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ABSTRACT 
To facilitate the conceptual design of large-span roof truss systems, multi-objective 
optimization algorithms offer engineers a choice of potential design alternatives that meet 
rigorous standards in terms of allowable weight and deflection.  Often, these algorithms 
operate independently of the designer until selection of a final alternative.  However, 
incorporating a user's aesthetic design preferences into roof truss optimization may improve 
the process by capitalizing on a human user's ability to visually assess design effectiveness 
and by making the system more responsive to the needs of the designer.  The current research 
effort develops a mechanism for capturing a user's aesthetic design preferences so that these 
preferences may be embedded into the optimization process.  Development of the mechanism 
includes selecting a set of features to uniquely identify the aesthetic characteristics of a truss; 
choosing a clustering mechanism to perceive similarities between trusses and simplify the 
user input process; and creating an algorithm to extrapolate previous user evaluations into 
predictions of future preference. 
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INTRODUCTION  
Automated systems for large-span roof truss optimization seek to provide engineers with the 
flexibility to consider multiple alternatives during conceptual design while simultaneously 
ensuring that these alternatives remain structurally rigorous.  This investigation extends 
previous work on multi-objective roof truss optimization to include the aesthetic design 
preferences of a human user.  The overall design methodology uses an implicit redundant 
representation (IRR) genetic algorithm (GA) to simultaneously optimize truss topology, 
geometry, and member shape.  While minimizing truss weight and mid-span deflection, the 
IRR GA generates designs in a sparsely defined search space.   
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Although easily quantified, structural performance is not the only requirement placed 
upon large-span roof truss systems during the conceptual design phase.  Constraints such as 
conformance to the architectural program, constructability, and overall economic feasibility 
may play equally important roles in selecting the final design.  However, although such 
intangible criteria are often apparent to a human user based upon visual inspection of the 
design alternatives, formulating these constraints in terms accessible to the GA is 
mathematically intractable.  

Teaching GAs to recognize these "intuitive" constraints would establish their efficacy for 
use in conceptual design.  Not only would GAs be able to aid engineers by rapidly generating 
and identifying optimal structural solutions, they would also have the ability to autonomously 
assess the practicality of these solutions.  Moreover, if feedback from a designer could 
provide information about practicality and aesthetic desirability, the GA could use this 
information to perform a user-guided exploration of the search space.   

This paper will detail the development of soft-computing methods to capture a human 
user's aesthetic design preferences for incorporation into multi-objective optimization of 
large-span roof trusses.  This research effort created a preference-recognition mechanism 
from the results of investigations into feature identification, classification mechanisms, and 
preference detection. 

REVIEW OF RELATED LITERATURE 
In recent years, researchers in various fields have made a concerted effort to engage the 
human designer during the automated design process.  In multi-objective optimization 
problems, utility functions have been used to estimate a user's preferences and converge on a 
single solution most likely to meet these preferences (Al-alwani et al. 1993; Malakooti and 
Al-alwani 2002).  Users evaluate pairs of similar solutions to help identify the boundaries of 
acceptable and unacceptable designs (Yang and Sen 1996).  Utility functions are most often 
used to make decisions in terms of trade-offs between problem objectives (Al-alwani et al. 
1993; Malakooti and Al-alwani 2002; Yang and Sen 1996)—that is, to determine the 
sacrifices in one objective a user is willing to make to improve performance for a second 
objective.   

   The current research, however, seeks to model a user's aesthetic preferences, and to use 
this information to encourage the development of more pleasing design alternatives while 
still fully satisfying structural performance criteria.  Moreover, the goal is to present the 
designer with a range of equally viable truss alternatives, from which the most appropriate 
may be selected, rather than contract a multi-objective problem into a single proposed design.  
The search for appropriate tools, therefore, focused on examining previous efforts in 
interactive evolutionary computing (IEC).   

