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ABSTRACT 
Genetic Algorithms (GAs) have been used as an effective optimization search technique in 
various fields including the area of control design. This paper develops a new Distributed 
Genetic Algorithm (DGA) based optimal control method to reduce the structural response 
under seismic excitation. In DGA a large population is divided into smaller subpopulation 
and a traditional GA is executed on each subpopulation separately. The developed control 
method uses Kalman filter estimator technique to obtain the full state performance from the 
available reduced order feedback. Using this method, best performance is obtained for 
described controller. The controller is optimized using DGA without making simplifying 
assumption. DGA is used to solve the resulting constrained optimization problem with the 
nonlinearity of the cost function.  
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INTRODUCTION 
In recent years considerable research activity has occurred in the area of active structural 
control for civil structures. Although significant progress has been made towards the design 
of feasible and practically realizable controllers for earthquake engineering applications, 
assessing the overall status of this research field has been difficult because of the relatively 
wide variability in control objectives. The benchmark problems presented by Spencer et 
al.(1997) attempt to enforce a specific set of objectives, thus providing a common ground 
from which various control design methods may be tested. This research employs total 
acceleration measurements of selected degrees of freedom as the feedback quantity for the 
controllers. Accelerometers are one of the most commonly employed sensors on civil 
structures in seismic zones, and direct use of accelerations requires no additional signal 
processing to obtain a relevant measurement for feedback. Acceleration feedback has been 
employed in civil structural control in several recent research efforts. Most optimization 
methods used in control design are traditional gradient based search methods .With this 
                                                           

1  Department of Civil Engineering, Ardebil University, Ardebil, Iran, Fax:0098451-7715972,  
Email:yghanbarpor@uma.ac.ir 
2  PHD Candidate, Department of Civil Engineering, Sharif University of Technology, Tehran, Iran, Fax:0098451-
7715972, Email:mmohebbi@sharif.ac.ir 

 

June 14-16, 2006 - Montréal, Canada
Joint International Conference on Computing and Decision Making in Civil and Building Engineering

Page 2153



 2

approach there are difficulties associated in selecting the suitable continuous differentiable 
cost function and in considering nonlinearities (Gray et al. 1995).Compared with the 
traditional gradient based search methods, Genetic Algorithms (GAs) efficiently find an 
optimal value from the complex and possibly discontinuous solution space because the 
fitness function is the only information required of the problem. GAs does not require 
reformulating the problem into a suitable form unlike traditional gradient based search 
techniques. As a result, GA’s provides a lot of flexibility in the controller design and 
optimization. Genetic Algorithms in the field of control systems have considerable works but 
in the field of structural control we have very few works. In the field of structural control 
design, GAs have been used successfully to obtain gains for optimal controller(Kundu and 
Kawata 1996) , tune the weights of neuro–controllers (Lewis and Fagg 1992), and scale 
parameters of fuzzy controllers (Kim et al. 1995) obtain the gains from state space 
reconstruction (Kim and Ghaboussi, 1997). 

For the control of the civil structures, we proposed a new Real-Coded Distributed Genetic 
Algorithms based control method. The proposed control method estimates the system states 
from the available reduced order feedback using the Kalman Filter technique and optimizes 
control gain by using DGA. The advantages of this method are the flexibility, simplicity and 
robustness. 

EXPERIMENTAL STRUCTURE 
The structure on which the evaluation model is based is an actively controlled, three-story, 
single-bay, model building considered in Dyke et al. (1995). The test structure, shown in 
Figs. 1 and 2, is designed to be a scale model of the prototype  

 
             Figure 1. Three Degree-of-Freedom       Figure 2. Schematic Diagram of 
               Test Structure with AMD System.                Experimental Setup. 

Building discussed in Chung, et al. (1989) and is subject to one-dimensional ground motion. 
The building frame is constructed of steel, with a height of 158 cm. The floor masses of the 
model weigh a total of 227 kg, distributed evenly between the three floors. The time scale 
factor is 0.2, making the natural frequencies of the model approximately five times those of 
the prototype. The first three modes of the model structural system are at 5.81 Hz, 17.68 Hz 
and 28.53 Hz, with associated damping ratios given, respectively, by 0.33%, 0.23%, and 
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0.30%. The ratio of model quantities to those corresponding to the prototype structure are: 
force = 1:60, mass = 1:206, time = 1:5, displacement = 4:29 and acceleration = 7:2. For 
control purposes, a simple implementation of an active mass driver (AMD) was placed on the 
third floor of the structure.  

