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ABSTRACT 

The primary objective of Intelligent Transportation Systems (ITS) is to take advantage of the 
advances in communications, electronics, and Information Technology in order to improve 
the efficiency and safety of transportation systems.  Among the several ITS applications is 
the notion of Dynamic Traffic Routing (DTR), which involves generating optimal routing 
recommendations to drivers with the aim of maximizing network utilizing.  The objective of 
this study is to demonstrate the feasibility of using a self- learning intelligent agent  to solve 
the DTR problem to achieve traffic user equilibrium in a transportation network.  To do this, 
the study uses the Cell Transmission Model to simulate a simple network that has two main 
routes. The learning algorithm implemented in the agent is based on the SARSA algorithm 
which is one variation of Reinforcement Learning (RL).  SARSA allows the agent to learn by 
itself through interaction with the simulation model.  Preliminary results indicate that the 
agent is capable of learning the correct strategies for the different states of the problem, 
provided that each state is visited long enough. Once the agent reaches a certain degree of 
expertise, it can be deployed to a real transportation system where the agent can use his 
knowledge and learned expertise to provide online routing guidance for motorists.  
Moreover, since any real life transportation system is a stochastic and ever-changing system, 
the agent will continue refining and adapting its expertise through its communication with 
the real transportation system.  
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INTRODUCTION 

In recent years, there has been a concerted effort aimed at taking advantage of the advances 
in communications, electronics, and Information Technology in order to improve the 
efficiency and safety of transportation systems.  Within the transportation community, this 
effort is generally referred to as the Intelligent Transportation Systems (ITS) program.  From 
an efficiency standpoint, ITS offers an alternative approach to meeting the challenges of 
increasing travel demand that does not require the physical construction of additional 
transportation system capacity, but rather an approach that attempts to optimize the 
utilization of existing capacity.  Among the primary ITS applications is the notion of 
Dynamic Traffic Routing (DTR), which involves routing traffic in real-time so as to 
maximize the utilization of existing capacity.  The solution to the DTR problem involves 
determining the time-varying traffic splits at the different diversion points of the 
transportation network.  These splits could then be communicated to drivers via Dynamic 
Message Signs or In-vehicle display devices.  

Solving the DTR problem is quite challenging, and existing approaches to solving the 
DTR problem have their limitations.  This paper proposes a solution for highway dynamic 
traffic routing based on a self- learning intelligent agent. The core idea is to deploy an agent 
to a simulation model of a highway. The agent will then learn by itself through interacting 
with the simulation model.  Once the agent reaches a satisfactory level of performance, it 
could then be deployed to the real world, where it would continue to learn how to refine its 
control policies over time.  The advantages of such approach are quite obvious given the fact 
that real-world transportation systems are stochastic and ever-changing, and hence are in 
need of on-line, adaptive agents for their management and control.    

 

REINFORCEMENT LEARNING  

Among the different paradigms of soft computing and intelligent agents, Reinforcement 
Learning (RL) appears to be particularly suited to address a number of the challenges of the 
on- line DTR problem. RL involves learning what to do and how to map situations to actions 
to maximize a numerical reward signal (Kaelbling, 1996; Kretchmar, 2000; Abdulhai and 
Kattan, 2003; Russell and Norvig, 2003). A Reinforcement Learner Agent (RLA) must 
discover on its own which actions to take to get the most reward. The RLA will learn this by 
trial and error. The agent will learn from its mistakes and come up with a policy based on its 
experience to maximize the attained reward. Figure 1 depicts a typical RLA and its 
relationship with the environment (Sutton and Barto, 2000).  
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Figure 1: The agent-environment interaction in reinforcement learning  

 

The field of applying RL to transportation management and control applications is still in 
its infancy.  A very small number could be identified from the literature.  A Q-learning 
algorithm (which is a specific implementation of reinforcement learning) is introduced in 
Abdulhai et. al. (2003) to study the effect of deploying a learning agent using Q-learning to 
control an isolated traffic signal in real-time on a two dimensional road network. The 
performance of the Q-learning agent is tested under different traffic circumstances to see how 
it will manage the traffic under varying conditions. The Q-learning outperformed the pre-
timed signal in the case of constant-ratio flow rates. However, in the case of uniform flow 
rates, the Q-learning agent’s results were not statistically significant. Abdulhai and Pringle 
(2003) extended this work to study the application of Q-learning in a multi-agent context to 
manage a linear system of traffic signals. The advantage of having a multi-agent control 
system is to achieve robustness by distributing the control rather than centralize it even in the 
event of communication problems. Finally, Choy et al. (2003) develop an intelligent agent 
architecture for coordinated signal control and use RL to cope with the changing dynamics of 
the complex traffic processes within the network. 

