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ABSTRACT 
Considerable knowledge about construction methods, processes, performance, and risks is 
essential for decision making in project planning and scheduling. Currently, most companies 
are still relying on human planners to make important decisions in generating, reviewing, and 
modifying project schedules manually and in a case-by-case manner, while large volumes of 
computerized schedules from previous projects are not analyzed for lessons learning and 
knowledge discovery after projects are finished.  

This paper introduces a research effort on preprocessing, representing, and analyzing 
historical scheduling data to discover more comprehensive, objective and explicit knowledge 
in support of decision making in project planning and scheduling. The motivations, related 
work, and a methodology with detailed steps are provided in this paper. Preliminary results 
from a case study applying this methodology are also presented to show its feasibility in 
identifying possible correlations between architectures of scheduling networks and their 
performance during implementation. 
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INTRODUCTION 
Planning and scheduling is a knowledge-intensive job that is critical to successful completion 
of construction projects. Most companies rely on human experts to make important decisions 
in various scheduling tasks. Novice planners either learn lessons from experienced peers, or 
accumulate their own knowledge by trials and errors. Such practices are usually error-prone, 
human-dependent, and time-consuming. As a result, poor quality of scheduling work, which 
is largely due to lack of necessary knowledge, is one of the major causes for a low workflow 
reliability of 30~60%  (Ballard, 1999) that results in costly delays in the $800+ billion dollar 
construction industry (US Census data quoted by Macomber, 2002).   

At the same time that we are starving for knowledge we are drowning in information. 
Critical Path Method (CPM) based scheduling programs for project planning and scheduling, 
such as Primavera and MS Project, have been widely applied in the construction industry for 
many years. Planning and construction history of previous projects, from which lessons were 
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learned by human experts, are increasingly available in computerized scheduling databases. 
However, most of such information-intensive historical data are left intact after projects are 
finished, without being analyzed to improve scheduling practices in future projects. 

To address such a problem, we have initiated a research effort for reusing and analyzing 
historical scheduling data in support of decision making for project planning and scheduling. 
Upon its completion, two specific goals are expected to be achieved: 1) development of an 
explicit mechanism to retrieve and reorganize scheduling data from previous projects into 
analysis-friendly data representations supporting interactive exploration of project history;   
2) development of new applications of graphical analysis tools on CPM-based schedules for 
pattern recognition and knowledge discovery. This paper presents our initial work in this 
research effort, including our literature survey, a developed methodology for domain-specific 
scheduling knowledge discovery, and a case study validating its feasibility. 

RELATED WORK IN CONSTRUCTION PLANNING AND SCHEDULING 
Due to the critical role that planning and scheduling plays in construction management, many 
research efforts have been put to improve current practices. Three major types of such efforts 
were identified in our literature survey: 

RESEARCH IN SCHEDULE ANALYSIS AND OPTIMIZATION 
Schedule analysis tools, most of which are based on CPM networks, were applied in previous 
research, including the work of Bubshait and Cunningham (1998) to compare as-planned, as-
built, and modified as-built method for their performance and applicability on delay analysis; 
window analysis techniques employed by Finke (1999) and Hegazy and Zhang (2005); and a 
project delay computation method developed by Shi, Cheung and Arditi (2001).   

Machine Learning (ML) based scheduling tools have also been introduced and developed 
for construction scheduling tasks, with genetic algorithms (GA) being the most popular tool 
in recent years. Many researchers have applied GA to explore optimal/near-optimal solutions 
for scheduling problems by searching only a small part of large and complicated sample 
spaces of construction alternatives (Feng, Liu and Burns, 1997; Hegazy and Kassab 2003; El-
Rayes and Kandil, 2005). Other machine learning tools are also suggested, such as neural 
networks (Senouci and Adeli, 2001) and case-based reasoning (Dzeng and Tommelein 1997). 

