotechnical models for aseismic decision support.  
Included are system dynamics economic models for the health care organizations, 
Gutenberg-Richter geophysical models for the seismic environment, explicit state-space 
structural dynamics models for building response evaluation, damage models to estimate the 
effects of extreme events, and risk aversion models to convey societal preferences. We 
concentrate here especially on the sociotechnical organizational modeling of hospitals. 
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INTRODUCTION 
The concept of complex adaptive systems, originally formulated by Holland (1962, 1975), 
has played a prominent role in characterizing the behavior of a broad range of systems. For 
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example, both physical and social systems often involve the complicated, nonlinear 
interaction amongst numerous components or agents. In many cases, the agents are free to 
aggregate at multiple scales in response to an uncertain or changing environment. As a result, 
such systems may demonstrate an ability to evolve over time and to self-organize. In the 
process, these complex adaptive systems may display collective attributes acquired though 
adaptation that could not be achieved either by individual agents acting independently, or by 
agents under strict top-down control. Standard examples include a rain forest, the human 
central nervous system and the local economy. Key characteristics of these complex systems 
include environmental uncertainty, multi-scale behavior, unsteady temporal response, and 
large decision spaces. Clearly, from the description just presented, a single critical care 
facility or critical care network also may be classified as a complex adaptive system.  

Holland (1975) developed a unified theory of adaptation applicable for both natural and 
artificial systems. Ideas from biological evolution were central to his approach. Besides 
providing a general formalism for studying adaptive systems, this led to the development of 
evolutionary methods and, more specifically, to genetic algorithms. For the genetic algorithm 
formalism, let S be the set of possible solutions, E symbolize the class of realizable 
environments, µ indicate the performance measure, and τ represent the adaptive plan. Then 
by making selections from a set of operators Ω, the adaptive plan τ produces a sequence of 
potential solutions  based upon the performance measure Ss∈ eµ associated with 
environment . In a genetic algorithm, the individual solutions s are encoded as 
computational chromosomes, often using a binary string representation. The typical genetic 
operators contained in Ω include selection, crossover, mutation and replacement. At each 
generation, the best performing solutions are selected for reproduction. The genetic operators 
then work to increase the frequency of good qualities contained in the population, while 
continually exploring the space of possible solutions in S. Figure 1 provides the overall flow 
of a classical genetic algorithm. Notice, in particular, that a number of stages within the 
algorithm lend themselves naturally to parallel computing platforms. This is especially true 
for the fitness evaluation stage, which is often the most computationally demanding task. 
Further details on genetic algorithms can be found in Holland (1975), Goldberg (1989) and 
Mitchell (1996). 

Ee∈

Although in the original work by Holland the environment may be uncertain, most 
implementations and applications of genetic algorithms are limited to fixed environments. 
However, evolutionary methods actually are more appropriate for discovering robust 
solutions to problems involving uncertainty, ambiguity and risk. Interestingly, these are 
exactly the types of solutions required for the development of seismically resilient 
communities. 

EVOLUTIONARY ASEISMIC DECISION SUPPORT FRAMEWORK 
Figure 2 shows the proposed aseismic decision support methodology. Notice that both 
physical and sociotechnical models are included. For the geophysical model and earthquake 
model, we employ the USGS Gutenberg-Richter seismicity database for eastern North 
America (Frankel, 1995; Frankel et al., 1996) and generate as many ground motions as 
necessary to evaluate proposed structural design and retrofit options. Following the USGS 
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model, the entire geographical region of eastern North America is subdivided into bins, with 
each bin representing 0.1 degrees of longitude and latitude. The USGS database then 
provides Gutenberg-Richter parameters for each bin. We simulate the seismic environment 
by running Poisson processes in each bin to determine first arrival times T of significant 
events that may occur during the intended life cycle Tl of the structure. Once magnitude M 
and epicentral distance R are established for a significant event, the ground motion 
generation algorithm defined by Papageorgiou (2000) is used to produce an appropriate 
synthetic accelerogram. This approach is used to simulate ne environmental realizations 
independently for each individual structure s at each generation. 