 

PURPOSE AND SCOPE 

The main purpose of this study is to show the feasibility of using RL for solving the problem 
of providing online Dynamic Route Guidance for motorists,  through providing a set of 
experiments that show how an RL-based agent can provide reasonable guidance for a simple 
network that has two main routes. Figure 2 shows the simple network used in this study.  It 
should be noted that this network is largely similar to the test network used by Wang et al. 
(2003) in evaluating predictive feedback control strategies for freeway network traffic.   
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Figure 2: Network Topology 
 
The network has three origins: O1, O2, and O3 and three destinations D1, D2, and D3. 

Each origin generates a steady flow of traffic. Traffic disappears when it reaches any of the 
three destinations. The length in miles of each link is indicated on the graph. For example, L0 
has a length of 2 miles. The capacity of all links is 4000 veh/h except for L0 that has a 
capacity of 8000 veh/h. All links have two lanes except L0 that has 4 lanes. 

 
As can be seen from Figure 2, there are two alternate routes connecting origin O1 to 

destination D1.  The primary route (route A) goes through nodes J1, J2, J4 and J6, and has a 
total length of 6.50 miles.  The second route (route B) goes through nodes J1, J3, J4 and J6.  
Route B, with a total length of 8.50 miles, is therefore longer than route A.   The intelligent 
RL agent is deployed right at the J1 junction. The goal of the agent is to determine an 
appropriate diversion rate at J1 so as to achieve traffic user equilibrium between the two 
routes connecting zones O1 and D1 (i.e. so that travel times along routes A and B are as close 
to each other as possible), taking into consideration the current state of the system. For 
example, if there is major congestion at L1, a well-experienced agent should advice motorists 
to divert to L2 because by doing that, eventually the congestion will be cleared. To simplify 
the case study, the diversion rates at J2, and J3 are set statically in the model; i.e. they are 
fixed numbers throughout the length of the simulation experiment.  

METHODOLOGY 

CELL TRANSMISSION MODEL 

The first task was to build a simulation model for the test network shown in Figure 2.  In this 
study, we selected the Cell Transmission Model (CTM) to build the simulation model, with 
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which the RL agent would interact to learn for itself the best routing strategies.  The CTM 
was developed by Daganzo to provide a simple representation of traffic flow capable of 
capturing transient phenomena such as the propagation and dissipation of queues (Daganzo, 
1994; 1995).  The model is macroscopic in nature, and works by dividing each link of the 
roadway network into smaller, discrete, homogeneous cells. Each cell is appropriately sized 
to permit a simulated vehicle to transverse the cell in a single time step at free flow traffic 
conditions.  The state of the system at time t is given by the number of vehicles contained in 
each cell, ni (t).  If cells are numbered consecutively from the upstream end of the roadway 
from i = 1 to I, the recursive relationship of the cell-transmission model can be written as: 

 ni (t + 1) = ni (t) + yi (t) – yi+1 (t) [Equation 1] 

where yi (t ) is the  inflow to cell i in the time interval (t, t+1) given by: 

 yi (t) = min {ni-1 (t), Q i(t), d[Ni (t) – ni (t)]} [Equation 2] 
 

where Qi (t) is the maximum number of vehicles that can flow into cell i in the time interval 
(t, t+1), Ni (t) is the maximum number of vehicles that can be present in cell i at time t, and d 
is the ratio of the shock wave speed (w) to the free flow speed (v).  Daganzo showed that if 
the relationship between flow (q) and density (k) is of the form shown in Figure 3, then the 
cell-transmission model can be used to approximate the kinematic wave model of Lighthill 
and Whitham (1955). 

Flow (q)

Density (k)

-WV

Kj

q_max

 

Figure 2: Flow Density Relationship 
 
As can be seen from Figure 3, the cell transmission model offers the user four degrees of 

freedom (i.e. four parameters that need to be specified).  These are: (1) the free flow speed 
(v) which determines the length of the cells or the time step of the cell-transmission model; 
(2) qmax which determines the maximum number of vehicles that can flow into cell i, Qi(t); 
(3) the shock wave speed which determines the parameter, d, of Equation 2; and (4) the jam 
density, kj, which determines the maximum number of vehicles that can be present in cell i, 
Ni(t).  By adjusting these four parameters, the user can calibrate the model and bring its 
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results closer to reality.  For this study, a C++ implementation of the CTM was developed 
and used to simulate the test network. 

