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ABSTRACT 
Meeting human preferences of comfort, safety and privacy are major factors in success of 
many infrastructural projects. The inability to integrate the seemingly important factor of 
human preference in decision making is due to lack of a framework to quantitatively 
capture these preferences. In this paper, we present a utility-theory based approach to 
successfully integrate these preferences in decision making. Utility theory is a micro-
economic concept used to measure the happiness or satisfaction gained from a good or 
service. We use this same concept and define a utility function to summarize the 
individual preferences for comfort, safety and privacy. We address the challenges of 
defining a realistic utility function, optimizing the resulting decision theoretic problem 
and integrate that into a formal decision making approach for building operation. 
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INTRODUCTION 
Meeting human preferences of comfort, safety and privacy are major factors in the 
success of many civil-infrastructural projects. Currently, these factors are taken into 
account by incorporating available standards during decision making. In building 
operation, occupant’s comfort is measured using standards like ASHRAE (ASHRAE 
1980) and other such agencies. However, most of the standards represent approximation 
of these preferences, as in reality, they are unique for each individual and often are 
location and time dependent. The inability to integrate the seemingly important factor of 
human comfort in building operation is due to lack of a framework to quantitatively 
capture their comfort preferences. In this paper, we present a principled decision theoretic 
approach using utility theory to successfully integrate these preferences in building 
operation. Utility theory (Varian 1992)  is a micro-economic concept used to measure the 
happiness or satisfaction gained from a good or service. The principled decision theoretic 
approach is used to implement an intelligent lighting control that elicits occupant’s 
preferences and then optimally controls the lighting system. 
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Building operation is a complex activity, where building operators and occupants 
continuously interact with each other. Typically, the interaction is passive with little 
communication between the operator and the occupants. Historically, maximizing 
occupant comfort and minimizing energy costs have always been two primary objectives 
of intelligent buildings operation (Finley Jr. M. R. 1991; Flax B. 1991). The trade-off 
between meeting occupant preferences for indoor environmental condition and reduction 
in energy usage leads to a difficult optimization problem and this optimization can be 
thought of as decision-theoretic — the objective is to minimize the expected cost of 
building operation and to maximize the occupant’s expected comfort. Utility theory is a 
principled decision theoretic approach that can be used for such optimization problems 
(Keeney 1976). Utility theory stems from the notion of preferences over outcomes. 
Outcomes result from the choices made by the system or the occupant. The occupant’s 
comfort preferences are defined in terms of an order, , over these outcomes. This 
preference order can be defined in terms of a real-valued utility function, U, over 
outcomes — one prefers state s

f

1 over s2 (written s1 f s2) if and only if s1 has higher 
comfort and hence utility: U(s1) > U(s2). The advantage of this optimization-based 
approach is the potential to personalize the system for individual occupants, simply by 
defining separate utility functions for each user. The requirement of minimizing operation 
cost can be modeled as a utility function which would monotonically decrease with the 
increase in the operation cost of the system. 
 
In this paper, we focus on a utility based formal decision making for lighting in 
commercial buildings. US office buildings use over 86 billion kWh for lighting each year 
(CBECS 2003). At the average energy cost of $0.08 per kWh, the potential savings from 
implementing energy efficient lighting in 50% of office buildings is more than $2.1 
billion per year. However, at the same time, energy efficient lighting is typically 
associated with reduced lighting which can negatively affect the productivity of the 
occupants. Reduced productivity and costs incurred due to loss of work can significantly 
outweigh the benefits from saving energy. Singhvi et al. (Singhvi 2005) present a 
decision-theoretic approach to optimally achieve occupants' light preferences and energy 
usage tradeoff by solving a multi-criterion optimization problem. They show that given 
the utility function for individual occupants and the operation cost their coordinated 
illumination approach can efficiently optimize the tradeoff in meeting occupant 
preferences and energy usage.  
 
