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ABSTRACT 

Groundwater environmental characterization involves the resolution of unknown system 
characteristics from observation data, and is classified as an inverse problem. Inverse 
problems are relatively challenging to solve due to natural ill-posedness and computational 
intractability. Here we adopt the use of a simulation-optimization approach that couples a 
numerical pollutant-transport simulation model with evolution strategies for solution of the 
inverse problem. In this approach, the numerical transport model is solved iteratively during 
the evolutionary search, which in general can be computationally intensive since several 
hundreds to thousands of forward model evaluations are typically required for solution. 
Given the potential computational intractability of such a simulation-optimization approach, 
grid computing is explored as a possibility to ease and enable the solution of such problems. 
In this paper, the solution of two groundwater inverse problems will be explored. The 
computational experiments were performed on the National Scientific Foundation TeraGrid. 
The results demonstrate the performance of the grid-enabled simulation-optimization 
approach in terms of solution quality and computational performance. 
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1. INTRODUCTION 
Source identification and release history reconstruction problems are important in 
environmental forensics and characterization of contamination for the purposes of regulatory 
enforcement and assessing liability. In this problem context, source locations and/or 
historical contaminant release schedules are unknown model inputs, which are resolved from 
the spatially and temporally distributed observational data collected at monitoring wells. 
Problems such as these, where system characteristics are resolved from sparse observational 
data are classified as inverse problems. A forward model, usually a system of partial 
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differential equations (PDEs), describes the transport processes of the groundwater system 
and defines the relationship between system inputs and outputs. 

The solution complexity of such problems is proportional to the number of system inputs that 
must be determined.  Inverse problems are inherently difficult to solve due to ill-posedness, 
and are several orders of magnitude more computationally challenging than solution of the 
corresponding forward model since several hundred to thousands of forward model 
evaluations are typically required for solution.  Here a simulation-optimization solution 
approach is studied where the inverse problem is formulated and solved as an optimization 
model.  The optimization model representation of the inverse problem is then solved by 
coupling the groundwater forward model with numerical search algorithms and/or 
evolutionary search heuristics. 

Recent investments in national high speed network infrastructure have allowed the 
aggregation of geographically distributed high-performance computing resources into 
computational grids.  In part, because computational grids promote reliable and economical 
access to, and sharing of, high-end computing resources, they have emerged as a new 
paradigm in scientific and engineering computation.  Given the computational resource 
demands of the simulation-optimization solution approach, computational grids have the 
potential to enable the solution of environmental inverse problems that previously would not 
have been possible. 

This paper discusses the solution to two groundwater inverse problems: (1) the contaminant 
source identification problem; and (2) the source history reconstruction problem. The 
computational experiments are performed on the National Scientific Foundation TeraGrid. 
The results demonstrate the efficacy of the grid-enabled simulation-optimization approach in 
terms of identifying the unknown system inputs and raw computational performance. 

2. PROBLEM DESCRIPTION 
In the real world, full spatial distributions of significant groundwater properties such as 
contaminant concentrations and locations are generally unknown. As alternative sparse 
measurements of hydraulic heads and concentrations at number of observation wells are 
available. Finding the source location and the time history of the solute in groundwater can 
be categorized as a problem of time inversion. This means that we have to solve the 
governing equations backward in time “inverse modeling”, (Atmadja & Bagtzoglou, 2001). 
Modeling contaminant transport using reverse time is an ill-posed problem since the 
dispersive process is irreversible. Thus, the solutions have discontinuous dependence on data 
and are sensitive to errors in the data. A problem is categorized as an ill-posed problem if: (1) 
the solution does not exist; (2) the solution is nonunique; and (3) the solution is unstable. The 
inverse problems occurring in groundwater modeling includes but not limited to contaminant 
source history reconstruction, source identification, and hydraulic conductivity estimation. 
Inverse problem are computationally challenging because they are generally ill-posed and 
they required extensive computational resources. Generally there are many approaches, such 
as simulation optimization, probabilistic, analytical, and direct approaches, to solve inverse 
problems (Sun, 1994). 
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Two groundwater inverse problems were considered in this study. The forward model 
employed here is a parallel groundwater transport and remediation simulator (PGREM3D) 
(Mahinthakumar, 1999). The governing equations describing the groundwater transport is 
fully explained by (Bear, 1972). 

