
ENGINEERING ANALYSIS WITH UNCERTAINTIES
AND COMPLEXITIES, USING REASONING

APPROACHES

Ye Zhou1, Siegfried. F. Stiemer2

ABSTRACT

Conventional computation methods generally limit practicing engineers from using complex
formulations or considering uncertainties in general. A method is needed that can be
implemented regardless of the uncertainty or linearity of the design parameters and their
constraints. Methods such as qualitative reasoning provide an effective and sound technique
for solving complex and uncertain scenarios. Uncertainties in engineering designs can be
formulated as variables in the application domain and processed by numerical constraint
reasoning. This paper describes a software platform, built upon numerical constraint
reasoning for engineering applications. The capability of representing design parameters and
outcomes in a two-dimensional solution space provides a practical way for engineers to
leverage their existing knowledge and experience. The software expresses the results of the
analysis in variable ranges and diagrams showing a two-dimensional design space.
Qualitative reasoning can assist in the difficult process of making appropriate engineering
assumptions and judgments, when carrying out complicated analysis procedures. In addition,
interval constraint analysis can be used to derive controlling parameters and design space,
therefore giving engineers a good overall understanding of a problem when practical
experience is not available.

KEY WORDS

Computer applications, conceptual design, decision support system, constraints, qualitative
reasoning.

INTRODUCTION

Design engineers often need to avoid detailed analysis, such as finite element methods, due
to resource constraints. Instead, they utilize simplified design methods specified by codes or
standards, which generally rely heavily on judgment calls and experience with complex
problems. In addition to the complexity of the analysis itself, many of the input parameters
required for a detailed analysis may have a large degree of uncertainty during the design
stage. Handling this uncertainty requires engineering experience and knowledge. This paper
describes a software framework referred to as Qualitative Engineering System 2 (QES2).

1 Research Engineer, AMEC Dynamic Structures Ltd.,1515 Kingsway Avenue, Port Coquitlam, BC

V3C1S2, Canada. Email: ye.zhou@amec.com
2 Professor, Department of Civil Engineering, University of British Columbia, 6250 Applied Science Lane,

Vancouver, BC V6T1Z4, Canada. Email: sigi@civil.ubc.ca

June 14-16, 2006 - Montréal, Canada
Joint International Conference on Computing and Decision Making in Civil and Building Engineering

Page 1787

QES2 is capable of analyzing engineering problems where the input with uncertainties is
expressed in the form of equations, constraints, and design variable intervals, and the results
are depicted in the form of a solution space.

COMPUTATIONAL METHODS

Qualitative reasoning (QR) promises high potential for use in the development of practical
engineering design tools. Some recent developments show examples of building useful
engineering tools with QR techniques (Hickey 2001, Kuipers 1994, Rossi 2000); however,
these examples concentrate mainly on non-numerical problems. In contrast, this paper
focuses on developing numerical applications of QR, and improving its efficiency by
adopting new algorithms.

Figure 1: 2D solution space of sin(x2)+sin(y2) < -0.25

QUALITATIVE REASONING WITH UNCERTAINTIES

Any engineering design task can usually be decomposed into a set of relationships and
constraints, which can be easily represented in terms of inequalities. Since application of
relevant geometric and engineering principles is always carried out within the scope of such
functional criteria, most important engineering decision-making involves judgments
regarding inequalities.

Inequality constraints define solutions in the form of solution spaces. Single point
solutions are sought in engineering due to the fact that complete solution spaces are too
difficult to compute and manage. Using solution spaces can be extremely helpful during
engineering decision-making. Figure 1 shows an example of the 2D solution space of
sin(x2)+sin(y2) < -0.25 . One can easily see that many non-connected solution spaces are
possible, and that slight deviation of one parameter value can move the design point from a
permitted region to a non-permitted region. Complex multi-dimensional solution spaces are

Valid
solution in
shaded
areas
�

June 14-16, 2006 - Montréal, Canada
Joint International Conference on Computing and Decision Making in Civil and Building Engineering

Page 1788

more common in real engineering analysis that are even more difficult to understand when
only single numerical answers are available to the designer.

Qualitative reasoning is capable of deriving the complete solution space from a set of
constraints. The key technique used in qualitative reasoning is constraint satisfaction.
Engineering tasks are well suited to formulation as Constraint Satisfaction Problems (CSP),
which are defined by a set of variables subject to constraints. The variables correspond to the
relevant parameters of the design formulas. The constraints express design criteria by
equalities or inequalities. The CSP approach uses search methods that detect single variable
assignments that satisfy all the constraints, and then provide a description of solution spaces,
i.e. the set of the entire solutions.