While decision-theoretic optimization provides a powerful, flexible, and principled 
approach for such systems, the quality of the resulting solution is completely dependent 
on the accuracy of the underlying utility function. Unfortunately, defining a good utility 
function, a process called utility elicitation, is a complex, time consuming, and an error-
prone task. Utility elicitation is a critical process for the success of a decision theoretic 
system. In this paper, we present a utility elicitation approach that addresses the needs 
and requirements of an intelligent building system. In addition, we extend the approach 
presented by Singhvi et al. by defining a more realistic utility function for lighting 
comfort. The main contributions of this work are: 

• A formal decision theoretic framework for integrating occupants’ preferences in 
building operations  

• A principled utility elicitation technique using minimal interaction and partial 
information provided by the occupants; and 

• A novel interface design for recording occupants’ qualitative preference  
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UTILITY THEORY: LIGHT CONTROL 
Utility functions are defined over a space which is exponential in the number of variables 
on which the utility depends. Typically such representation of utility function leads to 
intractable optimization problem due to exponential nature of the solution space. More 
tractable representations of the utility are possible if we make certain assumptions about 
additive independence (Keeney 1976) among the variables. These assumptions allow the 
function to be decomposed into smaller components, thus reducing the number of 
parameters needed to specify it completely. In this paper, we assume that the occupant’s 
utility function is derived from sub-utility components, which reflects preference of the 
occupant for various parameters in the indoor environment. More formally we assume 
that the occupant’s utility function U is linearly additive, i.e. there is a set of sub utility 
function { } [ ]1 2, ....... 0,1 k

kφ φ φ= ∈φ , such that for any indoor environment state s in the 
building system the associated utility for the occupants is given by: 

             (1)                               ( )
1

* ( )
n

i i i
i

w sφ
=

Φ =∑s

Here, s  is the indoor environment state defined as the vector of the various parameters si 
involved in defining the state. ( )Φ s is the occupant’s utility function representing the 
preference for the comfort in state s. iφ  is the sub-utility function and wi are the 
associated weights in the utility function.  
 
In the formulation presented in Singhvi et al. each occupant, ‘k’, has a utility function 

 representing their preference for a given light setting s. In their definition of s, 
they have used a restrictive definition of lighting state by using only one parameter, the 
horizontal light intensity (Eq. 2). Figure 1 shows typical utility function used for the 
operation cost and occupant preference.  

( )kΦ s

              1 1 1( ) * ( ) 1k w Lux where wφΦ = =s                            (2) 
The operating cost utility function is defined asΨ , which decreases monotonically with 
the energy expended for maintaining the state s.  

 
 
A building has multiple occ
utility functions

cost, the goal is to tradeoff

1 2, ...... nΦ Φ Φ

technique of ‘scalarization’ to
a system utility function, (U s
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Figure 1: Typical utility function (Singhvi et al., 2005)

upants with varying preferences and hence with varying 
. When considering occupant preferences and the operating 

 with the occupant utilityΨ
1

m

i
i=
Φ∑ . They use a common 

 solve this multi-criterion optimization problem by defining 
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                                                                                          (3)                       
1

( ) ( ) * ( )
m

i
i

U γ
=

= Φ + Ψ∑s s s

The optimal control strategy in this scenario to find s* such that: 
* argmax ( )U=

s
s s  

Note that the state s is exponential and enumeration of all possible states is impossible. 
Singhvi et al. present an efficient algorithm to solve this exponential maximization 
problem exploiting the zoning principle in lighting design.  
 
The success of such decision support system depends on how well the utility function 

represents the preferences of the occupants. The main challenge is to estimate/elicit the 
shape of the sub-utility function 
Φ

iφ (ref: eq 1) and the associated weights for each 
occupants. These factors are unique for individual occupants and need to be estimated to 
develop a reliable utility model for the occupants. In the rest of the paper, we start off by 
discussing related research in the area of utility elicitation. We then identify the major 
requirements in a utility elicitation tool for building operations and present our design of 
the utility elicitation tool. 

iw

PREFERENCE / UTILITY ELICITATION 
Previous work in the area of user preference elicitation and tradeoff analysis has 
generally followed two main approaches, classical and behavioral decision theory (Pu 
2003). The classical theory deals with the idea of formulating a perfect model of users’ 
preference utility function. Given a perfect utility function, the classical theory can 
accurately predict final configuration of a configurable item or service. Classical decision 
theory (Keeney 1976) treats tradeoff problems under the assumption that a machine is 
able to help a human to externalize a value structure and use it to evaluate decision 
outcomes. A popular method to elicit such value function is to ask users to choose a set of 
outcomes and infer the model from their choices. This process in general can be lengthy 
and cognitively demanding. One such method uses gamble queries, asking the user 
whether they prefer choice ‘X’ to a mixture of a probability p chance of the ideal outcome 
and a (1 − p) chance of the worst outcome. While this and similar techniques (Chajewska 
2000; Chajewska 2001) have elegant theoretical properties, we feel occupants cannot 
coherently report their preferences with respect to probability distributions over lighting 
requirements and these processes would be very lengthy.  
 
