
MINING SPARSE TEXTS IN BUILDING PRODUCT
MODELS TO ASSESS RELEVANCE FOR REUSE

Peter Demian1 and Renate Fruchter2

ABSTRACT
This paper presents research on the use of text analysis to measure relevance or similarity
between objects in building product models. This relevance measure is used to support
design reuse from an archive of product models created during previous construction
projects. First, standard information retrieval techniques are applied: the text vector model
and its refinement latent semantic indexing. Next, we attempt to improve the performance of
the relevance measure by considering contextual building model elements. When comparing
any two building components, we attempt to improve data mining performance by
considering not only the two components being compared but also components related or
linked to them. The paper concludes with an evaluation and discussion of these techniques.
It concludes that good retrieval results can be achieved even with sparse models.

KEY WORDS: Data mining, information retrieval, text analysis, design reuse.

INTRODUCTION

Increasingly, building models are composed of more than just the geometry of the building,
but include symbolic representations in the form of attributes or relationships to other
objects. Most of this additional information is textual, such as names of building
components. In this paper, we investigate the use of text analysis techniques to measure
relevance between objects in product models. This relevance measure is used to support
design reuse from an archive of previous product models (a corporate memory). It is a part
of the CoMem (Corporate Memory) prototype (Fuchter and Demian 2002). CoMem (Figure
1) provides an overview of the entire repository in the form of a map of the corporate
memory, which supports the finding of reusable items. Once the user identifies a reusable
item on the map, CoMem enables him/her to understand this item in context by providing
details-on-demand about this item’s evolution in the Evolution History Explorer and project
context in the Project Context Explorer.

The Overview provides a succinct “at a glance” view of the entire corporate memory.
CoMem employs the squarified treemap technique to display all items in the corporate
memory as a series of nested rectangles. Each rectangle is colored to indicate its relevance
according to the relevance measure discussed in this paper.

1 Lecturer, Department of Civil and Building Engineering, Loughborough University, Leicestershire LE11

3TU, UK, Phone +44 (0) 1509 228541, FAX: +44 (0) 1509 223945, P.Demian@lboro.ac.uk
2 ASCE Member, Director of Project Based Learning Laboratory, Department of Civil and Environmental

Engineering, Stanford University, Stanford, CA 94305-4020, fruchter@ce.stanford.edu

June 14-16, 2006 - Montréal, Canada
Joint International Conference on Computing and Decision Making in Civil and Building Engineering

Page 278

The Project Context Explorer supports the designer to explore the project context of any
item selected CoMem Map and related items in that project. The Evolution History Explorer
enables the designer to explore the version history of any item selected from the Overview.

Figure 1: CoMem Modules: (a) The Overview; (b) The Evolution History Explorer; (c) The

Project Context Explorer; (d) The Content Viewer displays the item being reused.

Our observations of the reuse process as it occurs in current practice show that it consists

of two steps: (1) finding reusable items, and (2) understanding these items in the context in
which they were originally created. CoMem supports reuse in both steps. This paper
addresses this question: how can the relevance between any two objects in the corporate
memory be quantified? Based on the tasks of finding and understanding that this measure
supports, relevance can be defined as follows:

For any two corporate memory objects A and B, object B is relevant to object A if:
• The designer is working on object A and object B is potentially reusable. Or:
• The designer is considering reusing object A and object B is related to object A, such

that knowledge about object B helps the designer to understand object A.
The approach taken in generating relevance measures is to use text analysis. This is

effective because the product model objects are annotated with text strings but have
otherwise little formal data. On the other hand this is challenging because the text strings are
much shorter than those normally used for text analysis and retrieval.

CONVERTING COMEM OBJECTS TO DOCUMENTS

The CoMem schema is a three-level hierarchy composed of projects, disciplines, and
components. As team members collaboratively develop the CAD model for the project, they
communicate and collaborate by creating discipline and component objects, and linking them
to geometrical entities from the CAD model. A discipline object encapsulates a portion of
the design from a particular point-of-view, a discipline (e.g. architecture), a subsystem (e.g.
HVAC) or a general issue (e.g. cost). A component object is a design feature over which the
design team collaborates. Component objects can also be linked to notes exchanged by the
designers or to external files or documents.