Similar to the idea of weighted objectives used in utility functions, Furuta et al. (1995) 
created a GA to assess the fitness of trussed bridges based upon a designer's aesthetic 
preferences.  These preferences were reflected in a-priori weight assignments to the variables 
of formative beauty, balance, and slenderness of the truss (Furuta et al. 1995).  This work, 
like many others, considered only the satisfaction of aesthetic criteria, rather than overall 
structural performance. 
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While Furuta et al. (1995) collected user preference information before beginning the 
GA, many other studies interactively incorporate user preference throughout the simulation.  
Takagi (1998) provides a good summary of current IEC methods.  Previous applications 
include computer graphics (Sims 1993; Graf and Banzhaf 1995) and automobile design 
(Petiot and Grognet 2002; Yanagisawa and Fukada 2004).  In some cases, a CAD, or CAD-
like, environment is used to create a range of products, from simple geometric shapes like 
cups or vases, to more complex entities, such as automobiles (Adelson 1998; Smyth and 
Wallace 2000).   

Interactive GAs are popular tools for allowing users to guide design evolution.  The 
interactive GA replaces the mathematical fitness function with human judgment (Takagi 
1998).  In most cases, this means users directly select the phenotypes to become parents of 
the next generation (Sims 1993; Smyth and Wallace 2000; Graf and Banzhaf 1995).  The 
evolution is considered complete when the user is satisfied with the current design. 

Other methods learn a user's design preferences in order to speed convergence towards an 
acceptable solution.  This learning may take the form of rule-based expert systems (Adelson 
1998) or rough set approximations of a user's "favored" features (Yanagisawa and Fukada 
2003; Yanagisawa and Fukada 2004; Yanagisawa and Fukada 2005).  Neural networks have 
also been used to estimate a user's design preference, such as in the Chikata et al. (1998) 
effort to capture user evaluations of concrete retaining walls.  

FEATURE IDENTIFICATION 
Humans have the ability to visually distinguish one truss design from another.  The intuitive 
judgments they make about the practicality or aesthetic desirability of a given design rely 
upon these visual distinctions.  A set of quantifiable truss characteristics must exist to 
translate human perception into decision criteria transparent to a computer algorithm.  
Therefore, the first task in capturing a user's design preferences was to create a characteristic 
feature vector to describe the aesthetic appearance of a given truss. 

The characteristic feature vector will serve as input for the classification and preference 
detection mechanisms and represents the most fundamental "picture" of the truss available to 
the computer program.  In creating such a feature vector, it is important to determine what 
features most strongly impact truss appearance and to effectively formulate mathematical 
measures of these features.  This investigation explored twenty potential features, which 
varied from simple, geometric properties to more abstract measurements intended to capture 
truss behavior. 

It was desirable to isolate truss characteristics that were invariant to population changes, 
since the IRR GA creates design alternatives through random processes and because a user's 
needs may change for a given application.  The test populations used to determine the most 
effective truss features varied both in size and complexity and were created using the 
topology generator described in Agarwal and Raich (2005).  All trusses had a 22.86-meter 
(75-foot) span and a maximum height of 7.62 meters (25 feet).  Population sizes varied 
between 25 and 100 trusses, and trusses within these populations contained between 25 and 
100 structural members.  Each proposed characteristic was evaluated for its effect on five 
different test populations. 
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The one-dimensional (1D) Kohonen self-organizing map (KSOM) was selected as the 
major tool for creating feature maps of the test populations.  The KSOM is an unsupervised 
neural network that projects an incoming signal onto a discrete, topographic map, which is 
usually one- or two-dimensional (Haykin 1999).  The use of KSOMs to identify relationships 
between data has been well established (Kohonen 1988; Schyns 1991; Taner et al. 2001).  
Obayashi et al. (2005) use KSOMs to visualize tradeoff information in large dimension 
multi-objective optimization classifications.   

The 1D KSOM performed separate trials for each of the proposed truss descriptors.  
Trusses similar to each other in terms of a given feature activated the same output neuron of 
the KSOM and were therefore placed in the same category.  The effectiveness of these 
categories in capturing the aesthetic variations within a population then determined the 
effectiveness of the proposed feature.  The KSOM used in this application contained a 
maximum of nine output neurons. 

