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ABSTRACT 
The conventional method of data collection in bridge inspection is paper-based and requires 
data re-entry at the office, which makes the data collection process inaccurate and inefficient. 
In addition, condition evaluation of bridge components still depends on the subjective 
opinion of the inspector. In this paper, we describe a new approach to support bridge 
inspection data collection using location-based computing and to evaluate condition rating 
using a belief network that can learn from the previous bridge inspection data. The proposed 
approach is demonstrated by developing a prototype system that includes a database of about 
300 bridges in Montreal and a 3D detailed model of one long-span bridge (Jacques Cartier 
Bridge). The prototype system runs on a Tablet PC and is implemented in Java language. The 
results of the case study are discussed to evaluate the usability and usefulness of the proposed 
approach. 
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1. INTRODUCTION  
 
Bridge Management Systems (BMSs) are used to manage information about bridges and to 
assure their long-term health under budgetary constraints. The core part of a BMS is a 
database that is built up of information obtained from regular inspection and maintenance 
activities. Among the various tasks of bridge management, field inspection is essential for 
evaluating the current condition of a bridge. Bridge management departments have come to 
realize that in order to make sound infrastructure management decisions, they need to use 
predictive models developed based on accurate condition data collected in the field. Effective 
bridge management is thus heavily dependent on field inspectors to collect detailed condition 
information for all of the individual elements of a bridge and to evaluate bridge condition 
based on that information. 
 
Location-Based Computing (LBC) is an emerging discipline focused on integrating 
geoinformatics, telecommunications, and mobile computing technologies (Beadle et al., 
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1997; Karimi and Hammad, 2004). Using LBC combined with Geographic Information 
Systems (GISs) and a 3D model, bridge elements which are registered according to their 
positions in a spatial database can be located using suitable tracking devices, and defects on 
specific elements can be recorded more efficiently and accurately. The first author discussed 
the concept and requirements of a mobile data collection system for engineering field tasks 
called LBC for Infrastructure field tasks (LBC-Infra) and identified its system architecture 
based on available technologies and the modes of interaction (Hammad et al., 2004). The 
present paper further develops LBC-Infra by building on the experience gained from this 
system. Furthermore, bridge inspection is a knowledge-intensive process, which is becoming 
increasingly challenging due to the uncertainty issues related to condition evaluation. In 
order to evaluate bridge deterioration, especially that of concrete decks, a qualified inspector 
must have professional training and possess sufficient experience. As the trained personnel 
retire, a significant experience gap is created. Therefore, it is of great interest and importance 
to develop Decision-Support Systems (DSSs) using probabilistic analysis, such as Belief 
Networks (BNs), to support inspectors during on-site bridge inspection. In the present paper, 
we also discuss a learning-based BN designed to analyze bridge concrete deck deterioration, 
thereby supporting inspectors making deterioration evaluation on-site. 
 
2. THEOREOTICAL BACKGROUND OF THE DSS 
  
BNs provide a method to represent relationships between variables even if the relationships 
involve uncertainty, unpredictability or imprecision (Jensen, 1996). BNs are directed acyclic 
graphical models combined with probabilities that follow the rules of probability theory. 
Probability theory establishes a set of cause-effect relationships where the nodes are 
connected by directional arcs, ensuring that the system as a whole is consistent and providing 
ways to interface models to data. The nodes of the network represent random variables; the 
states of the nodes represent the values taken by a variable; and the relationships between 
nodes represent probabilistic dependencies between variables. These dependencies are 
quantified through a set of Conditional Probability Tables (CPTs). Each variable is assigned 
a CPT of the variables acting as its parents. For variables without parents, this is an 
unconditional distribution. The basic concept in BNs relies on using Bayes’ rule for 
conditional probabilistic inference (Jensen, 1996).  
 
Eliciting BNs from experts can be a laborious and expensive process. Thus, in recent years, 
there has been a growing interest in learning-based BNs using available data. BNs allow 
conditional probabilities to be defined and learned from a collection of cases. If the collection 
of cases is a sample from the population, then we can use the frequency information included 
in these cases as an approximation of the unknown probabilities. The learned conditional 
probabilities can be used in the network to make predictions for new cases. In the present 
paper, parametric learning using the Expectation-Maximization (EM) algorithm from 
incomplete data is used for the calculation of the probabilities of the network (Bilmes, 1998).  
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Figure 1 Distribution of bridge attributes in Montreal 
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3. PROPOSED APPROACH  
 
The proposed general structure of components and techniques used in location-based bridge 
inspection DSS include device components and software components. The device 
components include portable PCs, PDAs, wearable computers, GPS receivers, Head-
Mounted Displays (HMDs), digital cameras, and wireless communications. The software 
components support three stages: process control, data collection, and data analysis. Each 
stage interacts with various functions. The process control navigates the inspector to 
locations of inspection targets following available requirements. The data collection is based 
on 2D and 3D models of bridges with different Levels of Details (LoDs). The data analysis 
aims to rate the conditions, diagnose the causes of defects, and make suitable decisions using 
an expert system. In the following subsections, we will discuss the proposed approach of the 
location-based DSS. 
 