Each project object has a name. This becomes the text of the project document. Each
discipline has a name and list of classes that constitute the vocabulary or ontology of that
particular design perspective. The user is free to use any text string as a class; there is no

June 14-16, 2006 - Montréal, Canada
Joint International Conference on Computing and Decision Making in Civil and Building Engineering

Page 279

universal vocabulary from which the class list is drawn. Each component object has a name,
and belongs to/is an instance of one of the classes in its parent discipline object. A
component object has one or more notes linked to it. Figure 2 gives examples of CoMem
objects. Each object is converted into a document by concatenating all of its text elements.

Project Name: Bay Saint Louis

Discipline Name: Structure
Classes: {slab, column}

Component Name: 1st floor
Class: slab

Component Name: B1-floor1
Class: column
Note: The columns on column
line B1 have been shifted to
keep the classrooms column-
free.

Object Type Object Text Document Text
Project Project Name: Bay Saint Louis bay saint louis
Discipline Discipline Name: Structure

Classes: {slab, column}
structure slab column

Component
(without note)

Component Name: 1st floor
Class: Slab

1st floor slab

Component
(with note)

Component Name: B1-floor1
Class: Column
Note: The columns on column
line B1 have been shifted to
keep the classrooms column
free.

b1-floor1 column the
columns on column line B1
have been shifted to keep
the classrooms column free

Figure 2: Typical CoMem objects.

EVALUATING THE MEASURES OF RELEVANCE
Tests were conducted on a pilot corporate memory consisting of 10 project objects, 35
discipline objects, 1036 components, giving a total of 1081 objects that were converted into
documents. Common words that add little meaning (the, you, etc.) were filtered out prior to
indexing. The experiments were repeated with and without stemming. Stemming is the
process whereby distinct terms are reduced to their common grammatical root. Stemming
was performed using Porter’s algorithm (Baeza-Yates and Ribeiro-Neto 1999).

Evaluation of relevance measures was carried out in the classic information retrieval
manner. Given a set of queries, and a set of documents for each query judged to be relevant
by a human expert, the results returned by the relevance measure were compared to those
provided by the expert using measurements of recall versus precision. In the case of
CoMem, a query is a specific object from the corporate memory, and the “hits” returned are
other objects that are relevant to the query object. For each query, precision was measured at
11 standard recall levels from 0 to 1.0 in increments of 0.1 using the interpolation rule
described in section 3.2.1 of Baeza-Yates and Ribeiro-Neto (1999). The precision
measurements at those recall levels were averaged for entire sets of queries.

Three sets of queries were considered separately: queries where the query object was a
project (8 queries), a discipline (18 queries), and a component (6 queries). Those were
considered separately because those three types of documents differ in how much text they
contain, and how representative that text is of the actual content of the object.

COMPARING DOCUMENTS USING THE VECTOR MODEL AND LSI
The starting point is to use the text vector model (Salton and Buckley 1998). For a

collection of N documents and a total of n index terms across the entire collection, we build a
document matrix of size N × n. For each document-term element in this matrix, we compute
a weight wi,j which represents the occurrence of term ki in document dj. Each document is
represented as a vector in the high-dimensional space of index terms. The similarity or
relevance between two documents is quantified by calculating the cosine of the angle

June 14-16, 2006 - Montréal, Canada
Joint International Conference on Computing and Decision Making in Civil and Building Engineering

Page 280

between the two document vectors. Experiments were conducted with three different term-
weighting systems (see Demian and Fruchter 2005 for detailed descriptions): (1) Binary
weights, (2) Tf-idf weights, and (3) Log-entropy weights

Table 1 gives measurements of precision averaged over the 11 standard recall levels for each
of the query sets and term-weighting schemes (with and without stemming).

