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ABSTRACT 

This paper presents a methodology to optimize the building footprint represented by a multi-
sided polygon. Two geometrical representations for a polygon are considered. The first 
representation uses edge lengths and edge angles to define a polygon while the second 
representation uses edge lengths and edge bearings. These two representations are discussed 
with emphasis on their potential problems in binary coding for genetic algorithms: epistasis 
and encoding isomorphism. Epistasis implies the gene interaction when one gene pair masks 
or modifies the expression of other gene pairs. Encoding isomorphism means that 
chromosomes with different binary strings may map to the same solution in the design space. 
The two alternative representation methods are compared in terms of their impacts on 
computational effectiveness and efficiency. A problem is formulated to facilitate the 
comparison, where a pentagon-shaped typical floor of an office building is optimized with 
respect to life-cycle cost and life-cycle environmental impact. It is found that epistasis has a 
large impact on the performance of the multi-objective genetic algorithm while encoding 
isomorphism is not a problem. 
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INTRODUCTION 

Shape is one of the most important considerations in the conceptual stage of building design. 
Since the building shape determines the size and the orientation of the exterior envelope 
exposed to the outdoor environment, it can affect building performance in many aspects: 
energy efficiency, cost and aesthetics. Previous studies on building shape optimization were 
carried out with two approaches: the part-whole approach and the whole-part approach. The 
part-whole approach constructs a building from its spatial elements such as rooms and zones, 
as can be found in several architectural studies (Rosenman and Gero 1999; Chouchoulas 
2003). This approach is capable of defining a wide range of shapes, some of which may be 
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innovative solutions for a design problem. However, as noted by Caldas (2002), in the 
context of building design for energy performance, energy simulation programs require 
information about the adjacencies between spaces, and this information might be difficult to 
extract from a building shape generated with the part-whole approach. In contrast, the whole-
part approach defines a building shape by its external boundaries and represents its internal 
spatial elements implicitly. Because the whole-part approach can easily describe the building 
geometry for energy simulation programs, it is adopted in several optimization studies on 
energy performance (Jedrzejuk and Marks 2002; Wang et al. 2005a). All these studies using 
the whole-part approach are limited to simple shapes that cannot be easily generalized to 
more complex ones. Moreover, since these shapes are heavily constrained, some more 
promising shapes may be precluded from the design space right from the start. 

Following the whole-part approach, this paper proposes to use a generalized polygon 
representation for the optimization of building footprint. Two alternative methods for 
representing the building footprint and their encoding issues in genetic algorithms (GA) are 
discussed in the next section. Then, the platform for comparing different representations is 
established in section 3. The results are discussed at the end of this paper.  

SHAPE REPRESENTATION  

In this research, the building footprint is defined as a simple n-sided polygon with no 
intersection of non-consecutive edges. For a given area, an n-sided polygon can be 
determined in different ways depending on the representation methods. This paper considers 
two alternative representation methods: the length-angle method and the length-bearing 
method.  

LENGTH-ANGLE REPRESENTATION  

Since a polygon is made up of a number of sequential line segments (i.e., edges), it is 
intuitive to represent a polygon with the length of each edge and the angle between every two 
adjacent edges. Thus, given an area S, an n-sided polygon can be established with the 
following procedure, as illustrated in Figure 1 (a). 

• From an initial point P1, the coordinates of the endpoint P2 of the first edge can be 
determined from its length a1 and the building orientation �. The alignment of the 
first edge is selected here as the reference direction, called building north. This 
reference direction is necessary in energy simulation programs to describe the 
geometry of a building. Thus, the building orientation is defined as the angle � 
between the true north and the building north, clockwise being positive.  

• The direction of the i-th edge is determined by the angle �i-1, measured counter 
clockwise from the previous edge. Note that the angle �i-1 is an interior angle if the 
vertices are arranged in a clockwise order; otherwise, it is an exterior angle. Once the 
direction is known, the endpoint Pi+1 of the i-th edge is determined from its length ai. 
This step is repeated until the direction of the (n-1)th edge is known. 

