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ABSTRACT 
This paper presents a new identification technique combining the advantages of artificial 
neural network (ANN) and genetic algorithm (GA). In order to provide a neural network 
topology that can be merged into the GA identification technique developed by the author, 
the time history of the ground acceleration and the system parameters of a variety of SDOF 
systems are used as the input data of neural network, and the time history of the relative 
acceleration of the corresponding systems as the neural network outputs. After the training of 
the neural network, the network topology used to evaluate the time history of the relative 
acceleration of the SDOF systems will be captured. This network topology is then employed 
to replace the procedure for solving the governing (differential) equation when GA is used to 
identify the system parameters. Furthermore, this topology is used in the identification of a 
MDOF system subjected to single input by mode superposition technique. 
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INTRODUCTION 
Field of system identification has become important discipline due to the increasing need to 
estimate the behavior of a system with partially known dynamics. Identification is basically a 
process of developing or improving a mathematical model of a dynamic system through the 
use of measured experimental data. In addition to updating the structural parameters for 
better response prediction, system identification techniques made possible to monitor the 
current state or damage state of the structures. As for structural control problem, the system 
of interest also needs to be known to some extent. Structural identification can be categorized 
into classical and non-classical methods. Most of the classical methods are calculus-based 
search method. They are performed by point-to-point search strategy and normally require 
gradient or higher-order derivatives of the objective function. There is a possibility to fall 
into a local minimum rather than the global minimum. Therefore, these methods generally do 
not function well for structural identification problem involving a large number of unknowns.  
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For such problems, the newly developed non-classical methods provide another alternative. 
Among the methods, the artificial neural network and genetic algorithm are the most 
common techniques for system identification.  Some works of non-classical methods in the 
context of system identification are review as follows. 

Jovanović (1997) proposed a neural network approach for structural dynamic model 
identification, using the responses recorded in a real frame during earthquakes. A typical 
three-layer back propagation neural network was used for the purpose of identification and a 
five-story steel frame was chosen to demonstrate the performance of the neural network. Two 
earthquakes used for the dynamic model identification were recorded in the frame. They are 
the Petrovac 1979, component N-S and El Centro 1940, component N-S. The displacement 
and acceleration time histories were recorded for the sets of earthquakes on each floor. The 
data set, used for training of the neural network dynamic model, is the first 500 points taken 
from 1,000 points record of the Petrovac 1979 earthquake and the rest of response histories 
were used for verification of the trained neural network model. The results showed the great 
potential of using neural networks in structural dynamic model identification.  

Hani and etc. (1999) developed a structural control method using neural network. 
Experimental verification has been carried out on the earthquake simulator. The test 
specimen was a 1/4-scale model of a three-story steel frame with the control system of a 
tendon/pulley system controlled by a single hydraulic actuator. The neural network models 
used for the system identification were called emulator neural networks. The experimental 
validation of the mathematical model has been established in the time and frequency domains. 
The multiple emulator neural networks performance was demonstrated experimentally and 
shown to be independent of the training data. 

Loh and Huang (2001) proposed a neural-network-based method to the modeling and 
identification of discrete-time nonlinear hysteretic system during strong ground motion. 
The learning or modeling capability of multilayer neural network was explained from the 
mathematical point of view. The main idea of the proposed neural approach was explained, 
and it was shown that multilayer neural network is a general type of NARMAX model and is 
suitable for the extreme nonlinear input-output mapping problem. Numerical simulation 
and real structure cases are used to demonstrate the proposed method. The results 
illustrated that the neural network approach is a reliable and feasible method. 

 Huang and etc. (2003) used a back-propagation neural network approach with one 
hidden layer to estimate the dynamic characteristics of a five-storey steel frame, subjected to 
different intensities of the Kobe earthquake in shaking table tests. The measured acceleration 
responses of all the floors and the input excitations were used to train the neural network. 
The modal characteristics of the system were directly evaluated from the weighting matrices 
of the neural network. The proposed method of estimating the modal parameters was verified 
by excellent agreement between the present results and those results obtained by a subspace 
method. The damage of a building can also be diagnosed by detecting changes in its modal 
parameters and the dynamic responses in earthquakes. The reported non-linear responses to 
the 60% Kobe earthquake input were found to change significantly in modal shapes and 
damping values from those for the frame in the 20% Kobe earthquake input. 