Table 1: Mean precision over the 11 standard recall levels using vector model comparisons.

No Stemming

(mean precision)
Stemming

(mean precision)
PROJECT QUERIES Binary 0.31 0.31
 Log-entropy 0.31 0.31
 Tf-idf 0.31 0.31
DISCIPLINE QUERIES Binary 0.39 0.45
 Log-entropy 0.40 0.40
 Tf-idf 0.37 0.41
COMPONENT QUERIES Binary 0.49 0.49
 Log-entropy 0.56 0.57
 Tf-idf 0.60 0.63

We can make the following observations from the results of

Table 1:
• Comparison of project, discipline, and component queries. Overall, the vector model

gives the best results for component queries and the worst results for project queries.
Both project and component documents contain only a few terms. In the case of
component objects, these few terms are fairly representative of the content of the object.

• Term-weighting. For discipline queries binary weighting performs the best. This is
because the other two term-weighting systems reduce the weights of the class terms since
they occur frequently over the entire collection, even though the class terms give a better
indication of the content of the discipline than the discipline name.

• Stemming. For project queries stemming makes little difference. For discipline queries
stemming consistently gives a considerable improvement. This is because some
discipline documents use singular nouns for the class list (beam, column, slab) whereas
others use plural nouns (beams, columns, slabs).

Latent semantic indexing (LSI) is a refinement of the simple vector model that addresses the
problems of synonymy (using different words for the same idea), polysemy (using the same
word for different ideas). LSI uses singular value decomposition to give an approximation of
the document matrix. The number of factors indicates the amount of approximation
introduced into the model. For large numbers of factors, the LSI model converges to the
exact vector model. The claim is that this approximation models the implicit higher order
structure in the association between terms and concepts (Landauer and Dumais 1995).

For example, if the two terms lift and elevator frequently co-occur within documents in
the collection or if they frequently occur in the same contexts, then an LSI query for lift
would also return documents with only the term elevator, an association that would be
overlooked by the simple vector model.

June 14-16, 2006 - Montréal, Canada
Joint International Conference on Computing and Decision Making in Civil and Building Engineering

Page 281

We conducted several tests with LSI to determine whether it could offer an improvement
over the performance obtained with the simple vector model. The data from the LSI runs for
component queries is shown in Figure 3 (the “No Corpus” lines). Each line shows the mean
precision over the 11 standard recall levels obtained by running LSI using tf-idf weights and
varying the number of factors.

Mean Precision (Over 11 Standard Recall Levels) Against
Number of LSI Factors for Component Queries

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 100 200 300 400 500 600 700 800
Num ber of Factors

M
ea

n
Pr

ec
is

io
n

No Stemming, No Corpus
Stemming, No Corpus
No Stemming, DF Corpus
Stemming, DF Corpus
No Stemming, Textbook Corpus
Stemming, Textbook Corpus
Vector Model, No Stemming
Vector Model, Stemming

Figure 3: Mean precision over 11 standard recall levels using LSI for component queries.

For discipline and component (Figure 3) queries, LSI performs worse than the vector model
for small numbers of factors, but gradually converges to the performance of the vector model
as the number of factors is increased. For project queries (not shown here), LSI gives a
modest improvement over the simple vector model when 300-350 factors are used. As with
the vector model runs, stemming consistently improves performance.

It is not surprising that LSI does not offer any significant improvement over the simple
vector model. LSI is claimed to work best when the collection of documents is large and the
documents are rich in keywords, which helps to infer relationships between terms based on
their co-occurrence. In our case, the document matrix is sparse, with many of the documents
consisting of only two or three terms.

One way to address this problem is to add a set of “rich” documents with the CoMem
documents. The rationale behind this is that if these additional documents are numerous
enough and rich enough (i.e. contain many keywords), then LSI should be able to infer
relationships between terms because they frequently co-occur in the additional documents.
These inferred relationships should in turn improve data mining performance when
comparing CoMem objects. We tested this approach with two sets of additional documents:

• A collection of discussion forum messages exchanged by the design teams working
on the projects in our experimental corporate memory. Each individual message was
treated as a single document.

