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ABSTRACT 
This paper presents research on the use of text analysis to measure relevance or similarity 
between objects in building product models. This relevance measure is used to support 
design reuse from an archive of product models created during previous construction 
projects.  First, standard information retrieval techniques are applied: the text vector model 
and its refinement latent semantic indexing.  Next, we attempt to improve the performance of 
the relevance measure by considering contextual building model elements.  When comparing 
any two building components, we attempt to improve data mining performance by 
considering not only the two components being compared but also components related or 
linked to them.  The paper concludes with an evaluation and discussion of these techniques.  
It concludes that good retrieval results can be achieved even with sparse models. 

KEY WORDS: Data mining, information retrieval, text analysis, design reuse.  

INTRODUCTION 

Increasingly, building models are composed of more than just the geometry of the building, 
but include symbolic representations in the form of attributes or relationships to other 
objects.  Most of this additional information is textual, such as names of building 
components.  In this paper, we investigate the use of text analysis techniques to measure 
relevance between objects in product models.  This relevance measure is used to support 
design reuse from an archive of previous product models (a corporate memory).  It is a part 
of the CoMem (Corporate Memory) prototype (Fuchter and Demian 2002).  CoMem (Figure 
1) provides an overview of the entire repository in the form of a map of the corporate 
memory, which supports the finding of reusable items.  Once the user identifies a reusable 
item on the map, CoMem enables him/her to understand this item in context by providing 
details-on-demand about this item’s evolution in the Evolution History Explorer and project 
context in the Project Context Explorer. 

The Overview provides a succinct “at a glance” view of the entire corporate memory.  
CoMem employs the squarified treemap technique to display all items in the corporate 
memory as a series of nested rectangles. Each rectangle is colored to indicate its relevance 
according to the relevance measure discussed in this paper. 
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The Project Context Explorer supports the designer to explore the project context of any 
item selected CoMem Map and related items in that project.  The Evolution History Explorer 
enables the designer to explore the version history of any item selected from the Overview. 

 
Figure 1: CoMem Modules: (a) The Overview; (b) The Evolution History Explorer; (c) The 

Project Context Explorer; (d) The Content Viewer displays the item being reused.
 
Our observations of the reuse process as it occurs in current practice show that it consists 

of two steps: (1) finding reusable items, and (2) understanding these items in the context in 
which they were originally created.  CoMem supports reuse in both steps.  This paper 
addresses this question: how can the relevance between any two objects in the corporate 
memory be quantified?  Based on the tasks of finding and understanding that this measure 
supports, relevance can be defined as follows: 

For any two corporate memory objects A and B, object B is relevant to object A if: 
• The designer is working on object A and object B is potentially reusable.  Or: 
• The designer is considering reusing object A and object B is related to object A, such 

that knowledge about object B helps the designer to understand object A. 
The approach taken in generating relevance measures is to use text analysis.  This is 

effective because the product model objects are annotated with text strings but have 
otherwise little formal data.  On the other hand this is challenging because the text strings are 
much shorter than those normally used for text analysis and retrieval. 

CONVERTING COMEM OBJECTS TO DOCUMENTS 

The CoMem schema is a three-level hierarchy composed of projects, disciplines, and 
components.  As team members collaboratively develop the CAD model for the project, they 
communicate and collaborate by creating discipline and component objects, and linking them 
to geometrical entities from the CAD model.  A discipline object encapsulates a portion of 
the design from a particular point-of-view, a discipline (e.g. architecture), a subsystem (e.g. 
HVAC) or a general issue (e.g. cost).  A component object is a design feature over which the 
design team collaborates.  Component objects can also be linked to notes exchanged by the 
designers or to external files or documents. 

Each project object has a name.  This becomes the text of the project document.  Each 
discipline has a name and list of classes that constitute the vocabulary or ontology of that 
particular design perspective.  The user is free to use any text string as a class; there is no 
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universal vocabulary from which the class list is drawn.  Each component object has a name, 
and belongs to/is an instance of one of the classes in its parent discipline object.  A 
component object has one or more notes linked to it.  Figure 2 gives examples of CoMem 
objects.  Each object is converted into a document by concatenating all of its text elements. 

Project Name: Bay Saint Louis

Discipline Name: Structure
Classes: {slab, column}

Component Name: 1st floor
Class: slab

Component Name: B1-floor1
Class: column
Note: The columns on column 
line B1 have been shifted to 
keep the classrooms column-
free.   

