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ABSTRACT 
At present, most wastewater systems are local, i.e., each city has its own system. However, in 
many cases, they could be better, both from the economic and the environmental viewpoints, 
if they were regional. The search for the best regional wastewater systems can only be 
effective if it is made through an optimization model. In this article, we report a study made 
to develop an efficient simulated annealing algorithm for solving a regional wastewater 
systems planning model – that is, a model aimed at determining the minimum-cost 
configuration for the system needed to drain the wastewater generated by the population 
centers located within a region, while meeting the quality standards defined for the receiving 
water bodies and complying with all other relevant regulatory aspects. Because of their 
highly non-linear nature, even moderate-size instances of a model of this type must be 
handled through heuristic algorithms. The simulated annealing algorithm is termed efficient 
because its parameters were calibrated to ensure the best possible solutions to the 
optimization model. The calibration was made for a sample of test problems using a particle 
swarm algorithm. 
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INTRODUCTION  
One of the greatest challenges the World faces today relates to the goal of giving access to 
drinking water and basic sanitation to a very significant part of the planet’s population (UN, 
2005; WHO, 2005). In order to meet this goal, numerous wastewater systems will have to be 
built in the near future. At present, most wastewater systems are local, i.e., each city has its 
own system. However, in many cases, they could be better, both from the economic and the 
environmental viewpoints, if they were regional. 

The search for the best regional wastewater systems can only be effective if it is made 
through an optimization model, because the number of options available is excessively large 
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to enable for individual evaluation. In order to represent the problems to solve as accurately 
as possible, the model must incorporate discrete variables (regarding, for instance, the 
possible locations of treatment plants and the commercial diameters of sewers) and non-
linear functions (regarding, for instance, the hydraulic behavior of wastewater systems). That 
is, it is necessary to resort to a discrete non-linear optimization model. Even for small-size 
instances, a model of this type is extremely difficult to solve. Therefore, it must be handled 
through heuristic algorithms. Since the 80s, numerous heuristic algorithms (e.g., genetic 
algorithms, tabu search, and simulated annealing) have been successfully developed to 
determine optimum or near-optimum solutions to discrete non-linear optimization models, 
(Aarts and Lenstra, 2003; Michalewicz and Fogel, 2004). In particular, simulated annealing 
algorithms have been successfully applied to several hydraulic systems planning models 
(e.g.: Cunha and Sousa, 1999; Monem and Namdarian, 2005). 

In this article, we report a study made to develop an efficient simulated annealing 
algorithm for solving a regional wastewater systems planning model. The algorithm is 
termed efficient because its parameters were calibrated to ensure the best possible solutions 
to the planning model. The calibration was made for a sample of test problems using a 
particle swarm approach. 

PLANNING MODEL 
The study reported in this article is based on the regional wastewater systems planning model 
(RWSPM) presented in Sousa et al. (2002). This model was developed to deal with the 
following problem: find the minimum-cost configuration for the system needed to drain the 
wastewater generated by the population centers (wastewater sources) located within a region, 
while meeting the quality standards defined for the receiving water bodies (rivers, lakes, etc.) 
and complying to all other relevant regulatory aspects. The components of a wastewater 
system are: one or more sewer networks to connect the communities with the receiving water 
bodies; treatment plants to process wastewater before sending them to the receiving water 
bodies; and pump stations to elevate wastewater if it is unfeasible or uneconomic to drain 
them by gravity. The solution to the RWSPM specifies the layout of the sewer networks, the 
diameter of sewers, the location, type, and capacity of treatment plants, and the location and 
capacity of possible pump stations.  

The formulation of the model is as follows: 
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where N: total number of nodes (wastewater sources plus possible intermediate nodes 
plus possible treatment plants); 1, …, n: wastewater sources; n+1, ..., m: locations for 
possible intermediate nodes; m+1, ..., N: locations for possible treatment plants; Cij: 
discounted costs for installing, operating, and maintaining a sewer linking node i to 
node j; Qij: flow carried from node i to node j; Lij: length of the sewer linking node i 
to node j; Ei and Ej: hydraulic heads at nodes i and j respectively; Ck: discounted costs 
for installing, operating and maintaining a treatment plant k; QTk: amount of 
wastewater treated at treatment plant k; QRi: amount of wastewater produced at node 
i; Qminij and Qmaxij: minimum and maximum flow allowed in the sewer linking node i 
to node j respectively; QTmaxk: maximum amount of wastewater that may be treated 
in treatment plant k; xij: binary variable that is equal to one if there exists a sewer 
linking node i to node j, and equal to zero otherwise; yk: binary variable that is equal 
to one if there exists a treatment plant in node k, and equal to zero otherwise. 