• A set of articles from reference handbooks for professional structural designers and
construction managers. Each paragraph was treated as a single document.

It can be seen from the “corpus” lines in Figure 3 that this was not successful. In both cases,
adding the corpus further reduced the performance of the LSI runs.

June 14-16, 2006 - Montréal, Canada
Joint International Conference on Computing and Decision Making in Civil and Building Engineering

Page 282

CONTEXT-SENSITIVE COMPARISONS: CONCATENATING DOCUMENTS

As noted above, CoMem documents do not belong in a flat collection but are hierarchically
structured. It would make sense therefore to consider an object’s relatives within the
hierarchy when making comparisons involving that object. Before we try a more
sophisticated approach involving tree matching, we will test whether the approach of simply
concatenating documents offers any improvement in data mining performance. When
converting an object to a document, we will include the text from that object’s ancestors
and/or descendants. Specifically, we will try the following options:

• Concatenating descendants: The retrieval performance for project queries is fairly
weak. It has already been noted that the short label given to a project object is
usually a poor indication of the content of the project. Concatenating the texts of all
the project’s descendants (disciplines and components) to the project document will
result in a much longer text, which may improve data mining performance. The
same is also true of discipline objects.

• Concatenating ancestors: For component and discipline objects, retrieval
performance might be improved because objects belonging to similar parents (to the
query item) will be ranked above those coming from unrelated parents.

• Concatenating both descendants and ancestors: Only discipline objects have both
descendants (components) and ancestors (a project).

The results (mean precision over the 11 standard recall levels) from repeating the simple
vector model analysis with concatenated documents are shown in Figure 4. Separate results
are shown for the project, discipline, and component query sets.

 (a)

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

0.4
0.45

0.5

S imp le , N o s te mm in

S imp le, S te mm in

A nce sto
rs , N

o s tem min

A nce sto rs , S te m m in

De sc enda nts,
N o ste

m m i

De sc enda n ts, S tem m i

B o th , No s te m m in

B oth , S te mm ing

 (b)

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

0.4
0.45

0.5

S imp le , N o s te mm in

S imp le, S te mm in

A nce sto rs , N
o s tem min

A nce sto
rs , S

te m min

De sc enda nts,
N o stem m i

De sc enda n ts,
S tem mi

B oth , N o s te m min

B o th, S te mm ing

 (c)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

S imp le , N
o s te mm in

S imp le , S te mm in

A nce sto
rs , N

o s tem m in

A nce sto
rs , S te m m in

De sc enda n ts, N
o stem m i

De sc enda n ts, S tem m i

B o th, No s te m min

B o th, S te mm ing

Binary
Log-entropy
Tf-idf

Figure 4: Mean precision over 11 standard recall levels for (a) project queries, (b) discipline

queries, and (c) component queries using different forms of concatenation.

For project queries, concatenating descendants gives improved performance, particularly
when stemming is combined with binary weights. For discipline queries, any form of
concatenation causes a decrease in performance. As noted earlier, the text of discipline
objects (which consists of a name and a list of classes) already provides a good
representation of the content of the discipline object. For component queries, concatenating
ancestors and concatenating both descendants and ancestors both cause a decrease in data
mining performance. This can be explained by the fact that the ancestors of component
objects (their disciplines and projects) were not given much consideration by the human
experts when making human judgments of relevance.