RESEARCH IN CONSTRUCTION PROCESS MODELS 

Construction process models are collections of information that describe, abstract, or present 
AEC (Architect/Engineering/Construction) projects (Fischer and Froese, 1996) from the 
perspective of resource and information flows within activities. Many such models have been 
proposed and applied in support of scheduling work. Two IDEF (Information Definition) 
modeling languages, IDEF0 (IDEF, 1993) for function modeling and IDEF3 (IDEF, 1995) 
for process description have been widely used by construction researchers. Much work has 
been done to detail the modeling languages into conceptual process models, such as MoPo 
for construction process analysis and planning (Karhu, 2003); Petri net for construction 
modeling and simulation (Wakefield and Sears, 1997); WorkPlan scheduling based on lean 
construction principles (Choo et al., 1999); IDEF3-based ontology development for AEC 

June 14-16, 2006 - Montréal, Canada
Joint International Conference on Computing and Decision Making in Civil and Building Engineering

Page 2238



 

interoperability (Tesfagaber et al., 2003). The conceptual models can be integrated with other 
project information into specific information models for visualization and simulation tasks, 
as shown in the research by Halpin (1976), Ioannou and Martinez (1996), Lu and AbouRizk 
(2000), Zhang, Shi and Tam (2002), Kamat and Martinez (2005), among many others.  

RESEARCH IN KNOWLEDGE-BASED SCHEDULING SYSTEMS 
Solutions based on knowledge-based systems have also been developed in previous research 
(Zozaya-Gorostiza, Hendrickson, and Rehak, 1989; De La Garza and Ibbs, 1990; Dzeng and 
Tommelein, 1997; Dzeng and Lee, 2004), in which scheduling knowledge is collected from 
paper-based sources and human experts, processed and represented by researchers, and 
integrated into expert systems for automated generation and reviewing of project schedules. 

COMPARISON BETWEEN EXISTING RESEARCH AND THIS RESEARCH 
Research efforts like the ones described above proved to be helpful in improving efficiency 
and quality of scheduling work from various perspectives. However, they addressed different 
research issues from what we are working on. CPM-based and GA-based schedule analysis 
tools are focused on providing optimal solutions for given problems, without employing or 
identifying general and explicit scheduling knowledge; most knowledge-based solutions rely 
on capabilities of researchers and planners involved to collect and represent valid scheduling 
knowledge for decision support; and related process modeling work is also dependent on 
domain knowledge and modeling skills of researchers/developers to abstract and present 
scheduling knowledge at different levels of details. Overall, none of the above research 
projects were intended to learn explicit and objective knowledge from companies� planning 
and construction history, which is the major issue that this research is trying to address. A 
research map below (Fig 1) shows how this research is related to other research efforts and 
what�s new in this research. 

 

Figure 1: Research Map for This Research and Existing Research 
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GRAPHICAL ANALYSIS & SCHEDULING KNOWLEDGE DISCOVERY 

RECENT DEVELOPMENTS IN GRAPH MINING RESEARCH 
Traditionally knowledge discovery research has been done on transactional databases, in 
which each instance is represented by one row in a data table. With developments of data 
analysis techniques, objects for data analysis have been extended to more generic graph-
based data, so that not only instances (nodes), but also connections (edges) between them are 
included for pattern recognition. Recently, graph mining tools has received extensive 
attention from researchers trying to address problems in bioinformatics, social networks, web 
services, and workflow management. Currently, many graph mining research projects are 
focused on identifying frequent substructures in large graph databases (Cook and Holder, 
2000; Palmer, Gibbon and Faloutsos, 2002; Yan and Han, 2003). Other research efforts 
include learning process models from work-flow logs (Agrawal, Gunopulos and Leymann, 
1998) and graphical data generation (Chakrabarti, Zhan and Faloutos, 2004). Getoor (2003) 
suggests that other interesting patterns could also be identified on links in graphs, such as 
link-based classification/clustering and predictions of link type, strength, and cardinality. 