3.1 Integrating 2D GIS and 3D models  
Integrating 2D GIS maps with the BMS database helps in visualizing basic bridge 
information. GIS map layers allow the visualization of data based on categories, quantities, 
and attributes. From Figures 1(a-c), the bridge inspector can easily refer to the distributions 
of the ages of bridges, traffic volumes, and bridge state indices using a point symbol for each 
bridge.  In addition to the point representation, lines, polygons, and 3D models can also be 
used to represent bridges. These different representations have different LoDs of the bridges. 
For example, the polygon representation of a bridge can be considered as an approximate 
representation of the bridge deck and can be used to calculate the deck area for the purpose 
of inspection and maintenance activities. A 3D model following the world coordinate system 
can be used for locating defects as will be explained in Section 3.3. 
 
3.2 Location-based automatic bridge selection  
While in the field, a bridge inspector may inspect a number of small bridges in a short time 
(e.g., short span bridges crossing over a highway in an urban area) or a single large bridge 
that may take several days. In both cases, the inspector usually has an approximate plan of 
the sequence of tasks to be achieved and the route to follow between the different locations 
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that should be visited. The optimization of the inspection route can be used to improve the 
efficiency of inspection. However, following a rigid plan may not be practical because of the 
difficulty of anticipating all the factors that could cause a change in the sequence of 
inspection tasks. For example, the inspector may discover an unexpected problem in a part of 
the bridge that triggers the need to visit other locations to check other bridges or bridge 
elements that have not been considered in the plan. In this case, the inspector would benefit 
from being able to automatically retrieve those bridges or bridge elements based on their 
relative locations with respect to his/her present position. 
 
Retrieving bridge information from the BMS database in real time may not be efficient 
because of the large number of bridges and bridge elements. In this section, as a first step 
towards facilitating the automatic retrieval of relevant inspection information, a location-
based automatic bridge selection algorithm integrating GIS and GPS is developed based on 
the distance between the user and a set of bridges represented by their center points. This 
algorithm can be extended in the future to the more general case of retrieving information 
about bridge elements based on a 3D spatial model. Figure 2 shows a conceptual diagram of 
how the bridges are selected based on the distance between the inspector and a set of bridges. 
As the inspector moves from one location to another, the set of bridges is selected in three 
steps: (1) A larger set of bridges (S1) is periodically selected (every ∆t =T) within a distance 
L1 from the inspector’s position ( ) at initial time t

0tP 0; (2) A smaller set  of bridges (S2) is 
continuously selected from S1 within a smaller distance L2 from the inspector’s position (Pt ) 
at current time t; and (3) A final set of bridges (S3) is selected from S2 by choosing only those 
bridges that are within the field of view of the inspector. The detailed flowchart of the 
selection process can be found in Hammad and Hu (2005). As an example of this selection, 
bridge B1 in Figure 2 will be selected in S3, while bridge B2 will be eliminated from S3. The 
bridges in S3 are listed in the user interface in the order of increasing distance from Pt and the 
information regarding these bridges is retrieved from the BMS database.  
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Figure 2 Selecting the nearest bridge using GIS and tracking method 

 

 

 

 

 

 

 

 
 
 
 
 

 

June 14-16, 2006 - Montréal, Canada
Joint International Conference on Computing and Decision Making in Civil and Building Engineering

Page 3043



 
 

Extract data from inspection records 

Satisfactory error rate ?

Test network with new cases

Calculate CPTs using EM learning 

Establish relationships between nodes

Define nodes and states in network

Generate case file

No 

Yes
End

Start 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 3 Flowchart of creating a BN for bridge deck diagnosis based on learning 
 
3.3 Picking and marking for locating defects on the 3D model 
Interaction with the 3D model is mainly facilitated by selecting an element of the 3D bridge 
model. The selection is done by picking the element with a picking device, such as a mouse 
or an electronic stylus. Using the picking behavior defined in the user interface, the data 
collected during on-site inspection can be added directly to the 3D model eliminating the 
need to draw sketches as is usually required in present inspection practice. Picking is the 
process of selecting shapes in the 3D virtual world using the 2D coordinates of the picking 
device. In order to interactively retrieve or update information related to the picked element, 
it is important to know the location and the orientation of that element in the 3D environment 
of the virtual model as will be demonstrated in the case study.  
 