Feature maps output by the KSOM were subjectively evaluated based upon their ability 
to visually partition the truss population, to determine whether the groups created in response 
to the feature inputs made significant distinctions between trusses.  The averages and 
standard deviations for the KSOM groups were also calculated.  Characteristics with large 
standard deviations or closely spaced averages were undesirable, since they indicated that no 
real order within the characteristic was being mapped by the KSOM.  Similarly, the 
distribution of group averages was considered to ensure that no single truss group dominated 
the map.  Such "super groups" would have illustrated an insufficient amount of information 
in the input.   

Additionally, three-dimensional plots were created to study the clustering behavior of the 
KSOM.  These plots helped illustrate whether groups identified by the KSOM were easily 
distinguishable from each other and contained closely spaced members.  The plots also 
explored distribution of groups in feature-space, which indicated how much variation existed 
within the truss populations.  Clearly, features resulting in little or no variation within a 
population would be unsuccessful at distinguishing differences between trusses.  To create 
these plots, feature sets of successfully performing characteristics were outlined.  Three 
characteristics were assigned to each feature set, and each of these characteristics formed an 
ordinate by which an individual truss could be assigned a place in three-dimensional feature 
space. 

Based upon comparisons of the above data for all truss populations, the nine most 
significant descriptors of truss behavior were selected for inclusion in the characteristic 
feature vector.  When combined into feature sets, these characteristics were able to represent 
fundamental ideas about the general shape, simplicity, and chord shape of a truss.  Table 1 
summarizes these sets and their constituent features.   

Table 1: Summary of Feature Sets for Truss Discretization 

General Shape Simplicity Chord Shape 
Maximum truss height Number of members Top chord direction changes 

Mid-span clearance Number of joints Top chord flatness 
Truss depth Average joint connectivity Bottom chord flatness 
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The feature map generated by the 1D KSOM for the complete feature vector is shown in 

Figure 1 for a population of 50 trusses containing a maximum of 50 members per truss.  
Trusses in groups 8 and 9 tend to be the simplest in the population, while the map as a whole 
reflects variations in height among all designs.  More sharply arched trusses, such as those in 
group 7, have also been successfully separated from flatter designs, as in group 1.   

 

 

Figure 1: Feature Map for Sample Population Using Final Characteristic Feature Vector 

CLASSIFICATION MECHANISM 

In the feature identification investigation, a Kohonen's self-organizing map was used to 
visualize similarities between trusses with respect to a given feature.  The KSOM is 
frequently used to simplify relationships between complex, multi-dimensional data, as in 
Obayashi et al. (2005).  Such applications often use an extensive KSOM network, with 
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individual neurons for each data point.  On a smaller scale, however, the KSOM may also be 
used to create clusters of related designs, and it was this ability that first suggested the 
KSOM for the present application. 

IEC approaches that require a user to directly assess the fitness of each individual in the 
population create a "physical and psychological" burden on the user (Takagi and Ohya 1996).  
Previous studies have suggested that human users tend to naturally categorize a population of 
objects into similar groups before assessing fitness (Ohsaki and Takagi 1998) and that 
allowing users to evaluate solutions on a group basis, rather than individually, is an effective 
way of reducing fatigue (Takagi and Ohya 1996).  Therefore, it was thought that a KSOM or 
other unsupervised clustering technique could simplify the input procedure for determining a 
user's aesthetic design preferences.  Having users select preferences for groups of similar 
truss designs reduces the number of evaluations a user must make while simultaneously 
increasing the information available to form judgments about a user's future preferences.   

Since the population of truss designs will vary with each application of the IRR GA, it 
was important to determine a mechanism capable of independently detecting similarities 
between trusses.  The KSOM was considered, with both one and two-dimensional neuron 
arrays, as well as the classical k-means and nearest neighbor clustering algorithms.  These 
algorithms were used to create clustering maps of five truss populations to ensure that the 
final algorithm remained effective regardless of variations in population size or complexity.   

Two performance measures examined whether the classifications proposed by any, or all, 
of these methods would be considered "good" by a human user.  First, similarity matrices 
were created to compare the unique topologies of two truss populations.  Entries in these 
matrices expressed the degree of similarity (on a 1 to 4 scale) perceived between truss pairs.  
The proposed classifications were graded on how closely group members aligned with these 
judgments.  Points were awarded whenever similar trusses were grouped together or 
dissimilar trusses were separated; conversely, points were subtracted when similar trusses 
were separated or dissimilar trusses grouped.  Additionally, results from a survey of nine 
volunteers were used to create a "composite" classification for two truss populations.  A 
Rand Index indicated how often a clustering map agreed with the composite map. 