SCHEDULING KNOWLEDGE DISCOVERY  
Construction schedules can be viewed as a special type of �directed acyclic graph� (DAG), 
with activities as nodes and directed dependencies between them as edges. However, graphs 
in schedules are more complicated than current objects in graph mining (e.g., web links and 
protein molecules) with additional information on activity nodes and dependencies, such as 
construction products, activity durations, resource constraints, etc. The additional complexity 
requires that existing graph mining tools be adapted to learn domain-specific knowledge 
from historical scheduling data, which we are working on in this research.  

With the development of appropriate data exploration and analysis tools, accumulated 
schedules could provide planners with a wealth of embedded construction knowledge that is 
critical for their decision making, such as mutual interdependencies between activities as 
observed from previous projects (e.g. �Pouring of concrete must be followed by at least 2 
days of curing�); sequences for finishing a given job as frequently chosen by planners (e.g. 
�Installing of concrete columns is executed in the order of installing reinforcement!erecting 
formwork! pouring concrete!curing!removing formwork); and potential problems in 
specific sub-networks as implied by repetitive discrepancies between as-planned and as-built 
schedules (e.g., �In all schedules, 80% of the subsections with 4 or more parallel sequences 
ended up with at least one activity sequences being delayed�). 

Similar to the processes of knowledge discovery in transactional databases, we developed 
a methodology as a detailed guideline for scheduling knowledge discovery in graphical and 
CPM-based project schedules. For better understanding, a case study applying graphical 
analysis tools on a project control database for scheduling knowledge discovery is presented 
in the next section, with detailed steps including data acquisition, preparation, representation, 
and analysis.  
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CASE STUDY 

SCHEDULING DATA ACQUISITION  
The data for this case study was collected from a large capital facility project. The data spans 
four months of excavation and foundation work. Roughly 21,000 tasks were recorded with 
dependencies between them. Such tasks were planned separately into about 2,600 networks 
composed of 3~80 tasks. Also, data regarding the reasons for non-completions of individual 
tasks during implementation have been collected, so that project managers could have an 
overview of the work flows, their variability, and causes impacting non-completions. Such 
information can be helpful in guiding project managers to focus on specific causes for certain 
tasks. However, little is known about other crucial scheduling knowledge, such as influence 
of the original design of scheduling networks on non-completions of tasks in these networks. 

Oliveira, Soibelman and Choo (2004) worked on this data to identify a specific graphical 
pattern, frequent sequences for failures to complete planned tasks, i.e., how the failure of one 
task may contribute to other failures of its downstream tasks. Different from their work, this 
study was intended to find more general graphical patterns from the same set of scheduling 
networks by: 1) creating generic and concise type descriptions for networks with varied size 
and complicated architectures; 2) identifying correlations between network types and their 
probabilities of non-conformances in implementation; 3) analyzing influences of positions of 
one task within a network on its probability of being not completed as planned. 

SCHEDULING DATA PREPARATION 
In addition to other general data preparation operations as studied in previous construction 
KDD research (Soibelman, Kim and Wu, 2005), a specific and necessary data preprocessing 
operation in this case study was the removal of redundant dependencies in networks. 
According to Kolisch, Sprecher, and Drexel (1995), a dependency from activity X to Y is 
redundant if there is another activity Z, such that Z is succeeding to X and Y is succeeding to 
Z, directly or indirectly. As illustrated in Fig 2, a direct dependency from X to Y is 
unnecessary because Y can not be started immediately after X anyway.  

x Y

z  

Figure 2: An Example for Redundant Dependencies 

DATA REPRESENTATION WITH NETWORK TYPE DESCRIPTION 
The architectures of scheduling networks may influence their risks and performance during 
implementation to a great extent. A challenge here was to describe the networks in a concise 
and precise way, so that networks having similar architectures and performance could be 
abstracted into same or close descriptions. A novel network type description addressing this 
challenge is detailed below using a network in the following figure (Fig 3) as an example. 
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Figure 3: An Example for Network Type Description 
Three major observations could be seen from Fig 3: 1) how a network is split into branches 
or converged from branches is a good indicator of its complexity since such splits/converges 
generate or eliminate parallelisms that result in variability; 2) there exist multi-hierarchical 
sequential/parallel sub-networks within a large and complicated network that are interrelated 
only through very few connecting activities � for instance, a network in Fig 3 can be divided 
into two sequential sub-networks N1 and N2 so that N1 is preceding to N2 only through 
activity B, and N2 could be further divided into two parallel sub-networks which have only 
two common activities, the starting activity B and ending activity C; 3) when subdivisions 
continues, some sub-networks would eventually consist of �atomic� sequences of activities 
without any branches (e.g., all the three sequences from A to B), which could be simplified 
into paths from the starting task to the end. 