2.1 SOURCE HISTORY RECONSTRUCTION PROBLEM (SHR) 
One of the inverse problem applications considered in this study is an instance of a 
groundwater release history reconstruction problem (SHR). In this problem, unknown 
historical contaminant release schedules at given source locations are resolved from spatially 
and temporally distributed concentration data observed at a set of monitoring wells. The 
problem assumes that the contaminant source locations are known, but that the contaminant 
release histories at those sources are unknown.  Concentration observations at the 18 
monitoring wells are collected periodically (see the vertical cross-sections of the domain in 
Figure 1) to generate a concentration time series at each monitoring location.  We 
parameterize a general concentration time series as follows; 

[ (0), ( ), (2 ),...]c c t c t= ∆ ∆C  (1) 

where c (M/L3) is a concentration and ∆t is a periodic time interval. We wish to reconstruct 
the source release history over a finite time horizon tr extending from the time (ts0) in the 
past when monitoring activities started and towards the present; this time span tr is referred 
to as the release history reconstruction period, with a periodic interval ∆tr. Monitoring 
activities are conducted at nm monitoring wells.  The number of samples ns taken at a 
monitoring well over the release history reconstruction period is equal to (tr/∆tm)nm, where 
∆tm is the periodic monitoring interval.  In the general case, t0 and ts0 do not necessarily 
correspond; however, for the problem being studied here we assume that sampling activities 
started at t0. 

We attempt to model the observed concentrations using the PGREM3D simulation, which 
provides the relationship Cm= f (Cr), where Cr is the source release concentration time series 
and Cm is the time series of modeled monitoring concentrations. We wish to identify Cr 
given Cm, thus the solution of inverse problem is necessary.  The inverse problem is posed as 
an optimization model where the objective is the minimization of the root square error (RSE) 
between the observed and calculated concentrations;  
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where the concentration time series Coi, Cmi are observed and modeled concentrations, 
respectively, and i = 1 … nm is the index of monitoring well locations. The time series of 
released concentrations Cr are the set of decision variables over which the problem is solved.  
The following constraints are added to enforce non-negativity for the decision variables. 

subject to: 

max  0,      r≥ ≥C C  (3) 
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where Cmax is the maximum expected concentration. Depending on the number of 
contaminant sources, the number of decision variables is equal to the product of the number 
of contaminant sources times the number of time durations. 

2.2 Contaminant Source Identification problem (CSI) 

The second inverse problem application considered in this study is the groundwater 
contaminant source identification problem (CSI). In this problem, an unknown contaminant 
release at a single source location is resolved from spatially and temporally distributed 
concentration observations collected at monitoring wells. The problem assumes that the 
contaminant source location and the contaminant release at the sources are unknown.  Similar 
to the previous application, concentration observations at the 18 monitoring wells are 
collected to generate a concentration time series at each monitoring location. The problem 
assumes that the source location and contamination release at the source is unknown. 
Furthermore, the signature of the source embedded in the monitoring data is a function of the 
source characteristics.  Again, we attempt to model the observed concentration using 
PGREM3D, which describes the relation Cm = f (xj, yj, zj, Cr), where xj, yj and zj are the 
coordinates of the expected source location, j =1, 2 denotes the vertices at opposite corners 
of the extent of the source, Cr is the source concentration, and Cm is the time series of 
modeled monitoring concentrations. The inverse problem is posed as an optimization model 
where the RSE between the observed and calculated concentrations (Equation. 4) is 
minimized. The following constraints are included to enforce decision variable bounds and 
feasibility. 

subject to:  
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Depending on the number of contaminant sources, the number of decision variables is equal 
to the product of the number of contaminant sources times the number of unknowns used to 
describe each source. Thus, for this case we have 7 unknown decisions variables. 