• The last endpoint Pn of the (n-1)th edge is determined through calculation to satisfy 
the fixed area requirement.  
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 (a) Length-angle representation                            (b) Length-bearing representation 

Figure 1: Alternative representation methods 

With the length-angle representation, an n-sided polygon requires a total of 3n*2 − shape-
related variables including the orientation �, the first n-2 edge lengths (a1, a2, …, an-2) and 
the first n-2 edge angles (�1, �2,…,�n-2). Since all lengths and angles except for the last two 
edges are explicit variables, they can be set within reasonable bounds. This is an advantage 
of the length-angle representation because genetic algorithms do not generate infeasible 
solutions due to the bounds violation for explicit variables. The length-angle representation, 
however, has the following two potential problems related to the binary coding for genetic 
algorithms (GA): epistasis and encoding isomorphism. 

• Epistasis is a term used in the GA literature to describe the “gene interaction” 
problem, which occurs when one gene masks or modifies the expression of other 
genes (Davidor 1991). Usually, the higher the level of epistasis, the harder for a GA 
to locate the optimum. In building design, the physical expression of each facade 
involves its area and orientation, which depend on the length and direction of the 
corresponding edge. Edge lengths are modeled as independent and explicit variables, 
so they do not cause epistasis. On the other hand, the direction of each edge is an 
implicit variable derived from the building orientation and all the edge angles which 
have lower subscripts than the considered edge. For example, for a decagon, the 
direction of the fifth edge depends on the building orientation and the angles from �1 
to �4. Hence, the change of an angle � will modify the direction of all edges after it. 
This interaction between edge directions may cause serious epistatic problems.  

• Encoding isomorphism means that chromosomes with different binary strings may 
map to the same solution in the design space. This leads to representational 
redundancy, which is not beneficial for the GA if the genetic operators cannot gain 
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useful information from representational variants (Ronald et al. 1995). With the 
length-angle representation, encoding isomorphism exists because of the possibility 
of using different vertices as the starting point.  

The problem of epistasis can be addressed by representing the direction of each edge as an 
explicit variable. This approach is adopted in the second representation.  

LENGTH-BEARING REPRESENTATION  

The length-bearing representation has two major differences compared with the previous 
method. First, bearing, instead of edge angle, is used to determine the direction of each edge. 
The bearing is the angle between a designated north direction (e.g., the true north indicated 
by a compass) and an edge, clockwise being positive. Second, the bearing of the first edge 
replaces the building orientation in the length-angle method. After these two changes, the 
direction of each edge becomes an independent variable, thereby reducing gene interactions. 
The general procedure to establish an n-sided polygon with the length-bearing method 
requires the following steps (Figure 1 b): 

• Starting from a point P1, the coordinates of the endpoint P2 of the first edge can be 
determined from its length a1 and bearing �1.  

• The endpoint Pi+1 of the i-th edge can be determined based on its staring point Pi, its 
length ai and bearing �i. This step is repeated until the point Pn-1 is defined. 

• Given the bearing of the (n-1)th edge, the position of the last point Pn can be 
calculated to satisfy the fixed area requirement. 

With the length-bearing representation, an n-sided polygon also requires a total of 

3n*2 − shape-related variables including �1, a1, �2, a2,…, �n-2, an-2, and �n-1.  
Although the degree of gene interactions has been reduced significantly with the length-

bearing representation method, a minor epistatic problem still exists because there are two 
possible orientations for a given edge direction. The applicable orientation depends on how 
the other edges close the polygon. In addition, the length-bearing representation still has the 
problem of encoding isomorphism. This can be addressed by remapping vertices.  