Behavioral decision theory (Payne 1993; Carenini 2002), on the other hand, is very 
concerned with decision makers’ behavior. Many years of studies have pointed out the 
adaptive and constructive nature of human decision making. Although individuals clearly 
aim at maximizing the accuracy of their decisions; they are often willing to tradeoff 
accuracy to reduce cognitive effort. Stating preferences is a process rather than a one-
time enumeration of preferences that do not change over time and also user involved 
preference construction is likely to be more effective than using default or implicit 
models if a user is to understand and accept the solution outcomes (Carenini 2002). 
Several decision support systems have been using behavioral approach to integrate user’s 
preferences in different domains. Systems like FindMe(R. Burke 1997), ATA (Linden 
1997), and AptDecision (Shearin 2001) help users to navigate through a large space of 
alternatives to find the most preferred solution.  
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We seek a utility elicitation tool that differs significantly from the tools discussed above 
in terms of design assumptions, implementation and usability requirements. The utility 
elicitation tools discussed above assume an implicit sub-utility function or existence of 
expert knowledge which reduces the task to estimating the associated weights to form the 
full utility function. Most of the time the assumptions made about the shapes of sub-
utility functions are valid, for example, monotonically decreasing utility function with 
respect to cost of a product.  However, due to unique personal preferences of occupants 
these assumptions cannot be used in building operation domain. We feel for the 
occupants to trust the building operation system, the system should let the occupants 
define their sub-utility function. 
 
In terms of implementation and usability requirements, the utility elicitation tools 
presented above are designed where users are engaged in an active dialogue with the 
system. The users interact with the system with a tangible goal in mind, for example, 
choosing a flight, finding an apartment and so on and the system has their full attention 
during the interaction period. On the contrary, occupant’s interaction with the building 
controls is at best passive. Even though occupants spend most of their time in the 
building, by nature they seldom interact actively with the building system. Designing a 
successful tool for building environment requires additional requirements in terms 
interaction functionality. Due to restrictive interaction between occupants and building 
controls, we feel a successful building control system should: 

• be cognitively less demanding on occupants 
• require minimal interaction time 
• be able to operate using an approximate utility function 
• rely on observing occupants behavior to progressively fine tune the utility 

function; and 
• be flexible to the changing requirements of occupants  

 
In the design of the utility elicitation tool, we feel occupants will likely report more 
accurate preferences in a setting where their context or the state is visible. While 
occupants are capable of specifying preferences between concrete outcomes, they have 
difficulty articulating a real-valued utility function. We seek to design a tool where 
occupants can convey their qualitative preferences based on real visible context. The tool 
would provide a quantitative interpretation of their preferences to the system. We feel the 
quantitative interpretation of the user’s qualitative feedback should be visible so that 
occupants can trust and relate to the system’s interpretation of their requirements. This is 
important for the system to be accepted as this keeps the control in hands of the 
occupants. The design should free the occupants from having to reason about numerous 
and unintuitive parameters, probabilities or monetary values of different tradeoffs and 
thus makes it cognitively easier for the occupants. 
 
To address the unique requirements and features required for a utility elicitation tool, we 
have designed our tool in two stages. In the first stage called, sub-utility elicitation, we 
let the occupant visually explore the lighting space by letting them operate the lighting 
control, while constantly soliciting qualitative feedback. Since every occupant has a 
unique sub-utility function, it is important that each occupant provide the system with 
that information. This is the only stage where we solicit active interaction from the 
occupants. The goal of this stage is to estimate the shape for all the sub-utility functions.  
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The second stage is called weight elicitation. In this stage, the system starts by using a set 
of weights to form the utility function for the occupants. The weights are chosen to meet 
certain constraint based on the domain knowledge and decision theoretic concepts. In this 
stage, the occupant does not have to interact with the utility elicitation system, however if 
an occupant is unsatisfied he/she can use the lighting control to change the setting. The 
utility elicitation system observes the behavior and uses it to update the utility function. 
Over time with minimal interaction from the occupant the system would be able to learn 
a very close approximation of the utility function. In the next section we describe the two 
stages of utility elicitation in more detail. 