3.4 Procedure of creating a learning-based BN 
Poole et al. (1998) outlined the necessary steps for the development of a well-designed BN: (1) 
Define the relevant variables; (2) Define the states of the variables; (3) Establish the 
relationships between the variables; and (4) Calculate CPTs of the nodes.  
 
The proposed approach for learning-based BNs requires extracting data from inspection 
records, defining nodes and states, generating a case file, establishing relationships between 
variables, calculating CPTs using the EM algorithm, and testing the network with new cases. 
As shown in Figure 3, before creating a BN, a case file can be generated by extracting and 
defining variables and states taken from inspection records based on inspection manuals. In 
general, the variables defined in the case file include the major causes that influence deck 
deterioration, defects types, condition evaluation, and maintenance activities. States of a 
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variable are the ranges of the value assumed by that variable.  After reading the data from the 
case file, nodes and states are defined in the BN. These relationships between the nodes need 
to be established manually depending on engineering knowledge. The relationships are 
categorized into four layers: cause layer, effect layer, condition evaluation layer, and 
maintenance layer. The nodes in the upper layers are the causes of the nodes in the lower 
layers. The CPTs of the network are calculated using the EM learning algorithm based on the 
defined states. In order to verify the accuracy of prediction of the network, an error rate test for 
each node is undertaken using a set of new cases. The test allows the user to find the nodes 
where the predictions are less accurate. The user can reexamine the CPTs of these nodes or 
supply additional data for learning.  
 
4. PROTOTYPE SYSTEM AND CASE STUDY 
 
To demonstrate the feasibility and usefulness of the proposed methodology, a prototype 
system is developed and discussed in detail in this section. The prototype system is built 
using Java language and integrating a 3D bridge model, an object-relational database, an 
expert system, a GIS, a GPS interface, an inspection Graphical User Interface (GUI), and a 
multimedia interface. The 3D model is created using Java3D Application Programming 
Interface (API). Based on the bridge 3D model, functions such as navigation, picking, and 
marking are developed. The database is designed with Microsoft Access XP and is accessed 
using Java Database Connectivity (JDBC). The data can be retrieved and updated using 
Structured Query Language (SQL). The DSS is developed using a BN software and its Java 
API (Netica, 2005). Figure 4 shows the mobile devices used in the prototype system. 
 
The case study is about the 300 bridges in Montreal. Data related to the bridges were 
acquired from the Ministry of Transportation of Quebec (MTQ) and Jacques Cartier and 
Champlain Bridges Incorporated including CAD drawings and inspection and maintenance 
records.  
 
Taking advantage of the bridge selection algorithm explained in Section 3.2, the inspector 
equipped with a GPS receiver can use his/her present position and the locations of the 
bridges in the GIS system to select the nearby bridges and order the inspection tasks for the 
selected bridges according to their distances along the inspection route (Figure 5). Once a 
bridge is selected, the related information is automatically retrieved from the BMS database. 
In this example, four bridges are selected within 100 m from the position of the inspector, 
and the sequence of inspection is determined by the distance along the inspection route. In 
addition, the specific inspection information about the nearest bridge (10815M) is retrieved 
from the database.  
 
Figure 6 shows the location-based visual inspection process with the navigation and picking 
functions. At the beginning of the inspection activities, virtual arrows automatically guide the 
inspector with a predefined inspection order according to the inspection plan. Following this 
step, the inspector is asked to select the specific defect type. The possible locations of the 
selected defect type are indicated on the inspected element using animated arrows. The 
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arrows are created dynamically and inserted into the scene graph. The defects are 
automatically marked on the 3D model of the floor beam using specific shapes and colors, 
which are defined based on the defect type and deterioration degree, respectively. For 
instance, in Figure 6, the black sphere represents a very serious metal loss. 
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Figure 6 Location-based bridge inspection based on 3D model  
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Figure 7 Structure of the BN for concrete deck diagnosis  
 
After picking the approximate position of the defect based on visual observation, the 
inspector can complete the data input and save these data with the help of the defect 
inspection input pane.  
 