The second goal of this investigation was to determine which clustering method would 
best classify an arbitrary population.  The sum-of-squares error was used to determine the 
efficiency of a proposed classification by indicating how tightly clustered proposed truss 
groups were.  While not an absolute indicator of within-group truss similarity, the SSE is a 
useful tool for determining relative similarities between the different clustering methods.   

Another method for exploring the numerical performance of the unsupervised clustering 
methods was to examine the distribution of standard deviations across the populations.  
Proposed maps that had many features with small standard deviations were considered highly 
performing.  However, the number of single topology groups in a clustering map was also 
taken into account, since the practice of not grouping trusses artificially inflates the number 
of small standard deviations in the population and should not be uniformly rewarded.  In 
some cases, it is important to isolate trusses that truly diverge from other designs in the 
populations.  However, an excess number of single topology groups indicates a failure of the 
clustering map to correctly subdivide the truss population into groups of similar design.   
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Variations in the size and complexity of the populations lead to variations in the 
advantageousness of one or the other methods.  However, the preponderance of evidence 
suggested the one-dimensional Kohonen self-organizing map as the most effective 
classification method.  The 1D KSOM method most clearly reflected human judgments about 
truss placement as measured through the similarity matrices and the Rand Index.  The 1D 
KSOM also showed a consistently strong performance in terms of numerical efficiency.  The 
SSE values for this method are low across the board and a minimum of single topology 
groups are created.   

PREFERENCE DETECTION 
By categorizing the trusses according to perceived similarities in their characteristic feature 
vectors, the 1D KSOM arranges potential designs and allows users to select the most 
pleasing groups.  This selection process allows for a user's likes and dislikes to be recorded 
for a given population.  However, the IRR GA creates many potential truss populations in the 
search for optimal designs.  Therefore, it is crucial to convert information about what designs 
a users has selected using the 1D KSOM into a prediction of what designs a user will like 
from a previously unexplored population.  

The characteristic feature vector remains the most effective source of information from 
which to make these predictions.  The vectors for trusses selected by the user will be 
compared to the vectors of trusses the user has never examined.  The KSOM was considered 
as a predictive mechanism, as were the rough set reduct (RSR) techniques outlined in 
Yanagisawa and Fukada (2003; 2004; 2005) and a back-propagation neural network (BPNN).   

Identifying a method for predicting a user's preferences required performance evaluations 
on several levels.  Judgments need to account not just for which method was the most 
numerically efficient but also which method's results most coincided with human intuition.  
Before a prediction method could be incorporated into the dynamically changing populations 
of the IRR GA, its ability to identify user preferences in a static setting had to be established. 

To accomplish this goal, two types of preference trials were conducted: the input 
reproduction trials and the preference detection trials.  These trials made use of the "original 
set" truss populations previously generated using the algorithm described in Agarwal and 
Raich (2005).  Additional "preference set" population were created to provide the same 
variations in size and complexity.  The preference set populations were used only in the 
preference detection trials. 

In the input reproduction trials, the user selected desirable topologies from among the 
original set truss populations.  These preferences were presented as input for all of the 
preference detection techniques.  Once this data had been adequately analyzed, the 
algorithms were asked to extrapolate the user's preferences to a second population.  The key 
element of the input reproduction trials was that the original set of populations was presented 
to the algorithms a second time, rather than presenting a new population.  Therefore, each of 
the prediction algorithms were asked to identify preferences they had already seen.  The 
purpose of these trials was to reproduce the user's inputs.  Success at this task was viewed as 
critical to a method's ability to identify and distinguish between trusses using the 
characteristic feature vector.   
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As in the input reproduction trials, the preference detection trials began by presenting the 
user's selections from the original population set to the prediction algorithms.  Once again, 
the different methods predicted a user's preferences in a second population based upon 
preferences previously explored.  In this instance, however, predictions were drawn from the 
preference set populations.  Therefore, the goal of this analysis was to extrapolate a user's 
selections in the original set to topologies they were likely to prefer in the preference set.  
Before presenting the preference set topologies to the prediction algorithms, these topologies 
were labeled as being preferred, acceptable, or unacceptable to the user.   