 
The objective-function (1) of this discrete non-linear optimization model expresses the 

minimization of the total discounted costs for installing, operating, and maintaining sewer 
networks and treatment plants. The first term corresponds to sewer network costs, which 
depend on the wastewater flow (thus, on the diameter of sewers), on the length of sewers, 
and on the hydraulic heads at the extremities of sewers. The network may require pump 
stations to carry wastewater from low- to high-head points. The second term corresponds to 
treatment plant costs, which, for a given type of treatment plant, depend on the amount of 
wastewater treated there. Constraints (2), (3), and (4) are the continuity equations for three 
types of network nodes: wastewater sources; possible intermediate nodes; and possible 
treatment plants. Constraint (5) ensures that all the wastewater generated by the population 
centers of the region will be treated. Constraints (6) guarantee that the flow carried by sewers 
will be within given minimum and maximum values. These values depend both on the 
diameter and slope of sewers, and on flow velocity requirements. The hydraulic calculations 
needed to determine the diameter and slope of sewers are based on the Manning-Strickler 
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Equation. Constraints (7) ensure that the wastewater sent to any treatment plant will not 
exceed given maximum values. These values depend on the quality standards defined for the 
receiving water bodies. Constraints (8) and (9) are zero-one constraints. And constraints (10) 
and (11) are non-negativity constraints. 

SOLUTION ALGORITHM: SIMULATED ANNEALING 
The method designed to solve the RWSPM is based on a simulated annealing (SA) algorithm 
improved with a local search (LS) algorithm (Kirkpatrick et al., 1983; Dowsland, 1993). The 
basic steps of the method are identified in Figure 1 (Left). The SA algorithm starts from 
some initial incumbent solution. Then, a candidate solution is selected in the neighborhood of 
the incumbent solution. This solution becomes the incumbent solution with probability given 
by the Boltzmann-Gibbs distribution; that is, p = min {1, exp(ΔV/t)}, where ΔV is the 
difference between the value of the incumbent solution and the value of the candidate 
solution, and t is a parameter called temperature in a SA context. Therefore, the candidate 
solution becomes the incumbent solution if its value exceeds the value of the incumbent 
solution. Otherwise, if it does not, the probability that it becomes the incumbent solution 
increases as the difference of value between the solutions decreases, and, also, as the 
temperature decreases. This operation is repeated while decreasing the temperature in a 
controlled manner until the value of solutions ceases to increase. The LS algorithm starts 
with the best solution identified through the SA algorithm as the incumbent solution and 
moves into the best solution in the neighborhood of the incumbent solution if its value 
exceeds the value of the incumbent solution. 

The three main aspects involved in the implementation of a SA algorithm are: definition 
of the initial incumbent solution; definition of the neighborhood of an incumbent solution; 
and definition of the cooling schedule (initial temperature, temperature decrease rate, and 
final temperature). For the RWSPM, these aspects were handled as follows. The initial 
incumbent solution is defined installing treatment plants at every treatment node and 
connecting the population centers to the closest treatment node, as shown in Figure 2 (Left). 
The neighborhood of an incumbent solution consists of every solution that can be reached by 
selecting a sewer and replacing its downstream node with one of the nodes adjacent to the 
upstream node, as shown in Figure 2 (Center and Right). In this figure, sewer a was selected 
and replaced by a’, thus leading to a major change of the network (if sewer b was selected 
and replaced by b´ the change would have been minor). The cooling schedule was defined 
with four parameters, α1, λ, γ, and σ, as proposed in Johnson et al., 1991. Parameter α1 sets 
the initial acceptance rate for candidate solutions with value 10-percent smaller than the 
value of the incumbent solution. Parameter λ sets the minimum number of candidate 
solutions that must be evaluated at each temperature (if after λ×S evaluations, where S is the 
number of possible sewers, the best solution value, V*, or the average solution value, mV, did 
not improve, the temperature decreases). Parameter γ sets the rate at which the temperature 
decreases. Finally, parameter σ sets the maximum number of temperature decreases that may 
occur without an improvement of the best or the average solution value. The way the 
parameters interact is described in Figure 1 (Right). 
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Figure 1: Annealing Algorithm - Basic Steps (Left) and Cooling Schedule (Right) 
 

 

Figure 2: Initial Solution (Left), Incumbent Solution (Center) and Candidate Solution (Right) 
 

