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Artificial neural networks (ANN) are increasingly in use in hydraulic engineering. They 
represent a data-driven technique which serves for determining nonlinear transfer functions 
between input to (action) and output from (reaction) physical systems. The finite element 
(FE) method on the contrary is a numerical technique to solve deterministically described 
physical processes.  

Within current research it is investigated how and whether numerical FE-modeling can be 
supported by the use of neural networks. The approach is taken on the on the level of an 
individual finite element. The FE coefficient matrices are generated numerically for different 
geometrical configurations and order of interpolation functions. Then ANNs are used to train 
memories and forecast the coefficients on the element matrix level. Thus a hybrid 
representation of deterministically described physical processes within numerical models is 
obtained. 

The investigations are performed for groundwater flow simulation. Aspects of element 
geometry, element configurations, order of trial function and material properties are 
considered for triangular elements.  

.(<�:25'6�
neural networks, finite element method, groundwater flow, Poisson and Laplace equation 

,1752'8&7,21��
Artificial neural networks are frequently used for pattern and image recognition, for signal 
processing and data compression, for black-box representation of physical systems and 
mapping of general functions etc. (Patterson 1996). They are applied in different fields such 
as mechanics of structures and materials (Waszczyszyn / Ziemianski, 2001) and hydraulic 
engineering. Typical applications are predictions of rainfall-runoff in river basins 
(Mason/Price/Tem´me 1996, Minns 1996), on-line forecast of high-water levels for flood 
protection (Bazartseren/Holz 2003) and the prediction of flow in two-dimensional shallow-
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water systems (Dibike/Abbott 1999), (Becker/Delgado, 2001). The nonlinear transfer 
functions between input and output from the physical systems were presented by the ANN.  

Here another application of ANN will be considered.  
In FE-modeling huge numbers of element matrices have to be calculated numerically 

within each simulation run. Elements differ by geometry but hardly by physics and 
approximation functions within a given application determined by sets of partial differential 
equations. So it seems worth considering whether computational savings could be obtained 
by “forecasting” the integrated element coefficient matrices by ANN. This leads to a hybrid 
approach on the level of applied mathematical methods. Finite element coefficient matrices 
may be generated either by standard numerical integration techniques or by “forecast” using 
ANN in a mixed environment. Solving global equation systems of typical FE-modeling 
systems is not affected. 

The terminology “hybrid” is applied in analogy to approaches in the past mixing digital 
and analog computers for simulation of system (groundwater) or physical and numerical 
discrete models for river flow (Holz, 1976), (Funke / Croshank, 1978). Essential element was 
the dynamic interaction of both techniques / sub-models within one simulation  

 
Figure 1: Principle of hybrid model  

The investigations are performed for solving the Poisson equation, here representing 
groundwater flow systems. This application has been chosen deliberately rather for checking 
the accuracy of the approach than because of simulating physics. Errors can be analyzed 
because of existence of a variation principle for this class of problems. Finite element 
formulations tested are based on triangular elements. Linear and quadratic approximation 
functions are investigated.  

180(5,&$/�02'(/�
As example for testing the approach, a potential flow problem is considered. In this case 
groundwater flow has been selected. Starting from Darcy’s Filter Law +&T G⋅−= , where q 
is the volumetric flow, C  representing hydraulic conductivity and +G the gradient of the 
hydraulic pressure and introducing this into the mass conservation equation, within which Z    
represents a source or sink term, the differential equations are obtained. In matrix form holds 
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This equation may alternatively be generated starting from a variation formulation in terms 
of the potential function∏ . 

∏ ∫ =⋅⋅= 0)( G$++� GG &δδ  

The variation returns, omitting the boundary integral 

0)()( =⋅−⋅⋅∫ ∫ G$Z+G$++ �
δδ GG & . 

The potential may be used as a measure for error analysis after numerical discrete and 
neural hybrid solution.  

Potential problems are conveniently solved by the finite element (FE) method. The state 
variable+ , which represents physics, is interpolated by a trial function on the base of an 
element of given geometry. The variation process leads to an equation system in terms of the 
parameters of the trial functions. For the investigations performed, polynomial trial functions 
of Lagrange type and triangular finite elements are used. On the global level the state 
variable is represented in global coordinates ),( ][+ which are substituted by natural 
coordinates ),,( 321 λλλ+  on the element level H . For any arbitrary trial function of Lagrange 

type )( �� λΩ with 3,2,1=L  holds )()( �
	


 λλ VK ⋅=Ω , where �K  is the support vector at the 

individual element multiplied by the trial function written in natural coordinates )( �λV . The 
size of the support vector is determined by the order of the trial function. The gradient of the 
potential field ( )+G  can be described by: 



��

�[+ K6G ⋅⋅= λ)( , 

where λ6 is gradient of the trial functions and � the derivative of natural coordinates 
with respect to global coordinates. All elements have to be assembled into the global full 
system which is done by summation over all elements. The integration is substituted by 
summation giving  