The inspection records obtained from the MTQ are used to generate a case file for BN 
learning. The MTQ data contains general information about each bridge, such as Age of the 
Deck, Annual Average Daily Traffic (AADT), Average Daily Truck Traffic (ADTT), and 
Bridge Class. The database also includes detailed descriptions of defects and deterioration 
evaluation for different areas of bridge decks. Based on the inspection manual used in 
Quebec (MTQ, 2004), the main types of defects of concrete decks are delamination, cracks, 
spalls, and reinforcement steel corrosion. In addition, the deterioration degree (e.g., light, 
medium, important, and severe) and percentage of these defects vary depending on the 
specific deck area. Therefore, five deck areas are defined to evaluate the conditions of the 
deck, and an overall deck condition is calculated based on them. The five areas are: Deck 
Pavement (DP), Drainage System (DS), Exterior Surface (ES), Under Deck (UD), and Above 
Deck (AD) (MTQ, 2004). Each area is evaluated using two values: Material Condition Rating 
(MCR) and Performance Condition Rating (PCR) with the range for each value from 1 to 6 (a 
higher value represents a better condition).  
 
After generating the case file including 150 cases, nodes and states in the network are created 
automatically by reading the case file. Causal arrows are added manually based on cause-
effect relationships. The relationships between the nodes are categorized into four layers 
(Figure 7): cause layer, effect layer, condition evaluation layer, and maintenance layer. Each 
layer consists of several nodes that directly affect the nodes in the adjacent lower layer. 
 
Once the network structure is ready, learning can be undertaken using the predefined cases to 
generate CPTs of each node. This step is taken automatically by the system using the EM 
algorithm. In order to test the usability and accuracy of the network obtained from the case 
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learning, it is necessary to grade the network using a set of new cases to see how well the 
predictions or the diagnosis of the network match the actual cases. The test allows the user to 
find the nodes where the predictions are less accurate. The user can reexamine the CPTs by 
supplying additional data for learning. The error rates of the nodes in the network (except 
those in the maintenance layer) are based on 50, 100 and 150 cases used for learning. In each 
group, the error rate for the selected unobserved node is tested using the same new 100 cases 
with average missing data of 10%. It was found that, the higher the number of cases used for 
learning, the more accurate are the prediction results of the BN. The average error rate of the 
nodes in the BN using 150 cases learning is about 10%, which is considered satisfactory for 
the purpose of bridge inspection.  
 
Based on the tested BN, a GUI for the DSS is designed to effectively analyze the cause or 
effect probabilities for deck deterioration (Figure 8). The GUI is developed using the Java 
API of a BN software (Netical, 2005). Pane 1 includes general deck information, defects 
description, deterioration levels, and condition evaluation of the five different deck areas. 
The related data can be retrieved from inspection records and displayed automatically in the 
interface when a bridge ID is selected. Pane 2 shows an example based on cause-effect 
relationship (i.e., from defect details to deterioration evaluation). In Pane 2, average cracks 
and medium spalls are discovered on the exterior surface of a deck and are considered as two 
defect causes. Based on the learned cases, the probabilities of the deterioration levels of the 
exterior surface can be found from the network. The probability of P4 (46.67%), as shown in 
Pane 2, is the maximum value. Thus, 4 is the most likely value that the inspector should 
select for the PCR of the exterior surface of the deck.  
 

Pane 2 

Pane 1 

 
 
 
 
 
 
 
 
 
 
 
 
 

Pane 3 
 
 
 
 
 
 
 Figure 8 User interface for concrete deck deterioration cause-effect 
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Pane 3 shows another example of the effect-cause relationship (i.e., from deterioration 
evaluation to defect details). The selection of the evaluation level, such as P4, is given to 
summarize the current condition of the exterior surface. The inspector can acquire the 
probabilities of different defect types located at certain areas based on the selected evaluation 
level. For instance, for the current condition of deck exterior surface equal to P4, the most 
likely causes are the following: medium-level delamination (56.08%), average-level cracks 
(46.62%), or medium-level spalls (51.0%).  
 
5. CONCLUSIONS 
 
In the present paper, we have proposed a new location-based computing approach to faciliate 
the data collection activities of bridge inspection and a new DSS based on BNs using the EM 
algorithm for case learning to support inspectors in the diagnosis of bridge concrete deck 
deterioration. The following conclusions about the proposed approach can be drawn: (1) The 
integration of GIS and a 3D model with suitable LoDs was used to facilitate information 
visulization and defect marking; (2) A new algorithm for the automatic selection of bridges 
using GPS tracking was developed; (3) New interaction techniques for navigation, picking, 
and marking defects on the 3D bridge model were investigated; (4) A learning-based BN was 
created and tested to diagnoze bridge concrete deck deterioration (average error rate of 10% 
when using 150 cases); and (5) The developed user interface of the BN was found useful in 
investigating the cause-effect probabilities related to deck inspection. The system, 
implemented in Java, was demonstrated using a case study about bridges in Montreal.  
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