The input reproduction and preference detection trials were used to verify different 
aspects of the prediction algorithms' performance: whether or not the inputs were correctly 
analyzed, and whether or not predictions based on these analyses were accurate.  In order to 
answer these questions from a numerical standpoint, both trials used a sum-of-squares error 
(SSE) to quantify the distance between the originally selected topologies and those predicted 
by the proposed algorithms.  Additionally, percentages were calculated to determine 
prediction accuracy.  Percentages attempted to account for how often a topology was 
predicted that a user did not like as well as whether or not a user's preferences were fully 
predicted. 

Results for both the input reproduction and preference detection trials indicated that both 
the KSOM and BPNN algorithms outperform RSR.  The KSOM also appears to perform 
slightly better than the BPNN during preference detection.  However, the ability of any of 
these methods to accurately and consistently predict a user's preferences was not established 
by the initial trials.  For all methods, predictions during the preference detection trials were 
below 50% for two of the five populations tested.  Moreover, although RSR sometimes failed 
to learn a user's preferences, this algorithm made some important predictions missed by the 
KSOM and BPNN.   

Therefore, in order to improve overall accuracy and capitalize on the RSR method's 
ability to identify a user's "favored" features, a hybrid back-propagation with rough set reduct 
(BP-RSR) method was developed.  The BP-RSR screens user selections in an attempt to 
determine the characteristics that distinguish an individual design from all other selected 
trusses.  If the distinguishing features of a design diverge significantly from other designs in 
its assigned group, then the design is eliminated from the user's selections.  The remaining 
designs were used to create a training set for a BPNN.   

When asked to identify user selections among the preference set, the BP-RSR showed 
increased overall prediction accuracy.  Moreover, the BP-RSR greatly increased prediction 
performance for those populations where the KSOM and BPNN struggled.  In cases where it 
did not have the highest percentage of acceptable topologies, BP-RSR offered comparable 
results to most of the other methods.  Therefore, the BP-RSR algorithm was identified as 
being an acceptably accurate method for detecting a user's preferences within a population.   

CONCLUSIONS 
This paper developed soft-computing methods for capturing a user's aesthetic design 
preferences for large-span roof trusses.  Before being implemented in a multi-objective 
optimization algorithm, techniques for describing and predicting these preferences had to be 
defined.   
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Twenty potential features were evaluated based upon their ability to visually partition 
truss populations of varying size and complexity.  These features represented geometric as 
well as behavioral properties of the individual trusses they were used to describe.  The nine 
most effective features became part of a characteristic feature that described basic 
information about the simplicity, general shape, and chord shape of a potential truss design.  

Both classic and heuristic unsupervised clustering algorithms were considered for the 
task of classifying a population of potential truss designs based upon this feature vector.  The 
1D KSOM best matched judgments made by human users.  Numerically, the KSOM formed 
tight groups, as described by the sum-of-squares error and a comparison of standard 
deviations, with relatively few single-topology clusters.   

Using the KSOM, truss designs are placed into groups according to perceived similarities 
in their characteristic feature vectors.  A designer is selects design preferences from among 
the proposed truss groups, and these selections provide feedback about a user's likes and 
dislikes in the present population.  Different mechanisms were examined to convert this input 
into predictions of a user's likes and dislikes in future populations.   

The characteristic feature vectors of both selected and unselected designs formed the 
basis for predicting future preferences.  After an initial investigation failed to provide 
sufficiently accurate results, a hybrid back-propagation with rough set reduct (BP-RSR) 
algorithm was developed.  The BP-RSR algorithm relies on rough set reduct to strategically 
reduce user selections that vary significantly from the population as a whole as well as 
corresponding group members.  Once inputs are analyzed for consistency, a back propagation 
neural network is trained to recognize the user's preferences.  Overall, the BP-RSR 
outperformed all other preference algorithms considered in this study and proved to be an 
effective method for predicting user preferences. 
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