∑∫ ∑∫ ⋅⋅=⋅⋅⋅⋅⋅⋅
� �

�
��

��
��

�
� G$G$ )( ZVKK66K δδ λλ &  

This formulation represents an equation system which can be solved after application of 
proper boundary conditions. Of special interest within the context of this paper is the 
contribution of the individual element represented by the element matrix  

∫ ⋅⋅⋅⋅= G$��
��� )()( λλ 66. & ,  

which is to be substituted by a neural network representation. 
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Artificial neural networks (ANNs) are simplified models of the human brain. ANN can be 
classified by their architecture (single layer, multi layer and recursive), learning method 
(supervised, unsupervised etc.), type of learning (Hebbian learning, error correction learning 
etc.) and type of usage (optimization, associative memory, prediction etc.) (Patterson 1996). 

In this research project a multi layer feed forward back propagation network with 
supervised learning is used which is rather common for engineering problems. Neural 
networks are generally mapping an input vector )( �[ into an output vector )( �\ : )()( �� \[ → , 
for 3S ,...,1= ; S is the number of patterns.  

Relating to the finite element matrix on the element level, input parameters are the 
hydraulic conductivity coefficients represented by a matrix& , the derivatives of local natural 
coordinates �λ  with respect to the global coordinates �[  as contained in the matrix �  as 

well as the contributions from the trial functions λ6 for which an appropriate description has 
to be found. The problem simplifies as the matrices & can be reduced to scalar. 

Within the ANN mapping from input to output is performed by setting up a network 
composed of processing units (neurons) and connections between them. Signals traveling 
along the connections are weighted, summed up in a propagation function and activated by a 
function )  to become the output (input for next layer) )(*)\ = , ∑ += E* �� � x*w . Here 

G is the cumulative input attraction, �  Z are the weights and b is the threshold parameter.  

 
Figure 2: Composition of a single neural net unit 

The activation function )(*) can be of different type. In this approach the popular sigmoid 

activation function !H−+1
1

 is used.  
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For the problem given one input, one hidden and one output layer have been used. The 
neurons in one layer were connected to all neurons in the next layer. The weights �  Z and 

biases "E  parameters are calculated iteratively for training the network.  

The training process needs sets of (know) input )( #[ and (known) target )( $W  patterns. The 

error between both has been computed by ∑
=

−⋅=
%

&
'&'& \W(

1

)(
2
1

 for each iterative training 

step. Unless this error is not beyond a given bound the network weights are updated in 
backward direction (back propagation) from output layer trough the hidden layer to the input 
layer according to )()()1( VUVZVZ ( )( )( ) +=+  where s is the number of the iteration step and 
* +U is the reinforcement of the network parameters. The reinforcement is computed by the 

learning rule 
, -

, -, - Z
(VZVU

∂
∂⋅−=∆= η)()(  which is a gradient approach with the learning 

rateη . For faster learning results the Levenberg-Marquardt learning algorithm (MATLAB13 
reference) was used also. The described network type ends up in good results for the given 
problem.  

75$,1,1*�3$5$0(7(56�)25�7+(�+<%5,'�$3352$&+�
The finite element coefficient matrix has been found to be 

∫
Ω

⋅⋅⋅⋅=
.

G$//
001 )()( λλ 66. &  

The three matrices& , 2  and λ6 are to be discussed. 
The matrix values &  represent the hydraulic conductivity, so to say material properties. 

These are given and constant on the element level. Constant do not represent any difficulty 
for the ANN learning process. They can be handled as constant factors by multiplication. In 
this study isotropic soil has been assumed so that & reduces to a scalar factor & and thus can 
be taken out from the integral.  

The second matrix 2  represents the derivatives of the natural coordinates 3λ  with 
respect to global coordinates 4[ and thus contains the information about an element size and 
shape and rotation. The transformation between both coordinate systems is described in the 
figure 3.  
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Figure 3: Coordinate transformations in a triangle 

According to these relations, the matrix 2  for the derivative of the natural coordinates with 
respect to global coordinates is 
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It describes the geometrical properties of an element such as scaling (size), rotation and 
shearing (shape) by just four independent parameters 676P  878P  698P  and 21P . These values are 
elements of the input parameter vector )( :[  of the ANN. The matrix λ6 is representing the 
trial function and thus physics in terms of the state variable. This will be inspected on the 
different levels of approximation order. 

/,1($5�75,$/�)81&7,216�
For linear trial functions the derivative of the trial functions by the natural coordinates is the 
unit matrix. The element matrix ;. is a symmetric 3x3 matrix.  
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For linear trial functions the matrix λ6 is the unit matrix and the proportionality factor C is a 
scalar value. The analytical integration for the triangle for linear trial functions leads to scalar 
values which are equal for each element of the element matrix. For this approach the values 
to be trained are the relevant =λ values within the element matrix. The values contain the 
geometrical behavior of scaling of the triangle. 