VERTICES REMAPPING 

The purpose of the remapping operation is to ensure that there is a one-to-one relationship 
between the genotype and the phenotype. This objective can be achieved by removing the 
ambiguousness in arranging vertices. In this study, we ensure the unique order of vertices 
with the following two rules: (1) the lower-left vertex is the first point; and (2) the vertices 
are arranged in a clockwise order. The remapping operation is applied whenever a solution in 
the genotype violates either one of the above two rules. In Figure 2, for example, the solution 
corresponding to the left pentagon violates both rules. After remapping, the solution has 
changed completely in the genotype but it stands for the same pentagon in the phenotype.  
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Figure 2: The remapping operation 

COMPUTING EXPERIMENT SETUP 

An optimization problem is formulated to facilitate the comparative study. This problem 
consists in the design of a multi-story office building located in Montreal, Canada. The 
building footprint takes the shape of a pentagon. Since this study focuses on optimizing the 
building shape in plan, only one typical floor with an area of 1000 m2 is considered.  

The following two objective functions must be minimized in this research: the life-cycle 
cost (LCC, in $) and the life-cycle environmental impact (LCEI, in MJ). The LCC consists of 
the initial construction cost of considered building components and the present worth of 
operating costs due to energy consumption. The LCEI consists of the environmental impacts 
due to building construction and building operation for heating, cooling and lighting. A 
simulation program (Wang et al. 2005b) has been developed to calculate the two objective 
function values.  

The specific variables for the length-angle representation are orientation � and angles �1 
to �3 while for the length-bearing representation they are bearings �1 to �4. Except for the 
above difference, all other variables are the same for the two alternative representations. For 
the pentagon floor, the interval of each edge length is set between 5 and 200 m and the 
interval of each edge angle is set between 15 and 345 degrees. In addition to the shape-
related variables, the optimization model considers several other envelope-related design 
variables such as window types, window ratios, insulations and overhangs. A detailed 
description about these envelope-related variables can be found in (Wang et al. 2005a). 

The multi-objective genetic algorithm presented in (Wang et al. 2005b) is employed here 
to solve the formulated optimization problems. A major advantage of multi-objective GA lies 
in its ability to locate multiple Pareto optimal solutions in a single run. A solution is said to 
be Pareto optimal if and only if it is not dominated by any other solution in the performance 
space. If solution X1 dominates another solution X2, it implies that X1 is non-inferior to X2 
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for all the considered performance criteria but it is better than X2 for at least one criterion. All 
Pareto solutions form a Pareto front in the performance space. 

Since the main purpose of this paper is to study the impact of the two shape 
representations on the optimization results, the program is run for the following three 
scenarios: I) the length-angle representation method; II) the length-bearing representation 
method without remapping; and III) the length-bearing method with remapping. The 
comparison of scenarios I and II will help determine the impact of epistasis, while the 
comparison of scenarios II and III will help determine the impact of encoding isomorphism. 
In addition, due to the randomness of GA, the program is run three times for each of the three 
scenarios. Thus, nine program runs are needed and they are listed in Table 1. In order to 
lessen the influence of different initial populations on the comparison study, the same 
populations are used for each experimental set of scenarios II and III. This measure is not 
taken for the first scenario because it has different variables. 

Table 1 Overview of computing experiments 

Experimental sets 
Scenarios 

Set 1 Set 2 Set 3 

I Run I-1 Run I-2 Run I-3 

II Run II-1 Run II-2 Run II-3 

III Run III-1 Run III-2 Run III-3 

Computational effectiveness and efficiency are two aspects that can be used to compare the 
performance of the multi-objective GA for the three different scenarios. Computational 
effectiveness evaluates the ability of the algorithm to find high-quality solutions. 
Computational efficiency evaluates the computational efforts required to solve a problem.  