Table1: Hypothetical Domain Parameters 

Parameter Values 
Problem size 51x31x11 grids 
Number of time steps 100 
Time step size (dt) 0.15day 
Dispersion parameters αL = 0.1m, αT = 0.1m, Dm = 0.001m2/d 
Flow filed, velocity Homogenous, 1 m/day 
True source location x1 = 2, y1 = 15, z1 = 6, x2 = 5, y2 = 17,  z2 = 8 
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2.3 DESCRIPTION OF THE TEST PROBLEM DOMAIN 

A hypothetical 3-dimensional field of 51x31x11 grids was employed in this study. Detailed 
geometrical and hydraulic parameters are shown in Figure 1 and Table 1. 
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Figure 1: Hypothetical three dimension domain 

3. FRAMEWORK ARCHITECTURE 
The LAarge Scale Simulation-Optimization framework (LASSO) (illustrated in Figure 2) is 
used in this study (Tryby et al., 2005). LASSO consists of a centralized optimization 
application that utilizes a master-worker task distribution strategy.  The optimization, master, 
and worker processes are executed on grid-based computational resources. The worker 
processes interface with instances of the forward model for distributed task execution.  
Results are returned to the master for processing by the centralized optimization application. 
In the following sections of the paper, key components of the application architecture are 
described in greater detail. 

Several different search procedures have been implemented in Java, making up the 
centralized optimization application.  Here, the optimization model representation of the 
inverse problem is solved using evolution strategies (ES) − a stochastic search heuristic 
conceptually similar to natural evolution (Back, 1997).  An ES-based procedure encodes 
within an individual the decision variables that describe a potential solution to the problem.  
The ES search starts with a collection of individuals, referred to as a population.  The 
objective function of the optimization model is used to quantify a fitness value indicating 
how well an individual solves the inverse problem.  Fitness values are calculated using the 
results of forward model evaluations.  During the search process, the population is iteratively 
subjected to stochastic selection and mutation search operators. Each iteration of the 
algorithm constitutes a generation. This search process continues until a predefined 
convergence criterion is satisfied. The application of ESs to inverse problems is 
advantageous because of their robustness and global search characteristics. Some drawbacks, 
however, include the computational intensity of a typical ES search and slow final 
convergence prior to termination. 
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Figure 2: A schematic of the framework architecture 

4. FRAMEWORK PARALLELISM 
The optimization application is coupled with the forward model (PGREM3D) for fitness 
evaluation. The simulator is based on a finite element method (FEM) and is written in 
Fortran.  Each FEM evaluation is handled by a group of moderate number of processors 
(typically 1-8) called “group size” or number of processors per group. The MPI message 
passing interface is used to group processors, associate processors to computational domains, 
and for fine grained message passing within each of these groups (Mahinthakumar, 2005). 
The solution procedure adopted here involves two levels of parallel granularity exhibited by 
the search procedure and the forward model.  Each iteration of the search procedure exhibits 
a coarse grained parallel structure that requires an uncoupled forward model evaluation for 
each individual in the population.  The optimization application acts as the master process in 
the master-worker task distribution strategy.  The master, worker, and task pool used in the 
framework were designed and implemented as part of Vitri (Baugh, 2003).  The master 
maintains a pool of remote tasks − a bundle of individuals requiring evaluation.  Aggregating 
individuals in this manner reduces communications overhead.  Worker processes running on 
distributed grid resources, having established a TCP-IP socket connection with the master, 
signal their readiness and draw tasks from the task pool.  The worker process transfers the 
remote task to the MPI zeroth processor.  From this point forward, standard MPI group 
communications are utilized.  The forward model manages multiple MPI groups, and each 
group evaluates an individual in the task bundle.  The results of these simulations are then 
aggregated into a result bundle and returned to the optimization application for processing by 
the search algorithm.  Finally, the next generation of the search is initiated. 

The computational experiments presented here were performed on the National Science 
Foundation (NSF) TeraGrid, NCSA. The TeraGrid is a heterogeneous agglomeration of 
computational resources distributed across the United States and connected through a 
specialized interconnection network designed for high-band width data transfer (Catlett, 
2002). 
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5. APPLICATION EXPERIMENT DESIGN AND SETTINGS 

Two sets of runs were conducted on the TeraGrid NCSA site to address inverse problems and 
to measure the performance of the current framework. A set of runs were devoted to attempt 
solving the application problems by changing the ES parameters: number of generations, 
population size and sigma value. Another set of runs were conducted to measure the 
performance of the framework in terms of fine and coarse grained parallelism. The following 
section defines the forward model and the search parameter setting used in this study. 