Based on these observations, a scheduling network could be described in an abstract way 
focusing on how a work flow goes through it by splitting/converging, and finally arriving at 
its end. Taking the same network as an example, the abstraction comprises two major tasks: 

1) Recursive divisions of the network and sub-networks: sequential/parallel divisions are 
alternately applied in a top-down manner, until the network is eventually composed of only 
�atomic� sequences. In Fig 3, N1 could be divided into 3 parallel �atomic� sequences, while 
N2 could be divided into two parallel sub-networks that could be further subdivided. 

2) Type description in a bottom-up manner: in this stage, activity identifications were 
removed since we only concerned the abstract description of the network architecture. In a 
reverse direction to recursive divisions, the type description for a network/sub-network could 
be obtained by following the basic rules as below: 

• Basic descriptions: if a sub-network is composed of multiple parallel �atomic� paths 
from a starting activity to the end, it would be represented as 1!n!1, where n is the 
number of paths. For example, N1 in Fig 3 could be represented as 1!3!1. 

• Sequential combinations: the type description of a sub-network like N21 could be got 
by combining the descriptions of its two sequential components as shown in Fig 3(a), 
1!2!1 and 1!1, into 1!2!1!1, where the middle 1 is shared by both parts. 
Similarly, the sub-network N22 in Fig 3(b) could be represented as 1!1!2!1. 

• Parallel combinations: the type description of a sub-network like N2 could be 
obtained by combining the descriptions of N21 and N22 into 1!(2!1,1!2)!1, in 
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which 1�s at both ends are shared by the two components (N21/N22), while the 
paratheses enclose detailed structures inside N21 and N22 separated by comma(s). 

As for the network in Fig 3, its final type description would be the sequential combination of 
descriptions of N1 and N2 as 1!3!1!(2!1,1!2)!1. A special case here is that if a 
network is composed of one single sequence of activities, it could be simply described as �1�.   

SCHEDULING DATA ANALYSIS FOR NON-CONFORMANCES 
Type descriptions for all 2,600 scheduling networks in this case study were generated using a 
computer program developed on a Matlab® 7.0 platform. When the abstract type descriptions 
of these networks were compared with their probabilities of non-conformances during 
implementation, some interesting patterns were identified as follow. 

First of all, among the identified 64 distinct types for all 2,600 networks (except ~5% of 
them with exceptional network structures on which our current solution was not applicable, 
which we are still studying on and will present in later works), some types of network were 
apparently less likely to have non-conformances than others. To simplify the analysis, these 
types were categorized into 4 groups based on their common graphical representations: single 
sequence, single start to multiple branches, multiple starts to single sequence, and multi-
hierarchical starts. The following table (Table 1) shows the general description, the non-
conformance rate, and the number of networks for each group, together with examples of 
generated type descriptions for networks in those groups.  

Table 1: Groups of Network Types and their Non-Conformance Rates 

Group 
No. 

Group Examples of Type 
Descriptions 

General 
Description

# of 
Networks

# of  
Non-Conf. 

Non-Conf. 
Rate (%) 

1 Single Sequence 1 1 1851 493 26.6 

2 Single Start to 
Branches 

1!2, 1!3!1, 
1!2!1!2!1, � 1!n!� 51 12 23.5 

3 Multiple Starts to 
Single Sequence  

2!1, 3!1!2!1, 
4!1� n!1!� 365 159 43.6 

4 Multi-Hierarchical 
Starts 

(1!6,1)!1, 
(2!1,2!1)!1, ... 