Object Type Object Text Document Text 
Project Project Name: Bay Saint Louis bay saint louis 
Discipline  Discipline Name: Structure 

Classes: {slab, column} 
structure slab column 

Component 
(without note) 

Component Name: 1st floor 
Class: Slab 

1st floor slab 

Component 
(with note) 

Component Name: B1-floor1 
Class: Column 
Note: The columns on column 
line B1 have been shifted to 
keep the classrooms column 
free. 

b1-floor1 column the 
columns on column line B1 
have been shifted to keep 
the classrooms column free 

 
Figure 2: Typical CoMem objects. 

EVALUATING THE MEASURES OF RELEVANCE 
Tests were conducted on a pilot corporate memory consisting of 10 project objects, 35 
discipline objects, 1036 components, giving a total of 1081 objects that were converted into 
documents.  Common words that add little meaning (the, you, etc.) were filtered out prior to 
indexing.  The experiments were repeated with and without stemming.  Stemming is the 
process whereby distinct terms are reduced to their common grammatical root.  Stemming 
was performed using Porter’s algorithm (Baeza-Yates and Ribeiro-Neto 1999). 

Evaluation of relevance measures was carried out in the classic information retrieval 
manner.  Given a set of queries, and a set of documents for each query judged to be relevant 
by a human expert, the results returned by the relevance measure were compared to those 
provided by the expert using measurements of recall versus precision.  In the case of 
CoMem, a query is a specific object from the corporate memory, and the “hits” returned are 
other objects that are relevant to the query object.  For each query, precision was measured at 
11 standard recall levels from 0 to 1.0 in increments of 0.1 using the interpolation rule 
described in section 3.2.1 of Baeza-Yates and Ribeiro-Neto (1999).  The precision 
measurements at those recall levels were averaged for entire sets of queries. 

Three sets of queries were considered separately: queries where the query object was a 
project (8 queries), a discipline (18 queries), and a component (6 queries).  Those were 
considered separately because those three types of documents differ in how much text they 
contain, and how representative that text is of the actual content of the object. 

COMPARING DOCUMENTS USING THE VECTOR MODEL AND LSI 
The starting point is to use the text vector model (Salton and Buckley 1998).  For a 

collection of N documents and a total of n index terms across the entire collection, we build a 
document matrix of size N × n.  For each document-term element in this matrix, we compute 
a weight wi,j which represents the occurrence of term ki in document dj.  Each document is 
represented as a vector in the high-dimensional space of index terms.  The similarity or 
relevance between two documents is quantified by calculating the cosine of the angle 
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between the two document vectors.   Experiments were conducted with three different term-
weighting systems (see Demian and Fruchter 2005 for detailed descriptions): (1) Binary 
weights, (2) Tf-idf weights, and (3) Log-entropy weights   

Table 1 gives measurements of precision averaged over the 11 standard recall levels for each 
of the query sets and term-weighting schemes (with and without stemming). 

 

Table 1: Mean precision over the 11 standard recall levels using vector model comparisons. 
 

 
No Stemming 

(mean precision)
Stemming 

(mean precision)
PROJECT QUERIES Binary 0.31 0.31 
 Log-entropy 0.31 0.31 
 Tf-idf 0.31 0.31 
DISCIPLINE QUERIES Binary 0.39 0.45 
 Log-entropy 0.40 0.40 
 Tf-idf 0.37 0.41 
COMPONENT QUERIES Binary 0.49 0.49 
 Log-entropy 0.56 0.57 
 Tf-idf 0.60 0.63 

We can make the following observations from the results of  

Table 1: 
• Comparison of project, discipline, and component queries.  Overall, the vector model 

gives the best results for component queries and the worst results for project queries.  
Both project and component documents contain only a few terms.  In the case of 
component objects, these few terms are fairly representative of the content of the object. 

• Term-weighting.  For discipline queries binary weighting performs the best.  This is 
because the other two term-weighting systems reduce the weights of the class terms since 
they occur frequently over the entire collection, even though the class terms give a better 
indication of the content of the discipline than the discipline name. 

• Stemming.  For project queries stemming makes little difference.  For discipline queries 
stemming consistently gives a considerable improvement.  This is because some 
discipline documents use singular nouns for the class list (beam, column, slab) whereas 
others use plural nouns (beams, columns, slabs).  