For both applications, the grid resolution for the simulation model resulted in 17,391 finite 
element nodes within the groundwater domain, and the simulation duration was 100 time 
steps, using 18 monitoring wells. The SHR problem was formulated at a frequency (∆tm) of 
10 times the simulation model time step. Thus, a total of 180 observations are used 
corresponding to 18 wells and 10 periodic samples. The release history reconstruction period, 
tr, was set equal to the simulation duration, and the reconstruction period frequency, ∆tr, was 
set equal to 10 times the simulation model time step, thus the number of decision variables 
was 10. The population size for the LASSO evolution strategies was 300 and the algorithm 
was executed for 100 generations. The best solution was found at a sigma setting of 8.0. The 
CSI problem was formulated using 18 wells and 100 time steps. The boundary parameters 
used for this problem were Cmax = 100, xmax = 51, ymax = 31 and zmax = 11. With 7 decisions 
variables in the optimization problem, the best solution was found at a setting of sigma equal 
to 3.0, population size equal to 300 and number of generations equal to 100. 

6. RESULTS 
Several trials were first conducted by tweaking the LASSO evolution strategies parameters, 
population size, number of generations and sigma.  Figure 3 and 4 show the true and the 
calculated values for the RHC and the CSI problems, respectively. Noticeably, for the RHC 
problem the true and the estimated values are almost equal. However, for the CSI problem 
the true and the estimated values do not match as closely. In the RHC problem the unknowns 
are only concentration values over time period while for the CSI problem the unknown are 
the source location and concentrations. That makes the CSI problem more complex due to 
nonuniqness in the nature of the problem. From the groundwater governing equations, the 
concentration has a linear trend while the source location has nonlinear trend, which makes, 
in general, the estimation of source location more complex than concentration. In comparison 
to the RHC problem, tweaking the evolution strategies parameters for the CSI problem 
required several runs due to the significant effect of nonuniqueness. While the RMS is not 
fully minimized yet, improved sigma value could result in better solution performance since 
sigma is more sensitive than other parameters. 

The number of forward model evaluations performed during a search is a function of ES 
population size times the number of generations. For instance, for the CSI problem we had a 
total of 30000 evaluations distributed among 32 parallel forward model groups with 2 
processors per group for a total of 64 processors. On a normalized basis, an evaluation took 
around 0.0696 second, versus 1.6668 second on a single processor, i.e. each run took around 
35 minutes instead of 14 hours. 
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Figure 3: Calculated and observed concentrations for the RHC problem 

To evaluate the performance of the simulation-optimization framework, three sets of runs 
were conducted. One set of runs investigated fine grained parallelism within the FEM 
simulator. In this study, we evaluated the wall time corresponding to an increasing number of 
processors per group, while number of groups and number of tasks remained constant. Figure 
5 illustrates that the evaluation time decreases until 4 processors per group then increases 
thereafter. That is because the improvement in fine grained parallelism is associated with the 
problem size.  As the problem size used in this study is relatively small, the improvement is 
limited. 

The second set of runs was used to investigate coarse grained parallelism.  We observed the 
evaluation time with increasing number of groups. Other parameters such as number of 
evaluations, number of processors per group and number of tasks per group were kept 
unchanged. Theoretically, the application is expected to scale linearly with the number of 
processors used. Scalability results shown in Figure 6 indicate that the framework scales 
almost linearly until 32 groups and scales slight sub-linearly when the number of group 
exceeds 32. This could be due to the effect of communication that plays an important role in 
increasing the wall time when more than 32 groups are used. 

The third set of runs was utilized to investigate the effect of the chunk size (number of tasks) 
sent by the optimizer (the client). In those runs we observed the evaluation time with 
increasing chunk size. Other parameters, such as number of groups and number of processors 
per group, were kept constant. Figure 7 shows that the evaluation time for one generation 
increases until the chunk size is equal to 16 and then decreases until the chunk size is equal to 
64. When the chunk size is greater than 64 the evaluation time increases again. A possible 
interpretation for that is for small chunk sizes (less than 16) the latency dominates the 
evaluation time, while for large chunk sizes (greater than 64) the bandwidth dominates the 
evaluation time. For this study the best performance occurs when the chunk size between 32 
and 64. 
 