THE INTELLIGENT AGENT  

As previously mentioned, RL was the paradigm chosen to develop the intelligent, learning 
agent that will be used for dynamic traffic routing.  Specifically, the learning algorithm 
implemented in the agent is based on the SARSA algorithm, which is an on-policy Temporal 
Difference (TD) learning implementation of reinforcement learning (Sutton and Barto, 2000). 
It is called on-policy because the agent keeps on exploring and refining the policy that it is 
currently using. This means that the agent enhances and modifies the policy it follows to 
make decisions. This is different from off-policy learning techniques, where the agent 
follows one policy and enhances another policy that could be totally different than the one 
the agent uses to make decisions.  

SARSA is a temporal difference algorithm because – like Monte Carlo ideas - it can learn 
directly from the experience without requiring a model of the dynamics of the environment. 
Like Dynamic Programming ideas (Bertsekas, 2000), SARSA updates the desirability of its 
estimates of state-action pairs, based on earlier estimates; i.e. SARSA does bootstrapping. 
For a complex, unpredictable, and stochastic system like a transportation system, SARSA 
seemed to be very suitable to adapt with the nature of an ever-changing system.  

The implementation of the SARSA algorithm is quite simple. Each state action pair (s,a) 
is assigned an estimate of the desirability of being in state s and doing action a. The 
desirability of each state action pair can be represented by a function Q(s,a). The idea of 
SARSA is  to keep updating the estimates of Q(s,a) based on earlier estimates of Q(s,a) for all 
possible states and all possible actions that can be taken in every single state. Equations 3 
shows how the Q(s,a) values are updated. 

 
 Q(st,at)  = Q(st,at) + α [rt+1  + Q(st+1,at+1) - Q(st,at)] [Equation 3] 
 

where α is the step-size parameter or the learning rate. According to Equation [3], at time t, 
the system was in state st, and the agent decided to take action at.  This resulted in moving the 
system to state st+1 and obtaining a reward of rt+1. Equation [3] is thus used to find new 
estimates for the Q-values for a new iteration as a function of the values from the previous 
iteration.  The algorithm typically would go through several iterations until it converges to 
the optimal values of the Q-estimates. 
 

EXPERIMENT SETUP 

As was previously mentioned, the objective of the experiment presented in this paper is to 
have an agent that is capable of recognizing the state of the system and deciding upon a 
diversion rate at junction J1. If this diversion rate is followed, the system should eventually 
move to a state of equilibrium where taking any of the two routes will result in the same  
travel time. For example, if route A (L1) is totally blocked because of an accident, the agent 
should guide all motorists to take route B (L2).  
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State, Action, Reward Definition 

State representation is quite important for the agent to learn properly. Ideally, using the 
CTM, each state is represented by the number of vehicle in each cell. Computationally, it is 
impossible to use this representation for the states for a RL agent, since this would make the 
problem state space very large. Finding a good state representation is always a challenging 
task since it directly affects the efficiency of the learning process of the agent. In this 
experiment, the state of the system is represented by the difference in the instantaneous time 
between taking the short route through L1 (route A) and the longer route through L2 (route 
B). Even with this state representation, there is still a huge number of states in the state space. 
Therefore, discretizing the state space was also an essential step. Based on some empirical 
experiments, the state space was discreteized to a finite number of states. Table 1 shows how 
the state was discretized based upon the difference in instantaneous travel time between the 
longer route, route B, and the shorter route, route A.    

 
Time difference 
(dif) in minutes 

State code Time difference 
(dif) in minutes 

State code 

0 < dif < 3 0 0 > dif > -3 -10 
3 < dif < 7 1 -3 > dif >-7 -1 

7 < dif < 14 2 -7 > dif > -14 -2 
14 < dif < 24 3 -14 > dif > -24 -3 
24 < dif < 40 4 -24 > dif > -40 -4 
40 < dif < 90 5 -40 > dif > -90 -5 

90 < dif < 125 6 -90 > dif > -125 -6 
125 < dif < 250 7 -125 > dif > -250 -7 
250 < dif < 375 8 -250 > dif > -375 -8 

375 < dif 9 -375 > dif -9 

Table 1: State Space  

As can be seen, State 0, for example, refers to the case when both routes are running at 
free flow speed.  For this case, the difference in travel time between routes B and A is in the 
range of +3 minutes, since route B is 2.0 miles longer than route A.  On the other hand, state 
-9 refers to the case when the route A (the shorter route) is extremely congested (totally 
closed), while the longer route is doing fine.  In our experiments, the instantaneous time is 
determined from speed sensor readings along the two routes. 