48$'5$7,&�75,$/�)81&7,216�
For quadratic trial functions the matrix containing the derivatives of the quadratic trial 
functions with respective to the natural coordinates λ6  has a more complex structure.  
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Figure 6: λ6  matrix for quadratic trial functions 

The values of this matrix could be trained by a neural network also. Within this approach the 
results of this matrix in combination with the integration of the triangle were calculated as 
scalar values and added to the neural trained matrix with the geometrical behavior. The 
training of this matrix is equal to the training for linear approximation functions. 

&8%,&�75,$/�)81&7,216���
Although the differential equation of second order for groundwater flow can be represented 
completely by quadratic trial functions the authors tried to simulate the flow filed with cubic 
trial functions also. The λ6 matrix contains the derivatives of the ten cubic trial functions 
with respective to the natural coordinates in a 3x10 matrix. In a first approach the values of 
this matrix associated with the integral formulation of the triangle were calculated by 
numerical Gaussian integration and added again to the summed values from the affine 
coordinate transformation within the >  matrix. The results were put together with the soil 
parameters in the 10x10 element matrix and traced back in the FE-method calculation.  

By reason of the complexity of the cubic λ6  matrix a new approach to train the behavior 
of the matrix in connection to the analytical integration in the triangle is in test phase. The 
cubic hybrid problem formulation leads to a high reduction in the computational costs by 
comparison to the common FE-method. 
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The generated training data for the training of the matrix comes from a dataset with 
generalized triangles presenting different inner angles of the triangle.  

The training and testing of the hybrid model is exemplarily implemented for groundwater 
flow in an excavation pit. Isotropic and homogeneous soil is assumed. The figure describes 
the computational domain and boundary conditions. Physics of the computational domain is 
described by the Laplace equation for groundwater flow: 0)( =⋅−⋅ +? GG & . 

The testing example was first run with FE method for linear, quadratic and cubic trial 
functions. The results of the FE-calculations differ in calculation time from fast for linear 
trial to slower for cubic trial functions. The results of the FE calculations were presented in 
figure 4 and 5. 

 

 
Figure 4: Excavation pit with flow distribution and flow velocity calculated by FE-method 
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Figure5: FE-calculation with 52 triangles for linear, quadratic and cubic trial functions 

/,1($5�75,$/�)81&7,216�
As described above the values of the geometrical behavior within the matrix has to be 
trained by an ANN. Within the element matrix the  values are different but contain similar 
combinations of factors for scaling of the triangle. These parts were trained and combined for 
all values within the element matrix. A three-layer feed forward backpropagation network 
with four input neurons, describing the m-values of the coordinates, three output neurons, 
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describing the similar parts of the geometric behavior and a miscellaneous number of hidden 
neurons was used. The training process stops after a predefined minimum network error was 
reached. The trained values were combined with the scalar values for physical behavior of 
the soil and values for the trial functions in combination with the integration in a triangle to 
build the element matrix. After the hybrid step the element matrices were traced back into the 
FE-calculation. 
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Figure 6: pressure head and flow velocity for FE-method and Hybrid-model with linear trial functions 
(ANN: 4-30-3, MSE: 2,12875e-006, 500 Epochs) 

48$'5$7,&�75,$/�)81&7,21�
For quadratic trial functions the combinations of factors for the geometric behavior of the 

± values were trained... A three layer feed forward backpropagation network with four input 
neurons, three output neurons and a miscellaneous number of hidden neurons was selected 
for training also. In this paper the values of the derivations of the trial functions in 
combination with the integration in the triangle were calculated as scalar values. After 
training these values were combined with the soil parameters and the neural determined 
values at the appropriate position within the 6x6 element matrix. A three layer feed forward 
backpropagation network with four input neurons, three output neurons and a miscellaneous 
number of hidden neurons was selected for training also. Due to the fact that complex matrix 
calculations within FE-method were represented by the ANN the quadratic hybrid problem 
formulation reduces the computational costs of time by comparison to the common FE-
method. The results of the hybrid model were presented in figure 7. 

287/22.�
Investigations for cubic trial functions have been started already and show good results also. 
The training of the λ6 matrix for higher order trial functions by ANN in combination with 
the analytical integration in a triangle are follow ups. Especially for cubic trial functions the 
computational costs with the hybrid-model can be highly reduced. 
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Figure 7: pressure head and flow velocity for FE-method and hybrid-model with quadratic trial functions 
(ANN: 4-30-3, MSE: 2,12875e-006, 500 Epochs) 
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Figure 8: Comparison between hybrid-linear and hybrid quadratic approach 
 

&21&/86,216�
• The training of element matrices for FE-method partially by ANN was successful. 

• The generation of universal neural elements for linear, quadratic and cubic triangular 
elements was implemented. 

• A combined hybrid model using ANN and FE-method generates fast and good 
results for groundwater flow test cases. 

• The hybrid model reduces computational costs for higher order trial functions. 

• The neural elements can be universally applied to various potential flow problems 
(e.g. temperature flow) and computational domains. 
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