The computational effectiveness of multi-objective GA is measured with two simple and 
informative metrics: generational distance and spread (Deb 2001). The first performance 
metric evaluates the closeness between the obtained Pareto set and a known set of true 
Pareto-optimal solutions. The second metric evaluates the diversity and extension of obtained 
non-dominated solutions. A smaller value indicates better performance for both metrics. Both 
of these two metrics rely on a known set of Pareto-optimal solutions, which act as a reference 
in the comparison. Since the actual global Pareto solutions for the optimization problem is 
not known, all non-dominated solutions from the external populations in the total nine 
program runs are regarded to form the global Pareto optimal set. Let Q and P* denote a 
Pareto set and the global Pareto set, respectively, the generational distance (GD) can be 
calculated as (Deb 2001):  

N

d
GD

N
1i

2

ij� =

=     (1) 
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where, N is the total number of solutions in the Pareto set Q; dij is the distance between the i-
th solution in the Pareto set Q and the j-th solution in P* , which is the closest to the i-th 
solution. 

The spread can be calculated with the following formula Deb (2001): 

�

� �

=

=

−

=

⋅−+

−+
=

2
1m

e

m

2
1m

1N
1i ik

e

m

d)1N(d

|dd|d
spread             (2) 

where, dik is the distance between the i-th solution and its neighboring solution k in the Pareto 

set Q; d  is the average of dik; 
e

md  represents the distance between the extreme solutions of 

P* and Q corresponding to the m-th objective function. Note that both dij and dik are the 
Euclidean distance normalized by the maximum and minimum objective function values in 
the global Pareto set P*. In addition, the neighbouring distance dik is computed sequentially 
along the sorted Pareto solutions by the objective function values; therefore, the dik does not 
necessarily mean that the k-th solution is closest to the i-th solution.  

The computational efficiency is commonly measured with the computation time. In 
addition, the number of simulation calls can be employed as an equivalent measure for 
computational efficiency because simulation usually dominates the computation time for 
simulation-based optimization problems.  

RESULTS AND DISCUSSION 

Table 2 shows the four performance metrics used to compare the nine different program runs. 
All runs were done on a computer with Windows XP system (3.40 GHz Pentium-IV 
processor, 1 GB RAM). The following observations were made: 

Table 2 Comparison of performance metrics for different program runs 

scenario  program run GD spread 
CPU time 
(hours) 

simulation 
calls 

I-1 0.029 0.70 67.7 10300 

I-2 0.028 0.84 68.2 10290 

I-3 0.040 0.71 67.4 10160 
I 

average 0.033 0.75 67.8 10250 

II-1 0.011 0.58 58.4 8880 

II-2 0.011 0.59 59.7 9110 

II-3 0.002 0.70 58.7 8950 
II 

average 0.008 0.62 58.9 8980 

III-1 0.007 0.64 59.0 8970 

III-2 0.010 0.74 58.1 8890 

III-3 0.011 0.67 60.8 9130 
III 

average 0.010 0.68 59.3 9000 
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• In terms of the generational distance (GD), its results for the program runs in each 

experimental set (see Table 2) are ordered as follows: 1III1II1I GDGDGD
−−−

>> , 

2III2II2I GDGDGD
−−−

>> , and 3II3III3I GDGDGD
−−−

>> . Since the smaller the value 

of GD the better the convergence to the global Pareto front, the above performance 
order indicates that of all three scenarios, scenario I using the length-angle 
representation performs worst for all three experimental sets. Scenario III performs 
best for two out of three experimental sets; however, scenario II has the lowest 
average value of GD. The GD difference between the first scenario and the other two 
scenarios is significant, which demonstrates that the high level of epistasis has posed 
an obstacle to the convergence of the genetic algorithm. In contrast, the difference is 
small for the last two scenarios, which indicates that the encoding isomorphism has 
little impact on the GA convergence for this shape optimization problem.  