Latent semantic indexing (LSI) is a refinement of the simple vector model that addresses the 
problems of synonymy (using different words for the same idea), polysemy (using the same 
word for different ideas).  LSI uses singular value decomposition to give an approximation of 
the document matrix.  The number of factors indicates the amount of approximation 
introduced into the model.  For large numbers of factors, the LSI model converges to the 
exact vector model.  The claim is that this approximation models the implicit higher order 
structure in the association between terms and concepts (Landauer and Dumais 1995).   

For example, if the two terms lift and elevator frequently co-occur within documents in 
the collection or if they frequently occur in the same contexts, then an LSI query for lift 
would also return documents with only the term elevator, an association that would be 
overlooked by the simple vector model. 
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We conducted several tests with LSI to determine whether it could offer an improvement 
over the performance obtained with the simple vector model.  The data from the LSI runs for 
component queries is shown in Figure 3 (the “No Corpus” lines).  Each line shows the mean 
precision over the 11 standard recall levels obtained by running LSI using tf-idf weights and 
varying the number of factors. 

Mean Precision (Over 11 Standard Recall Levels) Against 
Number of LSI Factors for Component Queries
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Figure 3: Mean precision over 11 standard recall levels using LSI for component queries. 

For discipline and component (Figure 3) queries, LSI performs worse than the vector model 
for small numbers of factors, but gradually converges to the performance of the vector model 
as the number of factors is increased.  For project queries (not shown here), LSI gives a 
modest improvement over the simple vector model when 300-350 factors are used.  As with 
the vector model runs, stemming consistently improves performance. 

It is not surprising that LSI does not offer any significant improvement over the simple 
vector model.  LSI is claimed to work best when the collection of documents is large and the 
documents are rich in keywords, which helps to infer relationships between terms based on 
their co-occurrence.  In our case, the document matrix is sparse, with many of the documents 
consisting of only two or three terms. 

One way to address this problem is to add a set of “rich” documents with the CoMem 
documents.  The rationale behind this is that if these additional documents are numerous 
enough and rich enough (i.e. contain many keywords), then LSI should be able to infer 
relationships between terms because they frequently co-occur in the additional documents.  
These inferred relationships should in turn improve data mining performance when 
comparing CoMem objects.  We tested this approach with two sets of additional documents: 

• A collection of discussion forum messages exchanged by the design teams working 
on the projects in our experimental corporate memory.  Each individual message was 
treated as a single document. 

• A set of articles from reference handbooks for professional structural designers and 
construction managers.  Each paragraph was treated as a single document. 

It can be seen from the “corpus” lines in Figure 3 that this was not successful.  In both cases, 
adding the corpus further reduced the performance of the LSI runs. 
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CONTEXT-SENSITIVE COMPARISONS: CONCATENATING DOCUMENTS 

As noted above, CoMem documents do not belong in a flat collection but are hierarchically 
structured.  It would make sense therefore to consider an object’s relatives within the 
hierarchy when making comparisons involving that object.  Before we try a more 
sophisticated approach involving tree matching, we will test whether the approach of simply 
concatenating documents offers any improvement in data mining performance.  When 
converting an object to a document, we will include the text from that object’s ancestors 
and/or descendants.  Specifically, we will try the following options: 

• Concatenating descendants: The retrieval performance for project queries is fairly 
weak.  It has already been noted that the short label given to a project object is 
usually a poor indication of the content of the project.  Concatenating the texts of all 
the project’s descendants (disciplines and components) to the project document will 
result in a much longer text, which may improve data mining performance.  The 
same is also true of discipline objects. 

• Concatenating ancestors: For component and discipline objects, retrieval 
performance might be improved because objects belonging to similar parents (to the 
query item) will be ranked above those coming from unrelated parents. 

• Concatenating both descendants and ancestors:  Only discipline objects have both 
descendants (components) and ancestors (a project). 

The results (mean precision over the 11 standard recall levels) from repeating the simple 
vector model analysis with concatenated documents are shown in Figure 4.  Separate results 
are shown for the project, discipline, and component query sets. 
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Figure 4: Mean precision over 11 standard recall levels for (a) project queries, (b) discipline 

queries, and (c) component queries using different forms of concatenation. 