STAGE 1: SUB-UTILITY ELICITATION 
For defining the utility function for the lighting comfort of occupants we use following 
three parameters of indoor environments: 

1. Horizontal light intensity (Lux) 
2. Glare 
3. Uniformity 

Using the assumption of additive linearity (Keeney 1976) we formally define the utility 
function for occupant comfort as follows: 

1 1 2 2 3 3( ) * ( ) * ( ) * ( )w Lux w Glare w Uniformityφ φ φΦ = + +s   (4)  
Here,  is the weight factor, which signifies how much the iiw th factor influences the 
overall utility function, where [ ]1,2,3 0,1φ ∈ . The goal of this stage is to estimate the shape 
of the sub-utility function for each of the three parameters.  
 
The sub-utility elicitation tool can automatically construct a good approximation of the 
sub-utility function by soliciting feedback about the lighting state. Since the preference 
for the indoor environments are ephemeral the system is flexible to adapt to the changing 
requirements by letting the occupants update their sub-utility function at any time. The 
real time interaction provided in the interface makes it cognitively easier for the 
occupants to identify the effect of the parameters in the sub-utility function. We feel this 
is a better way of eliciting the sub-utility function as opposed to asking them queries to 
make monetary tradeoffs for various lighting scenarios.      
 
The sub-utility interface contains three main modules: preference module, control module 
and the state module. The preference module contains two axes, y-axis representing the 
preference level and the x-axis represents the measure for the three parameters (light 
intensity, glare or uniformity respectively). The control module provides the occupants 
with the control to increase or decrease the corresponding parameters. The state module 
provides information about the current lighting intensity, glare and uniformity index.   
 
The goal of the interface is to provide real time information about the current lighting 
state while the occupant is exploring the parameter space available in the given 
workspace. The occupant starts exploring the parameter space by using the control 
module. For every lighting state that he/she chooses to evaluate, the interface provides 
him with real time information about the lighting state and solicits his preference through 
the preference module. The system requires the occupant to evaluate at least 4-5 states. 
Based on the conveyed qualitative preference, the system presents a quantitative 
interpretation of the occupant’s utility function by superimposing the interpretation on the 
preferences entered by the occupant in the preference module. We assume that the 
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occupants’ utility function can be closely approximated by using a third degree 
polynomial. 
 

 
Figure 2: Sub Utility Elicitation Interface 

 
Schematically we can view the process in two phases. The first is called visual 
exploration and the second automated phase is called sub-utility estimation phase.  The 
following figure shows example of two different occupants interacting with the sub-
utility interface. 

 
Figure 3: Interface for interactive sub-utility elicitation 

We normalize the utility functions obtained from this stage to ensure that each of the sub-
utility function obtained meet the condition [ ]1,2,3 0,1φ ∈ .  

STAGE 2: WEIGHT ELICITATION 
Stage 1, sub-utility estimation, provides with the model for the sub-utility function for the 
three parameters in the utility equation. However, in equation 4 we need estimate the 
weights to form the full utility function for the occupants. Estimating even a close 
approximation of these weights would take significant time of the occupants. At the same 
time, the success of such a system is based on how well the utility function represents the 
occupant’s preferences. Here, we use an approach to learn the best estimate of the utility 
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1

n

i
i

w
=

weights by observing the occupant’s interaction with the system. The lighting system 
starts of by assigning random set of weights for the utility function. The random weights 
chosen must satisfy the following condition: are based on some domain knowledge and 

weights by observing the occupant’s interaction with the system. The lighting system 
starts of by assigning random set of weights for the utility function. The random weights 
chosen must satisfy the following condition: are based on some domain knowledge and 

                  
1

1
n

i
i

w
=

=∑                 (5)  