For actions, ideally the diversion rate is a real number between 0 and 100%; which means 
an infinite set of actions. In this experiment, the set of actions were reduced to only six 
actions. Table 2 indicates the six different actions used in this experiment.   
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Table 2: Action Set 

For the SARSA algorithm, all the values of Q(s,a) are initialized to zero. The agent keeps 
deciding on what actions to take in the different states the agent encounters. The environment 
will respond with a positive reward of 1 only when the system is in either state 0 or –10. 
Otherwise, the agent gets a reward of -1. In other words, the goal of the agent is to take the 
proper action to ensure that the instantaneous difference in time between the two routes does 
not exceed 3 minutes; i.e. reaching  (or being close to) the state of equilibrium.  In the 
experiment, the authors simulated running the system for around 90 hours of operation. At 
the 30th minute, an accident was introduced at link L1. The accident lasted for around 6 hours 
causing the shorter route to be completely congested. It was expected that the agent would 
learn by itself from interacting with the system that the best action in being in such a state is 
to divert all the traffic to the longer route.  

  

RESULTS AND DISCUSSIONS 

The results of the experiment show that the agent managed to learn the right actions for the 
extreme states but failed to learn the proper actions for the in-between states. For the state of 
complete congestion on link L1  (state -9), the agent learned that the proper action is to divert 
100% of the traffic to the longer route. For the free flow state, where there is no congestion at 
all (state 0), the agent learned that the best action is to divert all the traffic to the shorter path. 
But the agent did not learn the proper actions for the in-between states (e.g. states –2 and –4). 

After investigating, tracing and analyzing the agent, it was discovered that the system 
passed through states –2 and –4 for a very short period of time. The system was in these 
states right after the accident happened then the system moved to the extreme state of –9. The 
system stayed in state –9 for a good 6 hours. These 6 hours were more than enough for the 
agent to figure out the best action for this state. After the accident was cleared the system 
again quickly passed through state –2 and –4 and then went into state 0 and remained in it for 
the rest of the simulation time (around 80 hours). During this time, the agent managed to 
learn the best action in the case of free flow speed. To overcome this problem, we are 
currently, preparing a scenario that will ensure staying in different states for reasonable 

Action code Action meaning 
0 Divert 100% of the flow to L1 

Divert 0% of the flow to L2 
1 Divert 80% of the flow to L1 

Divert 20% of the flow to L2 
2 Divert 60% of the flow to L1 

Divert 40% of the flow to L2 
3 Divert 40% of the flow to L1 

Divert 60% of the flow to L2 
4 Divert 20% of the flow to L1 

Divert 80% of the flow to L2 
5 Divert 0% of the flow to L1 

Divert 100% of the flow to L2 
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amounts of time; minimum of 10 hours of simulation time for each state. We expect that the 
agent will learn the proper action for each state provided that the agent is given enough time 
to experiment with this particular state.  

Figure 4 shows the convergence to the right action for state –9. The time is represented in 
seconds*10. Notice that the system got into state –9 after almost one hour of the simulation; 
30 minutes after the accident. The agent chose action 0 (diverting all the traffic to the shorter 
route) the first time the agent encountered state –9. This decision is actually the worst 
decision that can be made in this situation. But as time passes, the agent learned from its 
previous mistakes till it converged to the best action at around the 120 minutes from the 
beginning of the simulation. So, it took the agent only an hour of simulation time to converge 
to the right answer.  
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Figure 4: Conversion for State –9 

CONCLUSIONS 
The results obtained from this very simple experiment are very promising. Designing the 

right experiment would make the agent learn the proper actions for the different states. In the 
near future, we are planning to use a neural network to augment the state representation of 
the system. Using a neural network will allow us to deal with a bigger set of states as well as 
achieving a smother and continuous representation of the state space. Similarly for actions, a 
neural net would be much more appropriate than the set of 6 different actions we used in this 
experiment. In the future we are also planning in experimenting with a more complex 
network and using more than one agent. We are planning to have a community of 
cooperating agents. We are also planning to use a microscopic simulation tool (PARAMICS) 
to model a much more complex network than the one used in this experiment.  
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