For project queries, concatenating descendants gives improved performance, particularly 
when stemming is combined with binary weights.  For discipline queries, any form of 
concatenation causes a decrease in performance.  As noted earlier, the text of discipline 
objects (which consists of a name and a list of classes) already provides a good 
representation of the content of the discipline object.  For component queries, concatenating 
ancestors and concatenating both descendants and ancestors both cause a decrease in data 
mining performance.  This can be explained by the fact that the ancestors of component 
objects (their disciplines and projects) were not given much consideration by the human 
experts when making human judgments of relevance. 
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CONTEXT-SENSITIVE COMPARISONS: TREE MATCHING 

Above, we discussed the relatively simple method of concatenating the text from ancestors 
and descendants to take account of contextual objects.  Here, we try a more elaborate method 
inspired by the concept of tree isomorphism.  Two graphs G and G’ are isomorphic if we can 
label the vertices of G to be vertices of G’, maintaining the corresponding edges in G and G’.    
The basic idea is that when comparing two objects, we try to find the best possible one-to-
one match between those objects, their ancestors and their descendants.  The closeness of this 
match becomes our relevance measure.  We will use the vector model measurements of 
relevance between any two nodes as a simple measure of relevance and aggregate those into 
compound measures of relevance that take account of the relatives (ancestors and 
descendants) in the tree.  There are six possible types of comparisons: (1) Component-
Component comparisons, (2) Discipline-Discipline comparisons, (3) Project-Project 
comparisons, (4) Project-Component comparisons, (5) Discipline-Component comparisons, 
and (6) Project-Discipline comparisons 

For brevity, only the second type of comparison will be described here.  The remaining 
comparisons are described in more detail elsewhere (Demian and Fruchter 2005).  To 
compare two disciplines, the simple relevance between disciplines di and dj is taken as , 

where is the simple vector model relevance between them. 
ji ddr ,

ji ddr ,

The compound relevance  between disciplines d
ji ddr ,ˆ i and dj is: 

jijiji pppdddjicdd rwrwddgwr ,,, ),(ˆ ++=  

where  is the simple relevance between d
ji ppr , i’s parent project pi and dj’s parent project 

pj, and is some aggregated function of the simple relevancies between discipline d),( ji ddg i’s 
m component children and discipline dj’s n component children.  We can say without loss of 
generality that m ≤ n. 

The best way to think of  is as providing some aggregated measure of relevance 
between d

),( ji ddg
i and dj based on simple relevancies between their children components.  There are 

2mn possible directed edges between the set of di’s m component children and the set of 
discipline dj’s n component children such that each edge spans the two sets.  Each edge has a 
relevance value associated with it, which is the simple vector model relevance between the 
two components connected by the edge.  We would like to find some subset of those edges 
which best represents the relevance between those two sets of components, and calculate the 
mean relevance associated with this subset.  This becomes the value of . ),( ji ddg

In the spirit of isomorphic tree matching, we might choose a subset of edges such that 
each component in the smaller set has one outgoing edge and each component in the larger 
set has no more than one incoming edge.  In other words, we will try to find the best one-to-
one mapping from the components in the smaller set to the components in the larger set.  
There are  possible mappings.  Each possible mapping can be represented by a set of m 
edges, and can be evaluated by taking the mean relevance of those edges.  The value of 

 is the mean relevance of the best possible mapping.  This is shown in Figure 5 (a). 

n
mP

),( ji ddg
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Figure 5: Compound discipline-discipline comparisons.  (a) More accurate method but more 

complcomputationally-demanding   (b) Less accurate method but simpler 

This method is too computationally demanding for large sets of components.  Finding the 
best mapping means evaluating every possible mapping.  For m and n approximately equal, 
the number of possible mappings is of the order of n!.  Larger CoMem disciplines can have 
more than 20 components; 20! = 2.4 × 1018.  Therefore, for larger sets of components, an 
alternative method is used.  According to this method, a subset of edges is chosen such that 
the highest-relevance outgoing edge for each component in both sets is included.  Subsets of 
this type will have m+n edges, and can be evaluated by calculating the mean relevance of 
those edges, which is taken as the value of  (Figure 5 (b))  The main advantage of 
this method is that it finds a local optimum with very little search.  The main disadvantage is 
that it does not enforce a one-to-one mapping and so is arguably less accurate. 

),( ji ddg

Figure 6 (a) shows the retrieval performance for both the simple vector model using 
stemming and tf-idf weights and the tree matching method where those same vector model 
comparisons are aggregated into compound relevance measures that take account of 
contextual objects. 
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Figure 6: (a) Mean precision over 11 standard recall positions for project, discipline, and 

component queries using simple vector model and tree matching, (a) for all comparisons in 
query sets  (b) with comparisons between different types of objects eliminated. 