The author (Wang & Lin, 2005) applied the real-coded GA to structural identification 
problems. The GA provides a stochastic search in the designate ranges of parameters. The 

 

June 14-16, 2006 - Montréal, Canada
Joint International Conference on Computing and Decision Making in Civil and Building Engineering

Page 2047



system parameters associated with the minimal error index were then exploited after 
successive evolution of generations. The validity and the efficiency of the proposed GA 
strategy were explored for the cases of both SDOF linear/nonlinear dynamic systems and 
MDOF linear/nonlinear dynamic systems with simulated input/output measurements. The 
identified parameters are very close to the true one and the error index is extremely small in 
each case. As a result, the efficacy of the proposed algorithm was verified.  

Many researches have devoted to developing different system identification approaches 
using neural network. However, most of them cannot capture the change of the system 
parameters. On the other hand, the identification approach using Genetic algorithm proposed 
by the author (Wang & Lin, 2005) need to solve differential equations, whenever computing 
the fitness function is required. To overcome these drawbacks, a new identification technique 
combining the advantages of both artificial neural network (ANN) and genetic algorithm 
(GA) is proposed. The time history of the ground acceleration and the system parameters of a 
variety of SDOF systems are used as the input data of neural network, and the time history of 
the relative acceleration of the corresponding SDOF systems as the neural network outputs. 
After training of the neural network, the network topology used to evaluate the time history 
of the relative acceleration of the SDOF systems will be captured. This network topology is 
then employed to replace the procedure for solving the governing (differential) equation 
when GA is implemented to identify the system parameters. 

ARTIFICIAL NEURAL NETWORK 
Artificial neural networks are data analysis methods and algorithms, which imitate the 
process of nervous systems of humans and animals. In general terms, an artificial neural 
network consists of a large number of simple processing units linked by weighted 
connections. By analogy to human brain, the processing units may be called neurons. Each 
unit receives inputs from many other units and generates a single output. The output acts as 
an input to other processing units. Unlike traditional linear algorithms, artificial neural 
networks use highly distributed representations and transformations that operate in parallel, 
have distributed control through many highly interconnected neurons, and stored their 
information in variable strength connections called synapses - just like a human brain. The 
network is nonlinear in nature and thus is an exceptionally powerful method of analyzing 
real-world data that allows modeling extremely difficult dependencies. A certain network 
may be tuned to solve a particular problem, such as the modeling or prediction of the 
behavior of a complex system, by varying the connection topology and values of the 
connecting weights between units.  

To bring proper results the neural networks require correct data preprocessing, correct 
architecture selection and correct network training. The most common type of artificial 
neural network, called the multi-layer feedforward network with the back-propagation 
training algorithm, consists of three groups, or layers, of units: a layer of "input" nodes is 
connected to a layer of "hidden" nodes, which is connected to a layer of "output" nodes: 

• The activity of the input nodes represents the raw information that is fed into the 
network. 
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• The activity of each hidden node is determined by the activities of the input nodes 
and the weights on the connections between the input and the hidden nodes. 

• The behaviour of the output nodes depends on the activity of the hidden nodes and 
the weights between the hidden and output nodes. 

Feedforward ANNs allow signals to travel one way only, from input to output. There is 
no feedback (loops) i.e. the output of any layer does not affect that same layer. In the 
standard back-propagation algorithm, the relation between , the output in the jn

jA th node of 

the nth layer, and , the outputs of the nodes in the (n-1)1−n
iA th layer, is defined as: 
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where W is the connecting weight between nodes in the nth layer and those in the (n-1)ij

th 
laye; and jθ  is the bias term. The transfer function can be linear or nonlinear. Identification 
procedure entails a matching between the system outputs and the identified outputs. During 
training stage, a system error or objective function is defined and used to monitor the 
performance of the network. In order to achieve the best performance of the network, this 
function is minimized by adjusting the connecting weights through optimization techniques. 

GENETIC ALGORITHM 
Genetic algorithm is a stochastic search technique based on natural selection and genetics, 
developed by Holland (1962). Genetic algorithms model natural processes, such as selection, 
recombination, mutation, migration, and competition. The algorithms work on populations of 
individuals instead of single solution. In this way, the search is performed in a parallel 
manner. At the beginning of the computation, a number of individuals are randomly 
generated. The objective function is then evaluated for these individuals. If the termination 
criteria are not met, the creation of a new generation starts. Individuals are selected according 
to their fitness for the production of offspring. Parents are recombined to produce offspring. 
All offspring will be muted with a certain probability. The fitness of the offspring are then 
computed. The offspring are inserted into the population replacing the parents, producing a 
new generation. This cycle is performed until the optimization criteria are reached. Such a 
single population GA is powerful and performs well on a wide variety of problems. However, 
better results can be obtained by introducing multiple subpopulations. Every subpopulation 
evolves over a few generation isolated (like the single population GA) before one or more 
individuals are exchanged between subpopulation using the mechanisms of migration and 
competition. The multipopulation GA models the evolution of a species in a way more 
similar to nature than single population. Figure 1 shows the structure for such a 
multipopulation GA. 
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Figure 1. Structure of a multipopulation Genetic Algorithm 