 

June 14-16, 2006 - Montréal, Canada
Joint International Conference on Computing and Decision Making in Civil and Building Engineering

Page 2717



X
Elevation View

Y

Z Z

Y
Side View

X
Plan View

True source location

Observation well

Calculated source loc.
x1= 0.6; y1=15.9, z1=5
x2= 6.0; y2=18.7, z2=10.3
C0 = 17.5

X
Elevation View

Y

Z Z

Y
Side View

X
Plan View

True source location

Observation well

Calculated source loc.
x1= 0.6; y1=15.9, z1=5
x2= 6.0; y2=18.7, z2=10.3
C0 = 17.5

 

Figure 4: Estimated and true source location for the CSI problem 
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7. OBSERVATIONS AND REMARKS 

In this paper we have addressed two instances of inverse groundwater problems using a 
simulation-optimization framework implemented on the TeraGrid site at NCSA, where the 
solution procedure employs an ES-based search procedure. The results indicate that the 
solution for the SHR problem performs better than the CSI problem, because the effect of 
nonuniqueness is more significant in the CSI than the SHR problem. Grid-enabled 
parallelized framework along two levels, coarse grained at the search algorithm level and fine 
grained at the forward model level, reduced the evaluation time drastically, to minutes 
instead of hours. For future work, different solution procedures would be attempted for better 
solution performance such as modeling to generate alternatives and hybrid algorithms. For 
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the CSI problem, the source dimensions could be constrained further to simplify the search 
and to reduce the non-uniqueness issue. 
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Figure 7: Chunk size versus Evaluation time 
Number of groups = 4, population size = 128,  Procs/Group =1:1 

ACKNOLWDEGEMENTS 
This work was supported by National Science Foundation (NSF) under Grant number BES-
0312841 and BES-0238623. The authors are grateful for the TeraGrid supercomputer 
resources provided by NCSA. 
BIBLIOGRAPHY 
Atmadja, J. and Bagtzoglou, A.C. (2001), “State of Art Report on Mathematical Methods for 

Groundwater Pollution Source Identification”, Environmental Forensics, 2(3) 205-214, 
2001b. 

Back, T. (1997), “Handbook of Evolutionary Computation”, IOP Publishing Ltd. and Oxford 
University Press. 

Baugh, J. W. (2003), “Vitri 2.0.”, Available: http://www4.ncsu.edu/~jwb/vitri/vitri-2.0/
Bear, J. (1979), “Hydraulics of groundwater”, New York: MCGraw-Hill. 
Catlett, C. (2002), “The teragrid: A primer”. Available: http://www.teragrid.org/ 
Mahinthakumar, G. (1999), “Pgrem3d: Parallel groundwater transport and remediation 

codes,” users Guide. Available: http://www4.ncsu.edu/~gmkumar/pgrem3d.pdf
Mahinthakumar, G. and Sayeed, M. (2005), “Hybrid genetic algorithm local search methods 

for solving groundwater source identification inverse problems”, Water Resource. Plng. 
and Mgmt., vol. 131, no. 1, pp. 45–57, January/February. 

Sun, N. (1994), “Inverse problem in groundwater modeling, Theory and application of 
Transport in porous media”, (Ed. Jacob Bear), vol. 6, Kluwer Academic Puplishers, 337p. 

Tryby, M., Mirghani, B., Ranjithan, R., Baessler, D., Nicholas, K. and Mahinthakumar, M. 
(2005), “LASSO: A Grid-Enabled Simulation Optimization Framework”, Poster 
presentation at Grid Computing Workshop, SC|05, Seattle WA. 

June 14-16, 2006 - Montréal, Canada
Joint International Conference on Computing and Decision Making in Civil and Building Engineering

Page 2719

http://www4.ncsu.edu/ jwb/vitri/
http://www4.ncsu.edu/~gmkumar/pgrem3d.pdf

	ABSTRACT
	KEY WORDS
	1. INTRODUCTION
	2. PROBLEM DESCRIPTION
	2.1 Source History Reconstruction Problem (SHR)
	2.2 Contaminant Source Identification problem (CSI)

	2.3 Description of the test problem domain

	3. FRAMEWORK ARCHITECTURE
	4. FRAMEWORK PARALLELISM
	5. APPLICATION EXPERIMENT DESIGN AND SETTINGS
	6. RESULTS
	7. OBSERVATIONS AND REMARKS
	ACKNOLWDEGEMENTS
	BIBLIOGRAPHY