June 14-16, 2006 - Montréal, Canada
Joint International Conference on Computing and Decision Making in Civil and Building Engineering

Page 283

CONTEXT-SENSITIVE COMPARISONS: TREE MATCHING

Above, we discussed the relatively simple method of concatenating the text from ancestors
and descendants to take account of contextual objects. Here, we try a more elaborate method
inspired by the concept of tree isomorphism. Two graphs G and G’ are isomorphic if we can
label the vertices of G to be vertices of G’, maintaining the corresponding edges in G and G’.
The basic idea is that when comparing two objects, we try to find the best possible one-to-
one match between those objects, their ancestors and their descendants. The closeness of this
match becomes our relevance measure. We will use the vector model measurements of
relevance between any two nodes as a simple measure of relevance and aggregate those into
compound measures of relevance that take account of the relatives (ancestors and
descendants) in the tree. There are six possible types of comparisons: (1) Component-
Component comparisons, (2) Discipline-Discipline comparisons, (3) Project-Project
comparisons, (4) Project-Component comparisons, (5) Discipline-Component comparisons,
and (6) Project-Discipline comparisons

For brevity, only the second type of comparison will be described here. The remaining
comparisons are described in more detail elsewhere (Demian and Fruchter 2005). To
compare two disciplines, the simple relevance between disciplines di and dj is taken as ,

where is the simple vector model relevance between them.
ji ddr ,

ji ddr ,

The compound relevance between disciplines d
ji ddr ,ˆ i and dj is:

jijiji pppdddjicdd rwrwddgwr ,,,),(ˆ ++=

where is the simple relevance between d
ji ppr , i’s parent project pi and dj’s parent project

pj, and is some aggregated function of the simple relevancies between discipline d),(ji ddg i’s
m component children and discipline dj’s n component children. We can say without loss of
generality that m ≤ n.

The best way to think of is as providing some aggregated measure of relevance
between d

),(ji ddg
i and dj based on simple relevancies between their children components. There are

2mn possible directed edges between the set of di’s m component children and the set of
discipline dj’s n component children such that each edge spans the two sets. Each edge has a
relevance value associated with it, which is the simple vector model relevance between the
two components connected by the edge. We would like to find some subset of those edges
which best represents the relevance between those two sets of components, and calculate the
mean relevance associated with this subset. This becomes the value of .),(ji ddg

In the spirit of isomorphic tree matching, we might choose a subset of edges such that
each component in the smaller set has one outgoing edge and each component in the larger
set has no more than one incoming edge. In other words, we will try to find the best one-to-
one mapping from the components in the smaller set to the components in the larger set.
There are possible mappings. Each possible mapping can be represented by a set of m
edges, and can be evaluated by taking the mean relevance of those edges. The value of

 is the mean relevance of the best possible mapping. This is shown in Figure 5 (a).

n
mP

),(ji ddg

June 14-16, 2006 - Montréal, Canada
Joint International Conference on Computing and Decision Making in Civil and Building Engineering

Page 284

(a)

CC

PP

DD

CC CC

PP

DD

CC

CC

ji ddr ,

ji ppr ,

),(ji ddg

 (b)

CC

PP

DD

CC CC

PP

DD

CC

CC

ji ddr ,

ji ppr ,

),(ji ddg

Figure 5: Compound discipline-discipline comparisons. (a) More accurate method but more

complcomputationally-demanding (b) Less accurate method but simpler

This method is too computationally demanding for large sets of components. Finding the
best mapping means evaluating every possible mapping. For m and n approximately equal,
the number of possible mappings is of the order of n!. Larger CoMem disciplines can have
more than 20 components; 20! = 2.4 × 1018. Therefore, for larger sets of components, an
alternative method is used. According to this method, a subset of edges is chosen such that
the highest-relevance outgoing edge for each component in both sets is included. Subsets of
this type will have m+n edges, and can be evaluated by calculating the mean relevance of
those edges, which is taken as the value of (Figure 5 (b)) The main advantage of
this method is that it finds a local optimum with very little search. The main disadvantage is
that it does not enforce a one-to-one mapping and so is arguably less accurate.

),(ji ddg

Figure 6 (a) shows the retrieval performance for both the simple vector model using
stemming and tf-idf weights and the tree matching method where those same vector model
comparisons are aggregated into compound relevance measures that take account of
contextual objects.