NEW IDENTIFICATION TECHNIQUE COMBINING ANN AND GA 

NEURAL NETWORK TOPOLOGY OF SDOF SYSTEMS 

In this section, we attempt to find the neural network topology for single degree of freedom 
(SDOF) systems. At first, we try to seek for a network topology that can represent a variety 
of SDOF systems. The ranges of frequencies (ω ) and damping ratios (ξ ) considered are 
0~20(rad/sec) and 0%~20%, respectively. The motion equation of a SDOF linear system 
when excited by a uni-directional earthquake ground acceleration is  

guuuu −=++ 22 ωξω  (4) 
where ξ = damping ratio; ω  = natural frequency; and = ground acceleration in one 
direction. The measured response is the relative acceleration and can be represented as 

gu

uAuAuuuuuy gg 31
22 −−−=−−−== ωξω  (5) 

where ξω21 =A  and . The network architecture used here is feedforward back-
propagation network with two hidden layers illustrated in Figure 2. The input layer is 
consisted of ground excitation forces at the current state and the past d -1 states (or sampling 
times), and the 2 system parameters,  and , when d -1 is considered as the proper 
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number of time delay, while the output layer is consisted of the relative acceleration response 
at the next state only. The target output for training the network can then be yielded by 
computing the acceleration response sets according to various combinations of system 
parameters of the SDOF systems. In this paper, the parameters used to generate the training 
data are distributed uniformly among the ranges of frequencies (ω ) and damping ratios (ξ ) 
aforementioned. To be more specifically, the frequencies are taken as 1,2 ,…,20(rad/sec),  
while the damping ratios are 1%, 2%,…, 20%. In this regard, there are 400 combinations of 
the system parameters to yield the sets of training data.  

Outp

)1( 1 +− dkug

)2( 1 +− dkug
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Figure 2 Time delay feedforward neural network model 
Before applying the neural network to the training data sets, the objective function 

associate with the network output error is defined as  

N
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ii∑ −
=
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where  is the number of measurement sequence;  is the measured relative acceleration 
response of the SDOF system; and a  is the identified relative acceleration response of the 
system. Based on the diagram sketched in Figure 2, the objective function given in Eq. (6) is 
minimized by propagating the output error back through the network. Unfortunately, the 
value of the objective function can not be reduced to a reasonable level, when the network is 
trained using the 400 sets of whole time history data of structural dynamic responses. This 
indicates that the intention to use one network topology to represent the dynamic 
characteristic of SDOF systems is failed. Alternatively, the training data is divided into 16 
groups, with each group of data constituted by 25 sets of data as shown in Table 1. Each 
group of data sets is trained to yield  the network parameters, such as the connecting weights 
and bias terms. In other words, a set of 16 network topologies are used to represent the 
dynamic characteristics of the SDOF systems. To demonstrate the effect of network training, 
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the identified response of the SDOF system with parameters of sec/19%,6 rad== ωξ  can 
be estimated through the corresponding network topology and be shown in Figure 3, where 
the error index (E.I.) and the normalized error of peak value defined below, are 4.63% and 
7.04%. 

∑
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Table 1 Combination of system parameters of data used for training network 

 1,2,...,5 6,7,...,10 11,12,...,15 16,17,...,20 

1%,2%,...,5% Group 1 Group 2 Group 3 Group 4 

6%,7%,...,10% Group 5 Group 6 Group 7 Group 8 

11%,12%,...,15% Group 9 Group 10 Group 11 Group 12 

16%,17%,...,20% Group 13 Group 14 Group 15 Group 16 

ξ 
ω 
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Figure 3  Comparison of the measured response with the identified one of the SDOF  system 
using ANN ( ) sec/19%,6 rad== ωξ
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NEW IDENTIFICATION TECHNIQUE COMBINING ANN AND GA FOR  SDOF SYSTEM  