TEST PROBLEMS 
The aptitude of a SA algorithm for finding optimum or near-optimum solutions within 
acceptable computing effort largely depends on the way it is implemented for the particular 
model to solve. The implementation should be made for a sample of test problems with 
characteristics similar to those of real-world problems. The test problems considered for the 
study reported in this article were defined according to rules regarding the shape and 
topography of the regions, the location and size of population centers, the wastewater 
generation rate, the location and maximum discharge at treatment plants, and the costs of the 
components of the system.  
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SHAPE AND TOPOGRAPHY OF THE REGIONS 
The regions have a rectangular shape, with the length of each side randomly chosen, in terms 
of a uniform distribution, in the interval [20, 40] km. The bottom side corresponds to a river 
that receives the wastewater generated by the population centers of the region. The 
topography of the region is based on a grid of axis spaced of a length randomly chosen in the 
interval [3, 6] km (this means that the size of the grid can go from 4X4 to 13X13 axis, and is, 
on average, 7X7 axis). The height corresponding to the nodes of the grid vary between a 
value of zero in the left bottom corner (river mouth) and a value randomly chosen in the 
interval [100, 500] m. From the mouth of the river, the height increases or decreases in both 
directions proportionally to a value randomly chosen in the interval [0, 6] or [0, 3] units. As a 
result of this, on average, the height increases 1.5 units in both directions. In order to 
guarantee a single value for the height in each node, a weight, w, randomly chosen in the 
interval [20, 80] % is applied to the variation of heights in the direction of the river, and a 
weight of (100-w) % is applied to the variation of heights in the orthogonal direction. The 
dominant orientation of the ridges is the direction that receives the larger weight. The height 
along the river increases proportionally to a value randomly chosen in the interval [1, 2] 
units. Figure 3 (Top) shows examples of the shape and topography for three test problems.   

LOCATION AND SIZE OF POPULATION CENTERS 
Population centers are located in a percentage of the nodes of the grid (not coincident with 
the river) randomly chosen in the interval [25, 75] %. The population of each center is 
determined in the following way: the population of the largest center is calculated by 
multiplying the number of centers with a value randomly chosen in the interval [5000, 
15000]; the population of the second-largest center is obtained by dividing the population of 
the largest center by a value randomly chosen in the interval [1.5, 2.5]; the population of the 
third-largest center is obtained by dividing the population of the largest center by a value 
randomly chosen in the interval [2.5, 3.5]; and so forth. That is, the expected population 
distribution across centers follows a law frequently observed in real-world situations: the 
Zipf’s law (Brakman et al., 2001). Figure 3 (Bottom) shows examples of the location and 
size of population centers for three test problems. 

WASTEWATER GENERATION RATE 
The wastewater generation rate was assumed to be equal for all population centers with a 
value of 200 l/inhabitant. 

LOCATION AND MAXIMUM DISCHARGE AT TREATMENT PLANTS 

Treatment plants can be setup in any node of the river. The maximum discharge in each plant 
(defined to guarantee the quality standards that must be verified in the river) is obtained 
through the division of the total volume of wastewater generated in the population centers of 
the region by a value randomly chosen in the ]0.0, 3.0] interval. If this value is less than 1.0, 
it may be enough to setup one treatment plant; if it is greater than 2.0 it will be necessary to 
setup at least three treatment plants. 
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COSTS OF THE COMPONENTS OF THE SYSTEM 
The costs of the components of the system – sewer networks, treatment plants, and possible 
pump stations – were established on the basis of Portuguese values. The sewer network costs 
include construction and maintenance. The treatment plant and pump station costs include 
construction, electro-mechanic equipment, maintenance and operation (in particular, energy). 
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Figure 3: Shape and Topography (Top), and Location and Size of Population Centers (Bottom) 
for Three Test Problems 

PARAMETER CALIBRATION 
The procedure used to calibrate the SA parameters involved the following steps. First, we 
analyzed the extent to which the parameters are interrelated. Then, we developed an 
algorithm to determine optimum or near-optimum values for the parameters. Since some of 
the parameters were interrelated to a certain extent, we decided to adopt a procedure based on 
a Particle Swarm (PS) algorithm (Kennedy and Eberhart, 1995; Parsopoulos and Vrahatis, 
2002). Finally, we determined the values for the parameters using this algorithm. These 
values depend on the characteristics of the problems to solve. 

RELATIONSHIP BETWEEN PARAMETERS 
The analysis of the relationship between the parameters was made for a sample of 20 test 
problems using a quadratic form multiple regression model. The quadratic form was used 
because it permits to identify cross-relations between the parameters. For each problem, 50 
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sets of parameters and 5 random seeds were used. The values of the parameters were 
randomly chosen within reasonable intervals. The multiple regression model was: 
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where V: value of the solution (cost of the wastewater system); a1, …, a14: model 
coefficients. 

 
The model was always able to capture the influence of the parameters on the value of the 

solutions with great accuracy. Indeed, the adjusted correlation coefficient for the model was 
greater than 0.98 for all the 20 test problems. The t-tests performed on the model coefficients 
revealed that, with regard to the product terms, only the coefficients for α1×σ and γ×σ were, 
in most cases, significantly different from zero for the 95% and, especially, the 99% 
confidence interval (Table 1). This indicates that α1 and σ and γ and σ are the only clearly 
interrelated parameters. 