Since the system is designed to provide lighting in a workspace, we assume the 
preference of the occupant more for lighting level (w1) than for glare (w2) and since glare 
affects the user more then uniformity we assume w2 > w3. However, these are not hard 
constraints and the occupant can change it anytime later on. The lighting system uses the 
weights generated using these constraints. These weights do not reflect the true 
preferences of the occupants however they provide a good starting point for the lighting 
system. The system is designed to update the weights by observing the behavior of the 
occupants. The updating mechanism is based on the choices the occupants makes while 
trying to changing the lighting condition. Whenever the occupant changes the lighting 
state set by the main system, we use this information as his preference ordering over the 
two states. For example, if the occupant changes the current state s1 to say state s2, we 
interpret his choice in form utility function as follows: 

2 1( ) ( )Φ > Φs s  

1 12 1

* *
n n

i i i i
i i

w wφ φ
= =

⎛ ⎞ ⎛ ⎞ 0− >⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
∑ ∑  

We define a choice vector c such that, 
   ( ) ( ) 1,...,ij k j k i for k n and i jφ φ= − = ≠c      
so, we have   
                                       (6) . ij >w c 0
We refer to equation 6 as contextual information. Occupants can convey other types of 
contextual information, which the system can utilize while calculating the best utility 
estimate based on the current context.  We consider three types of partial context 
information (Malakooti 2000): 

1. (type 1) Lower and upper bounds, LBi and UBi for each attribute weight factor wi 
can be provided by the occupant. 

1,...,i i iLB w UB for i n≤ ≤ =                                                         
2. (type 2) Ranking of pairs of weight factors is provided by the occupants:            

, 1,...,i jw w for i j n i> = j≠  
3. (type 3) Paired comparison of some alternative states provided by the occupants, 

that is if state si is preferred to sj  then  
( ) ( ) 0i js sφ φ− >  

. 0ij >w c  
We represent the contextual information as a 
set , which forms a constraint set on w. The 
system tries to estimate the value of weights 
which satisky the constraint set. To calculate 
the estimate of these weights we use the 
concept of utility non-domination (Malakooti 
2000)    

Λ
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( ) ( ')Φ < Φs s for all .Otherwise, 
 is utility non-dominated.  

∈Λw
s

n 

2

Figure 4: Utility domination definitio



To get the set of weights for the given contextual information we define the linear 
programming approach as follows: 
 

 
Figure 5: Convex optimization formulation for weight calculation 

The approach tries to minimize the L1 norm defined as 
3

( ) ( )
1

,i i i old i new
i

w wε ε
=

= −∑ . If this 

LP problem is infeasible, then the original assumption of linearity in the utility model is 
violated. Otherwise, any solution will correspond to weight estimate that meet the 
occupant’s preferences. This weight update technique is a conservative estimate as it tries 
to find the set of new weights that is closest to the current set of weights. We adopt the 
solution w as the new weight estimate. We assume that the occupant’s sub-utility 
function remains constant, so whenever the occupant convey a choice that is inconsistent 
with the current sub-utility function the system would ask the occupant to update the 
utility function or asks the permission to disregard the choice that violates the utility 
function. To test the preference elicitation approach we are currently controlling two real 
life work spaces to do detailed user studies.   
 
CONCLUSION  
In this paper, we presented a principled approach to integrate occupants’ preferences into 
formal decision making for building operation. The main goals in building operation are 
meeting occupant comfort and reducing operating cost. Simultaneously meeting these 
goals leads to a complex optimization problem. Singhvi et al. (Singhvi 2005) present a 
utility based decision-theoretic optimization approach to solve the problem. While 
decision-theoretic optimization provides a powerful approach for such systems, the 
quality of the resulting solution is completely dependent on the accuracy of the 
underlying utility function.  
 
In this paper, we presented a utility elicitation technique that can be used to elicit 
occupants’ preferences for indoor lighting. We formulate utility elicitation technique into 
a two step process, sub-utility elicitation and weight elicitation. In sub-utility elicitation 
the occupants can visually explore the lighting environment while providing qualitative 
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preferences for various lighting states. The system utilizes the qualitative information to 
create quantitative interpretation of the preferences. In the second stage the system uses 
the partial information in terms of constraints on the weight to identify a feasible region 
for allowable weights. It then uses a complex optimization formulation to identify a set of 
feasible weights that meet the occupant’s preferences. We present an implementation of 
the approach in form of an intelligent light control. The utility elicitation process requires 
minimal interaction and is cognitively less demanding on occupants. The system is able 
to operate on partial information provided by the occupants and adepts by observing the 
actions of the occupants. 
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