 

Genetic Algorithms 
Classical Version (Holland, 1975) 

 
Initialize pool of chromosomes [Parallel] 

Generation loop [Serial] 
Chromosome loop [Parallel] 
Evaluate chromosome fitness 

End loop 
Apply genetic operators [Parallel, Serial] 

End Loop 
Select best chromosome(s) [Parallel] 

Figure 1: Genetic Algorithm Flow Diagram 
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        Damage Model (DM) 
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Figure 2:  Evolutionary Aseismic Decision Support 
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Passive energy dissipation systems are now broadly used for the seismic control of civil 
engineering structures and a wide variety of device types are available, including metallic 
yielding dampers, friction dampers, viscous fluid dampers and viscoelastic dampers (e.g., 
Soong and Dargush, 1997; Constantinou et al., 1998). For the present development, we 
consider design alternatives involving three different types of passive dampers.  In order to 
evaluate structural performance, a lumped parameter structural model is employed. A two-
surface cyclic plasticity model in force-displacement space (Constantinou et al., 1998) is 
used to describe the behavior of the primary structure and metallic dampers. Viscous 
dampers are represented as purely linear Newtonian devices, with force proportional to 
velocity. Lastly, viscoelastic dampers are modeled as nonlinear rate-dependent devices based 
upon a thermally sensitive generalized Maxwell model. For any given design or retrofit 
option s within the set of possible structures S, the properties for the lumped parameter 
primary structure and passive element models must be defined at each story. The resulting 
equations of motion for the n-story passively damped structure are written in state-space 
form and then solved, along with the applicable constitutive models, using an explicit, 
adaptive step-size Runge-Kutta method (Press et al., 1992). 

In the following sections, complex decision processes are examined within health care 
organizations. Then a system dynamics organizational model is presented and a numerical 
example is provided. 

ORGANIZATIONAL DECISION SUPPORT 
While the evolutionary approach for aseismic design and retrofit mentioned above is useful 
in distinguishing the various design alternatives, decisions regarding whether or not to 
retrofit an existing structure are seldom based strictly on engineering grounds. The 
sociotechnical nature of organizational decision-making must be considered. For the general 
problem, March and Olsen (1973) proposed a garbage can model for organizational 
decisions. Recently, Petak and Alesch (2004) have tailored and augmented the March-Olsen 
model for earthquake hazard risk reduction in healthcare organizations. Based upon their 
work, there are five prerequisites for organizational action: 

(1) The healthcare organization must perceive the seismic risk; 
(2) The organization must believe it has an internal locus of control regarding the 

problem; 
(3) The organization must feel that implementing the solution is in its best interests; 
(4) The organization must believe that a solution exists to reduce that risk; 
(5) Organizational capacity must exist to implement the risk reduction measures. 

Petak and Alesch (2004) also emphasize the importance of the temporal dimension of 
decision-making and the need within the organization to actively seek solutions. This Petak-
Alesch descriptive model is very helpful for identifying the prerequisites for organizational 
action. However, additional qualitative and quantitative models of organizational behavior 
and performance would be beneficial to support the decision-making process. Currently we 
are concentrating on the development of succinct differential models using ideas from system 
dynamics (Forrester, 1961, 1969, 1971) and interacting species formulations (May, 1973).  

System dynamics originated in the 1960s with the work of Forrester. System dynamics is 
a method of analyzing problems in which time is an important factor, and which involves the 
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study of how a system can be defended against, or made to benefit from, the shocks that fall 
upon it from the outside world. A system dynamics model is a practical, operational decision-
making model with interdisciplinary ties. The basic structures of a system dynamics model 
include stocks, flows, converters and connectors. For critical care facilities, the present 
system dynamic model utilizes patients, employees, building and equipment, and monetary 
assets as the four stocks, which are four key variables characterizing organizational behavior. 
Essentially, the system dynamics model can be represented by a set of ordinary differential 
equations (ODEs) or stochastic ODEs. The four stocks in the system dynamics model are the 
four major dependent variables of the ODE set with time as the independent variable. From 
the system dynamics model, we get a set of simplified dimensionless formulations. This 
permits analytical investigation using well-established qualitative methods for ODEs. Thus, 
critical points, limit cycles and stability issues can be analyzed. 