Table 1: Relationship between Parameters 

Confidence 95% Confidence 99%

α 1 × λ 7 3

α 1 × γ 7 4

α 1 × σ 12 8

λ  × γ 6 4

λ  × σ 5 2

γ  × σ 13 11

Number of times model coefficients were 
significantly different from zero Model term

 

CALIBRATION ALGORITHM: PARTICLE SWARM 
For the calibration of the parameters, a PS algorithm was used. This type of algorithm is 
inspired on the way the members of a swarm synchronize their movements to achieve some 
objective. A PS algorithm consists of the following steps. First, a population of solutions, S, 
is generated. Each solution is characterized by a position P in D-dimensional space, with 
some value in terms of the objective, and a velocity, V. The velocity is the rate at which the 
position changes. Then, in successive iterations, each solution changes the position at a 
velocity that depends on its previous velocity, on the best position it has previously taken 
(P*sd), and on the best overall position taken by any of the solutions (P*gd). The procedure 
ends when, after some iterations, the change of the position taken by the solutions becomes 
very small (that is, the velocity becomes close to zero). The expressions used to calculate the 
velocity and the position of a solution s∈S in the dimension d∈D , in iteration i, are: 
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where a and b: parameters. 
 
In our implementation of the PS algorithm, each solution comprised four dimensions, the 

SA parameters α1, λ, γ, and σ. The size of the population was 10. The number of iterations 
was 10 (for this number of iterations the velocity was already close enough to zero). The PS 
parameters a and b were set at 0.6 and 0.2. The initial position of the solutions over the four 
dimensions was randomly chosen within plausible limits for the variation of the parameters:  
α1 was assumed to be in the interval [0.1, 0.5]; λ in [1, 40]; γ in [0.1, 0.9]; and σ in [1, 10]. 
The initial velocity of the solutions was randomly chosen within ±1/6 of the range of each 
parameter. 

VALUE OF THE PARAMETERS 
The purpose of the study reported in this paper was to determine the best possible values for 
the SA parameters as a function of the characteristics of the problems to solve (in particular, 
geographic characteristics). These values were calculated through multiple regression 
analysis for 20 test problems. The dependent variables considered for the analysis were the 
values of the SA parameters (except σ) obtained for five different seeds through the PS 
algorithm. The parameter σ entered as an independent variable in the explanation of the 
parameters with which it is correlated (that is, α1 and γ). The number of test problems is not 
yet sufficient to arrive at definitive results, but will be enlarged in the future. The model used 
for the analysis was: 

 
( )σξ ×+×+×+×+×+×+×= 7654321 aWaOaRaPaUaNa  (15) 

where ξ: value of SA parameter; N: number of nodes; U: percentage of urban centers 
(in relation to the number of nodes); P: total population (103 inhabitants); R: land 
roughness (meters); O: ridge orientation (grades); W: maximum percentage of 
wastewater discharge in a treatment plant (in relation to total wastewater discharge); 
a1, …, a7: model coefficients. 

 
The analysis revealed that the model globally explains the relationship very accurately. 

Indeed, the adjusted correlation coefficient for the three SA parameters was always larger 
than 0.88. The analysis also revealed that the relationship of the parameters to some variables 
was not significant. These variables were eliminated using (backward) stepwise regression 
analysis. After this was made, we arrived at the following expressions for the values of the 
parameters: 

 
PUN ×−×+×= 00072.000634.000276.01α  (16) 

ON ×+×= 21581.020619.0λ  (17) 
σγ ×+×= 04975.000298.0 W  (18) 
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According to these expressions, if σ = 6, the values for the other SA parameters to be 

used when solving the test problem corresponding to the region depicted on Figure 3 (Left), 
should be a1 = 0.313, λ = 29, and γ = 0.597, since the region is characterized by N = 72,       
U = 73%, P = 488 (×103), O = 66 grades, and W = 100%. 

MODEL RESULTS 
The type of results obtained for the RWSPM with parameters of value given by expressions 
(16) to (18) are illustrated in Figure 4. The geographic characteristics of the problems solved 
are shown in Figure 3.  

 

Figure 4: Solutions Obtained for Three Test Problems with the Values Proposed for the  
Parameters  

CONCLUSION 
In this article, we reported a study made to develop an efficient simulated annealing 
algorithm for solving a regional wastewater systems planning model. The algorithm is 
termed efficient because its parameters were calibrated to ensure the best possible solutions 
to the planning model. The calibration was made for a sample of test problems using a 
particle swarm approach. The values of the parameters are expressed as a function of the 
geographic characteristics of the regions where the planning model will be applied. The 
sample of test problems employed in the study was relatively small. Therefore, the 
expressions are not fully reliable. In the near future, a larger sample will be used to determine 
more reliable expressions for the value of the parameters.  
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