EVALUATION MODEL: 
The model used for controller design and analysis is the evaluation model described in 
previous section. This model has 28 states and it is given by the following equations: 
 

 
Where x is the state vector, x&& g is the ground acceleration, u is a scalar control input, and y is 
the measurement vector available to the controller. The measurement vector y is partitioned 
into    where: 

 

                                                       (3) 

                                          U=K.X                                                           (4) 
The units of the control input u and the measurement y are volts; thus, the input-output map 
from u to y is nondimensional. No attempt is made to reduce the order of the model for 
design purposes. This is because the number of states is within the range that can be handled 
by the design methods used in this paper. The controllers are designed using continuous-time 
methods without taking into account time/amplitude quantizations; these discriminations are 
incorporated later to obtain the implementable control laws.  

EVALUATION CRITERIA AND IMPLEMENTATION CONSTRAINTS: 
The evaluation criteria and implementation constraints are denoted in Spencer et al (1997) 
and repeated here for completeness. 

Stochastic evaluation criteria 

In this case, the ground acceleration x&& g is a stationary stochastic process with power spectral 
density: 

 

Where the natural frequency ω g and the damping ratio ξ g lie in prescribed intervals.   The 
scaling factor S0 keeps constant the RMS value of the ground acceleration irrespective of 
changes in ω g  and ξ g. In addition to this ground disturbance, the entire measurement vector 
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y is corrupted by the measurement noise v. Each component of the measurement noise is 
modeled as a stationary white noise process. When both the random ground disturbance and 
the measurement noise are applied to the structure, the effectiveness of the controller is to be 
measured by the following criteria: 

 

Where the interstory drifts di are the relative lateral displacements between floors (d1 = x1,d2 
= x2-x1, d3 = x3-x2),  x& i is the lateral velocity of floor i, and x&& ai represents the absolute lateral 
acceleration of floor i. The signals xm, x& m and x&& am are the displacement (relative to the 3rd 
floor), velocity and absolute acceleration of the active mass driver. Finally, the normalization 
constants σ x30 , σ x& 30  , and σ x&& a30 are, respectively, the worst case RMS values of the 3rd 
floor position, velocity and absolute acceleration, over all allowed values of ω g  and ξ g, 
when the loop is open. In addition, the following hard constraints must be met 

 

The criteria (6) and the RMS values dening the constraints (7) depend on the parameters ω g  
and ξ g of the disturbance model (5). When evaluating the criteria, and constraints, for a 
given controller, these quantities need to be maximized over ω g  and ξ g to determine the 
worst possible values. This is to be done using the following ranges 

 

Deterministic evaluation criteria 
In this case, the ground acceleration is one of two historical earthquake records: 1940 El 
Centro NS and 1968 Hachinohe NS. The controller is evaluated according to the following 
criteria: 

 

Where x30, x& 30 and x&& a30 are the largest peak values, taken over both earthquake records, of 
the 3rd floor position, velocity and absolute acceleration, respectively, when no controller is 
present. In addition, the following hard constraints must be met: 

 
 

(9) 

(6) 
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Evaluation criteria for the peak responses are non–dimensionalized with respect to the 
corresponding uncontrolled peak third floor responses. For the El Centro earthquake, x3o = 
3.37 cm, x& 3o =131 cm/sec, and x&& a3o = 5.05 g. For the Hachinohe Earthquake, x3o = 1.66 cm, 
x& 3o= 58.3 cm/sec and x&& a3o = 2.58 g are used. 

The SIMULINK (1994) model has been developed to simulate the features and limitations of 
this structural control problem. Note that, although the controller is digital, the structure is 
still modeled as a continuous system. To reduce integration errors, a time step of 0.0001 sec 
is used in the simulation. 

GENETIC ALGORITHMS (GAS) 
The GA is a stochastic global search method that mimics the metaphor of natural biological 
evolution. GA operates on a population of potential solutions applying the principle of 
survival of the fittest to produce (hopefully) better and better approximations to a solution. At 
each generation, a new set of approximations is created by the process of selecting 
individuals according to their level of fitness in the problem domain and breeding them 
together using operators borrowed from natural genetics. This process leads to the evolution 
of populations of individuals that are better suited to their environment than the individuals 
that they were created from, just as in natural adaptation. Individuals, or current 
approximations, are encoded as strings, chromosomes, composed over some alphabet(s), so 
that the genotypes (chromosome values) are uniquely mapped onto the decision variable 
(phenotypic) domain. The most commonly used representation in GAs is the binary alphabet 
{0, 1} although other representations can be used, ternary, integer, real-valued etc.  