As soon as the organizational dynamics model is established, the decision space S should 
be identified. In our model, we focus on three sets of policies, which involve decision-
making: 
• Policies regarding seismic retrofit: including evaluation frequency (how often should we 

examine whether or not the facility needs to be retrofitted), retrofit criteria (under what 
financial conditions can we perform retrofitting), retrofit level (what performance level 
is expected after retrofitting).  

• Policies regarding building and equipment investment: including investment rate, 
patients vs. building and equipment target ratio and major equipment investment criteria. 

• Polices regarding human resource management: including employee hiring rate, patient 
vs. employee target ratio and employee hiring monetary criteria. 

Again, a genetic algorithm is applied to find robust solutions, where each solution 
corresponds to a specific set of organizational policies. The overall flow of the genetic 
algorithm for organizational decision support is provided in Figure 3.  Currently, the fitness 
can be defined as one or several of the following objectives: maximizing building and 
equipment; maximizing monetary assets; maximizing patients served; minimizing 
accumulated damage; minimizing patient-days lost due to seismic damage.  

 
Evolutionary Organizational Decision Support 

 
       Initialize pool of decision sets 
       Generation loop  
                  Decision sets loop [Parallel] 
                            Evaluate decision set fitness 
                    End loop 
                  Apply genetic operators 
        End loop 
        Select best decision set(s) 

Figure 3: Evolutionary Organizational Decision Support Flow Diagram 
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SINGLE HOSPITAL MODEL  

The system dynamics model for a hospital can be represented by a set of ordinary differential 
equations (ODEs). Assuming each hospital has four major dependent variables with time t as 
the independent variables: Patient (P), Employee (E), Building and equipment (B) and 
Monetary assets (M).  All of them are normalized by a certain value so that the ODE set is 
dimensionless to avoid discrepancy due to differing units.  This set can be written in 
stochastic form as follows: 

 
 PdtdEdtcdP EBEB γγ 11 −=               (1a) 
 EdtdEdtcdE EM 22 −= β               (1b) 
 BdtdBdtcdB BM 33 −= β               (1c) 
 BdtcdBdtdEdtdPdtdcPdtcMdtcdM BMEB βγ 36541654 −−−++=            (1d) 
where 
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    where H(·) represents the Heaviside function, M
 

E is the minimum monetary assets to hire 
employee, MB is the minimum monetary assets to invest on building and equipment, and 
 EEE γα −=1 ,    BBB γα −=1                         (3a,b) 
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with 
 ,  ,  PEEP /= PBBP /= EB BBEE /1/ ==                 (5a-c) 
while ,  are target ratios as follows: PÊ PB̂
 

 
,               (6a,b) ettP PEE arg)/(ˆ = ettP PBB arg)/(ˆ =

             (6c,d) EPPB BBEE ˆ/1ˆ/ˆˆ ==
 
Assuming P > 0, E > 0 and B > 0, c1, d1, c2, ......d6 are a set of parameters, some of which 
can be estimated based on the available financial data, others might be set as the policies to 
be decided by the hospital administration.  The parameters are defined as follows: 
 
 c1: Normal patient arrival rate 
 d1: Normal patient discharge rate 
 c2: Employee hiring rate 
 d2: Employee exit rate 
 c3: Investment on building and equipment rate 
 d3: Building and equipment depreciation rate 
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 c4: Investment profit rate 
 c5: Revenue per in-patient 
 c6: Net revenue per discharge 
 d4: Average expense per employee 
 d5: Building and equipment maintenance fee  
 d6: Adjusted building and equipment investment fee 
 

This model defined above only considers routine operation of a hospital. Some abrupt 
decisions, such as a major investment on building and equipment, a sigificant hiring or lay-
off of employees, …, etc. are not taken into account. In addition, extreme events such as 
earthquakes, epidemics are not yet included in the model.  