Tree matching out-performs the vector model for project queries, but not for discipline or 
component queries.  As noted earlier, project documents consist only of the project name, 
which is not highly indicative of the type of project, and so comparing a project to other 
objects based on that project’s disciplines and components makes sense.  However the 
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retrieval performance achieved for project queries using the tree matching method is 
comparable to that achieved by concatenating documents. 

On the other hand, discipline documents include the discipline name (e.g. “structural 
system”) as well as a list of classes (e.g. beam, column, slab).  In this case, direct vector 
model comparisons using that discipline document are adequate.  A similar argument can be 
made for component queries.  The text of a component document is a good representation of 
that component and so there is not much need to compare contextual objects. 

One major disadvantage of the tree matching method is that when comparing two objects 
of two different types, those two objects are never directly compared to one another.  For 
example, when comparing a discipline with the text “slabs {precast, post tensioned, 
composite}” to a component with the text “first floor slab”, those two texts are never directly 
compared using the vector model.  Instead the discipline’s children are compared to the 
component, and the component’s parent is compared to the discipline.  To investigate the 
extent to which the poor performance of the tree matching method is due to this effect, we 
reran the evaluation of the results with all such comparisons eliminated.  Only comparisons 
between objects of the same type are included in the evaluation.  Figure 6 (b) shows the 
retrieval performance of the two methods when this restriction is enforced. The performance 
of the tree matching method is comparable to that of the vector model for all three types of 
queries.  For discipline queries the tree matching method fares much better than before.   

DISCUSSION AND CONCLUSIONS 

The most striking outcome is that there is no clear strong winner amongst the various studied 
alternatives.  Furthermore, more complex relevance measures do not necessarily give better 
results than simpler ones.   
• When comparing different term-weighting systems, the simplest system (binary weights) 

often performed just as well as the most complicated (log-entropy). 
• When taking context into account, the simple method of concatenating documents 

performed well and often better than the more complicated tree matching method. 
• When attempting to address the problem of synonyms, latent semantic indexing doesn’t 

perform better than the simple vector model, whereas the relatively primitive 
dimensionality reduction achieved by stemming consistently performed better than both 
LSI and the unstemmed vector model. 

The best overall performance is achieved using tf-idf weights in conjunction with stemming, 
and this is what is used by CoMem.  For component and discipline queries, simple vector 
model comparisons are used.  For project queries, the context (i.e. the discipline and 
component objects belonging to the project) needs to be taken into account, and 
concatenating the descendants of the project object onto the text of the project document is a 
simple and effective way of achieving this. 

The tree matching approach as implemented here does not provide sufficiently improved 
performance to justify the additional computation it entails.  It is worth developing in future 
research.  In particular the choice of weights, wp, wd, and wc, needs further investigation.  
Currently, the weights are chosen based on simple heuristics. 
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LSI did not deliver the improvement in retrieval performance usually reported by its 
supporters.  The situations for which LSI has been shown to be effective are significantly 
different than ours.  In published cases where LSI out-performs the simple vector model the 
mean document size is significantly larger than in the CoMem corpus.  It has been noted 
earlier that LSI makes statistical associations between synonyms because they repeatedly co-
occur within the same document or they repeatedly occur in similar contexts.  The smaller 
the number of documents, and the more sparse the documents, the thinner the statistical 
sample from which LSI can make such associations.  In the case of CoMem, the documents 
were simply too short, even with the addition to the corpus of discussion forum messages or 
technical articles.  Wiemer-Hastings (1999), using sentences as units of discourse (i.e. a 
single sentence is a document), also reports poor performance of LSI.  Rehder et. al. (1998), 
using LSI to grade student essays, report that if only the first 60 words or less of the student 
essay are used then LSI performs poorly. 

Finally, a comment may be made about the generalizability of the results.  CoMem is 
hierarchical, as are most information systems: from the ubiquitous file systems of modern 
computers to more specialized information schemas in the construction industry such as IFC, 
AECXML, and so on.  The short names given to CoMem objects are comparable to the 
names given to files and folders, or the names of objects in schemas such as IFC.  Caldas et. 
al. (2002) have shown that information retrieval techniques and data mining such as the ones 
described here can be used to automatically link construction documents to IFC components. 

The fact that relatively good quality retrieval results were achieved with such short texts 
(albeit not with LSI) is encouraging.  Applying the vector model to such short texts and 
showing it to be effective is an important contribution of this research.  Attempts to address 
this problem of short undescriptive texts by concatenating related documents or using tree 
matching are further contributions. 
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