• In terms of the spread, a smaller value indicates a better distribution of solutions 
along the Pareto front. The average value is employed here for comparison in order 
to eliminate the impact of different ways in grouping program runs. In average, 
scenario II performs best while scenario I performs worst. As shown in Equation 2, 
the value of spread is subject to two factors: the spacing and the extent of Pareto 

solutions, evaluated respectively by dd i −  and e
md in that equation. Different 

scenarios do not affect the spacing because the same niche sharing strategy is used in 
the multi-objective GA to achieve a good distribution. Thus, the difference of spread 
for different scenarios is mainly due to the extent of Pareto solutions, which is 
calculated as the distance between the corresponding extreme solutions of two 
solution sets. Because scenario I had the worst convergence, its extreme solutions are 

far from the global Pareto front, consequently leading to a large value of e
md and 

spread. In average, Scenario II is slightly better than III, thus probably indicating that 
the former is better in locating the extreme solutions of the Pareto front.  

• In terms of computational efficiency, scenario I takes the most CPU time and has the 
most number of simulation calls during the total 300 generations, while scenarios II 
and III have similar CPU time and simulation calls. The average CPU time per 
simulation call is about 24 seconds for all three scenarios, which demonstrates that 
simulation dominates the computation time and that the time on extra operations 
such as remapping is negligible. The reason why scenarios II and III have less 
simulation calls than the first scenario is due to the fact that the length-bearing 
representation produces more infeasible solutions than the length-angle 
representation, as explained in Section 2. We investigated the output file containing 
detailed information of individuals for every twenty generations. The investigation 
showed that in average, scenarios II and III produced about four infeasible solutions 
per generation, accounting for 10% of the population size, while scenario I produced 
only several infeasible solutions throughout the whole evolution. Infeasible solutions 
do not generate call to the simulation program, so the number of simulation calls and 
the computation time are less for the last two scenarios.  
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The performance metrics GD and spread in Table 2 are calculated for the final Pareto 
solutions obtained at the end of the evolution process. If GD and spread are calculated during 
the evolution process to show their dynamic changes, interesting findings can be found. 
Hence, for each scenario, GD and spread are calculated for the external population at every 
50 generations, using the same Pareto set reference as before. The results from three 
experimental sets are averaged and shown in Figure 3. This Figure demonstrates the 
following two points: 

• The value of GD becomes smaller during the evolution process and finally converges 
towards a minimum value (Figure 3 left). Scenario I consistently takes the largest 
GD value among the three scenarios during the evolution process. Scenarios II and 
III have similar GD values after the 100th generation. Moreover, they achieved 
smaller GD values at the end of the 100th generation than what the first scenario 
achieved at the end of the evolution process. All these observations indicate that the 
length-bearing representation has a better convergence. For each scenario, because 
the GA is good at finding optimal regions but weak at local refinement, it converges 
quickly towards the global Pareto front in the first 150 generations, while the 
convergence rate becomes slower in the second 150 generations.  

• In contrast with GD, the spread does not monotonically decrease during the evolution 
process (Figure 3 right). None of the three scenarios has the smallest or largest value 
of spread for all considered generations. For each scenario, the general trend is to 
decrease the spread value, but spread may increase for some generations to concede 
to the requirement of convergence. This is reasonable because non-dominated 
solutions are usually given the highest fitness for the multi-objective GA. Thus, 
spread would possibly increase whenever a non-dominated solution in the new 
population dominates some well-spaced ones in the previous population. 
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Figure 3: Evolutionary changes of GD and spread for the three scenarios 

CONCLUSIONS 

In shape optimization, the geometrical representation is a fundamental issue to be considered. 
The representation method used can have significant impacts on the ease of implementation 
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and the performance of optimization. This comparative study leads to the following 
conclusions: 

• The length-bearing method performs better than the length-angle method with 
respect to the performance of the multi-objective GA, evaluated based on its 
convergence to the global Pareto front and the spread of Pareto solutions. This 
indicates that the representation method with a high-level epistasis should be avoided 
because of its impact on convergence. 

• The remapping of polygon vertices to arrange them in a clockwise order starting 
from the lower-left one has no noticeable impacts on the performance of GA. This 
indicates that encoding isomorphism is not a problem for shape optimization with 
GA. 
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