Others 167 98 58.7 

These non-conformances rates were then compared in a pair-wise manner using a statistical 
hypothesis testing equation below (Hogg and Tanis, 2001): 
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in which 2 groups, A and B, with different non-conformances rates, were tested with a null 
hypothesis pa=pb vs. an alternative hypothesis pa≠pb. In such tests, zα/2≥1.960 means that the 
null hypothesis was rejected with a 95% confidence, i.e., that groups A and B had dissimilar 

June 14-16, 2006 - Montréal, Canada
Joint International Conference on Computing and Decision Making in Civil and Building Engineering

Page 2243



 

non-conformance rates by statistics. In comparisons using equation (1), groups 1 and 2 had 
significantly lower non-conformance rates than group 3 (with zα/2=6.06 for group 1 vs. group 
3, and 3.09 for group 2 vs. group 3, respectively), and non-conformance rates of groups 3 and 
4 were significantly different as well (with zα/2=3.28).  

Also, comparisons between non-completion rates of activities at different positions 
turned out some meaningful results. The non-completion rate of tasks connecting sequential 
or parallel sub-networks, e.g. those with more than one preceding and/or succeeding tasks, 
was significantly larger than that of tasks among �atomic� sequences (15.6% vs. 8.4% with a 
significant value zα/2=8.94). When looked into more closely, non-completion rates of tasks in 
�atomic� sequences varied with their positions in their corresponding sequences as well: 
obviously, the closer that a task is to the starting/ending tasks, the higher non-completion rate 
it would have during implementation. 

EVALUATION AND FUTURE WORK 
With these results, we may conclude that in this construction project, a scheduling network 
could be more reliable if it was designed to be a single sequence, or to start with just one task. 
This makes sense because when a schedule is started, the management team may not have all 
resources well prepared; but after the jobs are started, usually there will be more necessary 
resources ready to support more parallel implementations. If the network architectures could 
not be changed, project managers should focus more managerial efforts to control networks 
with type descriptions from group 3 and 4 to prevent possible non-completions. Also, in this 
case study, tasks at the splitting or converging points within a network, and those close to 
these tasks, seemed to have higher probabilities of non-completions. This is a reasonable 
discovery too, considering that conflicts between tasks, and thus non-completions of related 
tasks, are most likely to occur when parallel jobs are started or ended. Project managers 
should be better prepared for such tasks by double-checking available resources, 
prerequisites, and other conditions. 

The methodology applied in this case study proved to be both feasible and valid since it 
enables automated characterization of networks with similar architectures and performance 
into same or close type descriptions. Also, this study is an important initial step for further 
and more in-depth developments in many aspects: 1) the recursive division method used in 
this case study made it possible to decompose large and complicated scheduling networks 
into multiple levels of sub-networks and sequences, which is required to build the analysis-
friendly data representation for project planning and construction history; 2) the generated 
type descriptions could be viewed as extracted graphical features of scheduling networks, 
which could be integrated with other features of activities and dependencies for identifying 
other general and useful patterns in scheduling data; 3) the complete process of scheduling 
data preparation, representation, and analysis in this case study provided primary insights and 
experiences for the following development of this research on a larger scale. 

CONCLUSIONS 
Lack of appropriate data representation and analysis tools for large and complex CPM-based 
networks is an obstacle for lessons learning from computerized project schedules that have 
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been widely available in the construction industry. This paper introduces a methodology 
developed to preprocess, represent, and analyze historical project schedules for knowledge 
discovery in support of construction planning and scheduling. Preliminary results from a case 
study applying the process of scheduling data preparation, representation, and analysis are 
also presented, with interesting and valid graphical patterns discovered in a project planning 
and control database. Research efforts is under way to extend the current research with the 
objective of retrieving and reorganizing scheduling data from previous projects into analysis-
friendly data representation, and to allow the application of latest data analysis techniques 
including graph mining tools for scheduling knowledge discovery. 
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