Many researches have engaged in developing their own neural network models for system 
identification. However, most of the models developed cannot be used to estimate the 
response when the system parameters and ground excitation are supplied. In the previous 
section, a set of 16 neural network topologies for various groups of SDOF systems were 
developed to fulfill the requirement of estimating the response of SDOF systems. They can 
then be employed to replace the procedure for solving the governing (differential) equation 
when computing the fitness function is required during the process of performing the GA 
identification. Thus, a new identification technique combining ANN and GA is proposed, 
mainly based on the procedure of GA developed by the author (Wang & Lin, 2005) with the 
neural network topologies replacing the system dynamic characteristics.  To demonstrate the 
effect of the new identification technique, it is applied to the output response of a system 
with parameters of sec/8%,9 rad== ωξ , subject to a specific ground motion. The 
parameters identified is %1.9=ξ and sec/8rad=ω . The time history of the identified 
response is sketched in Figure 4. 
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Figure 4  Comparison of the measured response with the identified one of the SDOF  system 
using the new identification technique combining ANN And GA ( ) sec/8%,9 rad== ωξ

APPLICATION TO STRUCTURAL MODAL PARAMETERS OF MDOF SYSTEM 
The equation of motion for a linear MDOF system with classical damping can be converted 
to a set of independent modal equation as: 

gmmmmmmm uPyyy −=++ 22 ωωξ  (9) 
where is the normal coordinate in mode m; my mξ = modal damping ratio; mω  = modal 
natural frequency; and = modal participation factor. Pre-multiplying mP smφ , the mode shape 
in mode m at the sth DOF, equation (9) can be rewritten as follows: 

gsmsmmsmmmsm uPuuu −=++ 22 ωωξ  (10) 
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where  is the modal displacement in mode m at the ssmu th DOF, and P  the effective 
participation factor in mode m at the s

smth DOF associated with the ground motion  gu
{ } [ ]{ }

{ } [ ]{ }m
T

m

T
msm

sm M
lMP

φφ
φφ

=
 (11) 

where [  is the mass matrix, {] }M mφ  the mode shape in mode m, and { }l  the ground influence 
coefficient matrix with elements 0 and 1. If only one accelerograph installed at the sth DOF, 
the measurement equation can be represented as  

smmsm
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m
mmgsm

N

m
sms uuuPuuy 2

11
2 ωωξ −−−=== ∑∑

==

 (12) 

where u  is the relative acceleration at the ss
th DOF, and N the total number of modes. From 

Eq. (12), it can be concluded that the modal parameters, mmωξ2 , , and  are the 
parameters to be identified for a MDOF system. The similar techniques in the previous 
section can be applied here for the identification of a MDOF system except that the system 
response is obtained by the superposition of modal responses, which can also be calculated 
by the proper network topologies provided in the previous section.  

2
mω smP

A 2-story shear building with accelerograph mounted at the top floor is presented to 
demonstrate the efficacy of the proposed modal parameter identification technique associated 
with the ANN and GA. The system properties of the model structure are M1 = M2= 1kip-
s2/in, K1 = 187.69kip/in, and K2 = 77.44kip/in. Rayleigh dampings of 6% and 10% are 
assumed for the first and the second modes. The complete modal parameters are identified 
using the top floor accelerogram. Fig. 5 shows the comparison of true acceleration 
measurement with the predicted one. There is a good agreement between the predicted 
response and the measured one. From the error index in Figure 5, the same conclusion can be 
reached. Therefore, the efficacy and the accuracy of the proposed identification strategy are 
verified. 
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Figure 5  Comparison of the measured response with the identified one of a MDOF  system 
using the new identification technique combining ANN And GA 
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CONCLUSIONS 

Artificial neural networks, with their remarkable ability to gain information from 
complicated or imprecise data, can be used to derive model and extract parameters that are 
too complex to be noticed by either humans or other computer techniques.  On the hand, 
genetic algorithms provide a very attractive computation method as its implementation is 
relatively straightforward. Unlike many classical methods, there is no need to compute the 
derivatives with respect to the parameters. No initial guess is required. Furthermore, the 
fitness function can be defined in terms of the measurement quantities directly. In this regard, 
application of ANN and GA is very promising. Based on study of numerical examples in this 
paper, the following conclusion can be made: 

• A set of new neural network topologies is presented to predict the system response when 
the system parameters and ground motion are provided for a SDOF system. 

• The set of neural network topologies developed in this paper is provided to replace the 
procedure for solving the governing (differential) equation when GA is used to identify 
the system parameters. As a result, an efficient identification technique combining GA and 
ANN is developed and applied to the simulated input/output measurements of SDOF linear 
dynamic systems as well as MDOF linear The identified parameters are very close to the true one 
and the error index is extremely small in each case. Also, the predicted responses and the 
measured ones are almost overlapped in all the cases. Consequently, the applicability of the 
proposed strategy to structural dynamic parameter identification is proved. 
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