(a)

Mean Precision over 11 Standard Recall Levels

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

PROJECT DISCIPLINE COMPONENT

M
ea

n
P

re
ci

si
on Vector Model, Tf-idf weights,

Stemming
Tree Matching

 (b)

Mean Precision over 11 Standard Recall Levels with
Comparisons of Different Types of Objects Eliminated

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

PROJECT DISCIPLINE COMPONENT

M
ea

n
Pr

ec
is

io
n

Vector Model, Tf-idf weights,
Stemming
Tree Matching

Figure 6: (a) Mean precision over 11 standard recall positions for project, discipline, and

component queries using simple vector model and tree matching, (a) for all comparisons in
query sets (b) with comparisons between different types of objects eliminated.

Tree matching out-performs the vector model for project queries, but not for discipline or
component queries. As noted earlier, project documents consist only of the project name,
which is not highly indicative of the type of project, and so comparing a project to other
objects based on that project’s disciplines and components makes sense. However the

June 14-16, 2006 - Montréal, Canada
Joint International Conference on Computing and Decision Making in Civil and Building Engineering

Page 285

retrieval performance achieved for project queries using the tree matching method is
comparable to that achieved by concatenating documents.

On the other hand, discipline documents include the discipline name (e.g. “structural
system”) as well as a list of classes (e.g. beam, column, slab). In this case, direct vector
model comparisons using that discipline document are adequate. A similar argument can be
made for component queries. The text of a component document is a good representation of
that component and so there is not much need to compare contextual objects.

One major disadvantage of the tree matching method is that when comparing two objects
of two different types, those two objects are never directly compared to one another. For
example, when comparing a discipline with the text “slabs {precast, post tensioned,
composite}” to a component with the text “first floor slab”, those two texts are never directly
compared using the vector model. Instead the discipline’s children are compared to the
component, and the component’s parent is compared to the discipline. To investigate the
extent to which the poor performance of the tree matching method is due to this effect, we
reran the evaluation of the results with all such comparisons eliminated. Only comparisons
between objects of the same type are included in the evaluation. Figure 6 (b) shows the
retrieval performance of the two methods when this restriction is enforced. The performance
of the tree matching method is comparable to that of the vector model for all three types of
queries. For discipline queries the tree matching method fares much better than before.

DISCUSSION AND CONCLUSIONS

The most striking outcome is that there is no clear strong winner amongst the various studied
alternatives. Furthermore, more complex relevance measures do not necessarily give better
results than simpler ones.
• When comparing different term-weighting systems, the simplest system (binary weights)

often performed just as well as the most complicated (log-entropy).
• When taking context into account, the simple method of concatenating documents

performed well and often better than the more complicated tree matching method.
• When attempting to address the problem of synonyms, latent semantic indexing doesn’t

perform better than the simple vector model, whereas the relatively primitive
dimensionality reduction achieved by stemming consistently performed better than both
LSI and the unstemmed vector model.

The best overall performance is achieved using tf-idf weights in conjunction with stemming,
and this is what is used by CoMem. For component and discipline queries, simple vector
model comparisons are used. For project queries, the context (i.e. the discipline and
component objects belonging to the project) needs to be taken into account, and
concatenating the descendants of the project object onto the text of the project document is a
simple and effective way of achieving this.

The tree matching approach as implemented here does not provide sufficiently improved
performance to justify the additional computation it entails. It is worth developing in future
research. In particular the choice of weights, wp, wd, and wc, needs further investigation.
Currently, the weights are chosen based on simple heuristics.