REAL-CODED DISTRIBUTED GENETIC ALGORITHMS  

Real-Coded Genetic Algorithms: 
The use of real-valued genes in GAs is claimed by Wright (1991) to offer a number of 
advantages in numerical function optimization over binary encodings. Efficiency of the GA 
is increased as there is no need to convert chromosomes to phenotypes before each function 
evaluation; less memory is required as efficient floating-point internal computer 
representations can be used directly; there is no loss in precision by discretisation to binary or 
other values; and there is greater freedom to use different genetic operators. The use of real-
valued encodings is described in detail by Michalewicz (1992) and in the literature on 
Evolution Strategies. 

Distributed Genetic Algorithms: 
In DGA premise lies in partitioning the population into several subpopulations, each one of 
them being processed by a GA, independently of the others. Furthermore, a migration 

(10) 
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mechanism produces a chromosome exchange between the subpopulations. DGA’s attempt 
to overcome premature convergence by preserving diversity due to the semi-isolation of the 
subpopulations. Another important advantage is that they may be implemented easily on 
parallel hardware that is very useful method for tall structures where that we have work with 
extensive parameters. DGA behavior is strongly determined by the migration mechanism’s 
action. In most implementations of this mechanism, copies of the individuals who are subject 
to migration are sent to one or more neighboring subpopulations. Kröger et al (1999).  Call 
this immigration. Additionally, they investigated emigration, in which individuals leave their 
subpopulation, and migrate to exactly one of the neighboring subpopulations. Experimental 
results indicated that the migration strategy of emigration works best. The most general 
migration strategy is that of unrestricted migration. Here, individuals may migrate from any 
subpopulation to another.  

THE OBJECTIVE AND FITNESS FUNCTIONS: 
The objective function is used to provide a measure of how individuals have performed in the 
problem domain. In the case of a minimization problem, the fit individuals will have the 
lowest numerical value of the associated objective function. This raw measure of fitness is 
usually only used as an intermediate stage in determining the relative performance of 
individuals in a GA. A fitness function reflects both the objective and a penalty for constraint 
violation. The fitness function has been constructed in the manner of a sequential 
unconstrained minimization technique, (i.e., an objective with external penalty functions to 
handle the constraints). Because the GA does not require derivatives, or even the continuity 
of the function, several options are available to describe the fitness function. For the present 
study, the fitness functions to be minimized have been formulated by combining the 
objective functions φ i and the constraint function gi for ‘‘ncons’’ number of constraints, given 
by: 
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Where φ i , ci , and gi=ith objective function, ith penalty coefficient, and ith constraint 
violation, respectively. In this study, to simplify the selection of the coefficients, ci , all of the 
constraints have been formulated in a scaled form and the same value of ci has been used for 
all the constraints. In the scaled form, constraint functions have been posed as given in Eq.13   
to enforce a value greater than the allowed value, or as in Eq.14 to enforce a value less than 
the allowed value. These functions are negative valued when the constraints are satisfied and 
positive valued when violated: 

                                               

      (13) 

(14) 
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SELECTION: 

Selection is the process of determining the number of times, or trials, a particular individual 
are chosen for reproduction and, thus, the number of offspring that an individual will 
produce. The selection of individuals can be viewed as two separate processes: 

1) Determination of the number of trials an individual can expect to receive, and 

2) Conversion of the expected number of trials into a discrete number of offspring. 

Stochastic universal sampling (SUS) used in this paper is a single-phase sampling algorithm 
with minimum spread and zero bias. Instead of the single selection pointer employed in 
roulette wheel methods, SUS uses N equally spaced pointers, where N is the number of 
selections required. The population is shuffled randomly and a single random number in the 
range [0 Sum/N] is generated, ptr. The N individuals are then chosen by generating the N 
pointers spaced by 1, [ptr, ptr+1, ..., ptr+N-1], and selecting the individuals whose fatnesses 
span the positions of the pointers.  

INTERMEDIATE RECOMBINATION: 

Given a real-valued encoding of the chromosome structure, intermediate recombination is a 
method of producing new phenotypes around and between the values of the parent’s 
phenotypes. Offspring are produced according to the rule, 

O1=P1+ α (P2-P1)                      (15) 

Where α is a scaling factor chosen uniformly at random over some interval, typically [-0.25, 
1.25] and P1 and P2 are the parent chromosomes. Each variable in the offspring is the result 
of combining the variables in the parents according to the above expression with a new α 
chosen for each pair of parent genes. In geometric terms, intermediate recombination is 
capable of producing new variables within a slightly larger hypercube than that defined by 
the parents but constrained by the range of α. 