A NUMERICAL EXAMPLE 

The Northridge Hospital Medical Center is located at San Fernando, Los Angeles County, 
CA. It is a major primary and specialty non-profit acute care hospital with 425 beds and a 
life-saving trauma unit serving more than 15,600 patients annually. The annual financial and 
operational data of this hospital from 1995-2003 can be found in the OSHPD (Office of 
Statewide Health Planning and Development, CA) website. The raw data is then processed in 
order to extract estimates of the four key system dynamics variables (i.e., P, E, B and M).  
Typical results are displayed in Table 1. 

 

Table 1: The Annual Financial Data (1995-2003) of Northridge Hospital Medical Center 

Year 1995 1996 1997 1998 1999 2000 2001 2002 2003 
P 334 323 335 337 273 284 295 319 327 
E 1,623 1,633 1,413 1,438 1,427 1,241 1,230 1,206 1,551 

B(Million 
dollars) 79.09 76,51 73.17 71.77 70.93 72.25 78.95 86.29 87.12 

M(Million 
dollars) 13.29 11.98 12.91 0.99 -31,38 -27.71 -27.13 -34.89 -32.12 

 
 

A number of the system dynamics model parameters can be estimated directly from 
additional data included in the OSHPD database, while others can be established from data-
fitting numerical algorithms.  For example, here we use the Levenberg-Marquardt Method 
(Press et al., 1992) to obtain best-fit parameter values.  Figure 4a-d presents system dynamics 
results for four different realizations of the model. However, due to the inherent complexity 
and uncertainty of the problem, there typically are a number of local extrema in the 
formulation to determine model parameters.  Consequently, an alternative evolutionary 
algorithm is currently under development for parameter estimation.  In any case, once a 
validated system dynamics model is established, this becomes another component in the 
overall decision support framework identified in Figures 2 and 3.  For decision support at the 
local hospital level, the decision space incorporates retrofit options, facility investment and 
expansion/contraction planning.  On the other hand, for regional policy support, the decision 

 

June 14-16, 2006 - Montréal, Canada
Joint International Conference on Computing and Decision Making in Civil and Building Engineering

Page 3487



space involves potential mandated seismic retrofit with or without financial support, along 
with optional retrofit policies involving incentives.  An overall flow diagram for regional 
policy decision support is provided in Figure 5. 
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Figure 4: Initial System Dynamics Model Realizations 
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Figure 5: Evolutionary Support for Regional Seismic Policy Decisions 
 

CONCLUSIONS 
A general evolutionary framework has been developed to provide support for complex 
decision processes. This development concentrates on two specific aspects, namely, aseismic 
design and retrofit decision support and organizational decision support. Within the first 
domain, we focus on the engineering problem associated with the design of passively 
damped structural systems and present a computational approach based upon genetic 
algorithms that has significant potential. In numerous case studies, the system is able to 
discover robust designs in an uncertain seismic environment. In addition, the algorithms scale 
favorably with increasing problem size and are naturally parallel. Consequently, continued 
development of the methodology and the associated software appears to be warranted, 
particularly in light of the anticipated concurrent advancement of massively parallel 
computing hardware and grid computing. Furthermore, the extensions of this evolutionary 
approach to include non-structural components and to address multi-hazard design and 
retrofit are clearly feasible. 

Beyond the engineering aspects of the mitigation problem are many associated 
socioeconomic issues that must enter into the decision-making process. Consequently, in the 
present paper, we focus on developing evolutionary formulations for decision support toward 
seismic risk reduction in critical care organizations. Our present work is concentrated on the 
development of quantitative organizational models to approximate the overall behavior and 
to couple with the existing geophysical and structural models in the evolutionary decision 
support framework. Although some research challenges remain, we believe that this new 
approach has considerable potential to provide guidance at the level of a single critical care 
facility and for regional planning of critical care networks. 
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