June 14-16, 2006 - Montréal, Canada
Joint International Conference on Computing and Decision Making in Civil and Building Engineering

Page 286

LSI did not deliver the improvement in retrieval performance usually reported by its
supporters. The situations for which LSI has been shown to be effective are significantly
different than ours. In published cases where LSI out-performs the simple vector model the
mean document size is significantly larger than in the CoMem corpus. It has been noted
earlier that LSI makes statistical associations between synonyms because they repeatedly co-
occur within the same document or they repeatedly occur in similar contexts. The smaller
the number of documents, and the more sparse the documents, the thinner the statistical
sample from which LSI can make such associations. In the case of CoMem, the documents
were simply too short, even with the addition to the corpus of discussion forum messages or
technical articles. Wiemer-Hastings (1999), using sentences as units of discourse (i.e. a
single sentence is a document), also reports poor performance of LSI. Rehder et. al. (1998),
using LSI to grade student essays, report that if only the first 60 words or less of the student
essay are used then LSI performs poorly.

Finally, a comment may be made about the generalizability of the results. CoMem is
hierarchical, as are most information systems: from the ubiquitous file systems of modern
computers to more specialized information schemas in the construction industry such as IFC,
AECXML, and so on. The short names given to CoMem objects are comparable to the
names given to files and folders, or the names of objects in schemas such as IFC. Caldas et.
al. (2002) have shown that information retrieval techniques and data mining such as the ones
described here can be used to automatically link construction documents to IFC components.

The fact that relatively good quality retrieval results were achieved with such short texts
(albeit not with LSI) is encouraging. Applying the vector model to such short texts and
showing it to be effective is an important contribution of this research. Attempts to address
this problem of short undescriptive texts by concatenating related documents or using tree
matching are further contributions.

REFERENCES
Baeza-Yates, R., Ribeiro-Neto, B., (1999), Modern Information Retrieval, Addison-Wesley, Harlow, England.
Caldas, C. H., Soibelman, L., and Han, J., (2002). “Automated Classification of Construction Project
Documents.” Journal of Computing in Civil Engineering, 16(4), 234-243.
Demian, P. and Fruchter, R., 2005, “Measuring Relevance in Support of Design Reuse from Archives of
Building Product Models.” ASCE Journal of Computing in Civil Engineering, volume 29, issue 2, pp. 119-136
Fruchter, R., and Demian, P. (2002). “CoMem: Designing an interaction experience for reuse of rich contextual
knowledge from a corporate memory.” Artificial Intelligence for Engineering Design, Analysis and
Manufacturing (AIEDAM), 16(3), 127–147.
Landauer, T. K., and Dumais, S. T. (1995). “A Solution to Plato’s Problem: The Latent Semantic Analysis
Theory of Acquisition, Induction and Representation of Knowledge.” Psychological Review, 104, 211-240.
Rehder, B., Schreiner, M. E., Wolfe, M. B. W., Laham, D., Landauer T. K., Kintsch, W., (1998). “Using Latent
Semantic Analysis to assess knowledge: Some technical considerations.” Discourse Processes, 25, 337-354.
Reiner, K., and Fruchter, R. (2000). “Project Memory Capture in Globally Distributed Facility Design.” In
Computing in Civil and Building Engineering, Proceedings of the Eight International Conference (ICCCBE-
VIII), 820-827.
Salton, G., and Buckley, C., (1988). “Term-weighting approaches in automatic text retrieval.” Information
Processing & Management, 24(5), 513-523.
Wiemer-Hastings, P., (1999). “How Latent is Latent Semantic Analysis?” In Proceedings of the 16th
International Joint Conference on Artificial Intelligence, Stockholm, Sweden, pp 932-937.

June 14-16, 2006 - Montréal, Canada
Joint International Conference on Computing and Decision Making in Civil and Building Engineering

Page 287

	ABSTRACT
	INTRODUCTION
	CONVERTING COMEM OBJECTS TO DOCUMENTS
	EVALUATING THE MEASURES OF RELEVANCE
	COMPARING DOCUMENTS USING THE VECTOR MODEL AND LSI
	CONTEXT-SENSITIVE COMPARISONS: CONCATENATING DOCUMENTS
	CONTEXT-SENSITIVE COMPARISONS: TREE MATCHING
	DISCUSSION AND CONCLUSIONS
	REFERENCES