MUTATION:  

With non-binary representations, mutation is achieved by either perturbing the gene values or 
random selection of new values within the allowed range. Wright (1991) and Janikow et al. 
(1991) demonstrate how real-coded GAs may take advantage of higher mutation rates than 
binary-coded GAs, increasing the level of possible exploration of the search space without 
adversely affecting the convergence characteristics. Many variations on the mutation 
operator have been proposed. For example, biasing the mutation towards individuals with 
lower fitness values to increase the exploration in the search without losing information from 
the fitter individuals or parameterising the mutation such that the mutation rate decreases 
with the population convergence. Mühlenbein (1993) has introduced a mutation operator for 
the real-coded GA that uses a non-linear term for the distribution of the range of mutation 
applied to gene values.  
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DGA-BASED CONTROLLER 

The control signal is calculated from Eq.16. Where Kr is the state feedback gain matrix with 
10 elements and Xr is the 10-dimensional state of reduced order system. In the proposed 
method Kr is determined by using DGA to minimize the Eq.6 and Eq.9 with constraints 
shown in Eq.10. 

Ur = Kr . Xr    where    Kr = [k1,k2,…, k9, k10]                                                                     (16) 

 NUMERICAL RESULTS 

Real-Coded Distributed Genetic Algorithm (DGA) based control method has examined on 
benchmark problem. The developed controller on El-Centro and Hachinohe earthquake  
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Fig.5: Proposed Control Method and Sample LQG Method Responses under Hachinohe 
Earthquake 

Ground motion data provided by the benchmark problem has been used. The results of Real-
Coded DGA based controller have been compared with several other control methods (the 
benchmark test results of Fuzzy control  , LQG method, H∞  Control , Covariant Control  and 
Sliding mode control methods) are compared with Real-Coded DGA method in Table-I. 

 

 
Fig.6. Loop Gain Transfer Function and Nyquist Diagram of Transfer Function from 

Ground Acceleration to 2nd Floor Acceleration 

June 14-16, 2006 - Montréal, Canada
Joint International Conference on Computing and Decision Making in Civil and Building Engineering

Page 2160



 9

Results show that the proposed method reduces the responses of the structure as well as 
required peak control force very effectively in comparing with other controllers. The results 
showing the efficiency of proposed method much better than sample LQG and other 
controllers (Fig.5). The loop gain transfer function is used to examine the closed loop 
stability of the system. The sample LQG controller was considered to be robust in the design 
if the magnitude of the loop gain was below -5dB at all frequency above 35 Hz. The  loop 
gain transfer function of Real-Coded DGA controller satisfy the same stability and 
robustness criteria used in the sample LQG controller design (Fig.6). The controlled 
responses using DGA controller are compared  

-2.5
-2

-1.5
-1

-0.5
0

0.5
1

1.5
2

2.5

0 1 2 3 4 5 6 7 8 9 10

Time(sec)

D
isp

l.a
t 1

st 
Fl

.(c
m

)

-1.5

-1

-0.5

0

0.5

1

1.5

2

0 1 2 3 4 5 6 7 8 9 10

Time(sec)

Co
nt

ro
l S

ig
na

l(V
)

 

Fig.7: Proposed Control Method and Uncontrolled Responses under  El-Centro Earthquake 

With uncontrolled responses under two historic earthquakes the El-Centro and Hachinohe in 
Fig.7 respectively.  
 

  

Sample    Covariance       Fuzzy            H∞          Sliding      GA-based  Proposed 
Method      control        LQG          control*      control*     control*       mode    

(Case B)    Control*   (3rd iteration)   (Case B)    (set  S2)     control*  
  

0.1979 0.2213 0.3232 0.2762 0.283 0.1939 0.1520 J1 
0.2936 0.3393 0.5087 0.4205 0.440 0.2886 0.2289 J2  
0.8221 0.7054 0.4894 0.5161 0.510 0.8071 0.5347 J3  
0.8042 0.6994 0.4137 0.5200 0.513 0.7685 0.7280 J4  
0.7775 0.7219 0.5981 0.5001 0.628 0.6974 0.6239 J5  
0.3738 0.3859 0.4748 0.4369 0.456 0.3673 0.3471 J6  
0.6674 0.7097 0.8666 0.6908 0.711 0.6731 0.6481 J7  
1.6832 1.0826 0.6249 0.7197 0.670 1.8144 2.2699 J8  
1.4903 1.1078 0.6474 0.9257 0.775 1.5162 2.0438 J9  
1.5673 0.9614 1.2994 1.0589  1.340 1.0632 1.813 J10  

Table-I: Evaluation Criteria Compared with other Control Methods 

 CONCLUSIONS 
The DGA Based method applied to a benchmark problem- an Active Mass Driver 

(AMD) system. A design example of practical Benchmark problem is given showing the 
flexibility and simplicity of this type of control system also specification and performance 
achieved. It has been shown that this method's performance in the response reduction is far 
superior to that of the other control methods. The robustness of the DGA base controller 
satisfies the same stability and robustness criteria used in the sample LQG controller design. 
The results are compared with other control methods.  
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