Consistency techniques are possible methods used for solving CSPs. They provide filters
that remove inconsistent values (i.e. values that cannot be part of a solution) from the search
space, and thus make the search more efficient. Consistency techniques can be used as
preprocessors in order to simplify a CSP prior to solving. This approach has led to the
identification of restrictions on the constraint syntax, the topology of the constraint network,
and the solution space described by constraints. Most techniques for CSPs involve
decomposing constraints into a tree, with nodes representing variables and branches
representing constraints. Solving a CSP is a process of reasoning through such a tree.
Reasoning in the direction from end nodes to tree root is known as backtracking.

While applications of CSPs usually deal with discrete or binary data, numeric CSPs (also
known as continuous constraint systems or interval constraint systems) are the primary focus
of interest for engineering applications. Interval constraints were first introduced by J. G.
Cleary (Cleary 1987) in the 1980s to address the error of floating-point numerical
computations in the Prolog programming language. Interval constraint processing combines
propagation and search techniques developed from artificial intelligence with methods from
interval analysis, also known as interval propagation. Given a set of constraints C involving
variables v1 … vn and a set of floating-point intervals V1 … Vn representing the domains of
possible values, a reasoning procedure isolates a set of regions R1 … Rn approximating the
constraint system solution. To compute such a set, a search procedure navigates through the
initial intervals V1 … Vn, alternating pruning and branching steps. The pruning step employs
a relational form of interval arithmetic developed by R.E. Moore in the 1960s (Moore 1966).
Given a set of constraints imposed on real numbers, interval arithmetic is used to compute
local approximations of the solution space for a given constraint. It results in the discarding
of values from the initial variable domains. These domain modifications are propagated
through the entire constraint set until reaching a stable state. This is closely related to the
notion of arc consistency, which is a well-known concept in artificial intelligence.

A system of constraint interval arithmetic consists of three distinct layers. The top layer is
concerned with the conversion from the external source language to an internal data structure
or constraint network. The middle layer handles the interval iteration and relates the
properties of the primitive operations to that of the constraint network as a whole. The
bottom layer is the theory for the implementation of primitive functions such as addition,
subtraction, multiplication, etc. This paper focuses on development of the top layer for the
application of integrating engineering computations of metal fatigue design, as well as the
middle layer for the effective implementation of intensive engineering calculations that

June 14-16, 2006 - Montréal, Canada
Joint International Conference on Computing and Decision Making in Civil and Building Engineering

Page 1789

involve a large number of variables and constraints. A number of computational primitives
necessary for engineering calculations are also developed for the bottom layer.

ADVANCEMENT IN NUMERIC QUALITATIVE REASONING

The advantage of using CSPs is that consistency techniques represent an approximation of
both input variables and solution spaces instead of single point values. In this context, the
following methods have been implemented in the research presented here:

• The approximation of solution spaces is achieved by an improved local consistency
method for numerical variables providing good results in pruning and execution
time. This is achieved by using a local consistency operator for numerical
constraints, which is superior in pruning power to existing methods.

• A novel search method using local consistency for numerical variables is
implemented. In contrast to most existing approaches for solving mixed CSPs that
are based on a cooperation between constraint solvers, this method integrates the
local consistency methods for numerical variables into the search process, and also
makes use of the mixed constraints to prune the search space.

The research described by this paper resulted in the QES2 software framework capable of
accommodating complexity and uncertainty in engineering calculations by using techniques
in qualitative reasoning and adaptive graphing. Recent advances in qualitative analysis have
begun to apply reasoning techniques to continuous domains, but still lack efficiency in
dealing with large quantities of arbitrary numerical constraints, such as those given in
engineering problems (Gedig 1995). The contribution towards solving this problem reduces
such inefficiency by retrofitting existing qualitative methods with interval arithmetic
reasoning and optimized consistency algorithms. This presents a major step in the direction
of applying qualitative techniques to everyday engineering.

Below is a summary of the main areas in which the research makes advances:

• The techniques of qualitative reasoning, interval arithmetic, and adaptive graphing
are integrated. This provides advancement over existing tools, which are inefficient
for handling large numerical problems and are incapable of accommodating
problems of generic forms with complexities and uncertainties.

• This paper introduces higher order consistency techniques, as well as additional rule
sets, to the standard interval-based techniques, which use simultaneous constraints
over logical and numerical operators to enable stability in solving large numerical
problems. Common functions in engineering calculations, such as the if() operator,
are also developed and expand upon standard interval arithmetic libraries.

ALGORITHMS

Most constraint reasoning developments have had difficulties in achieving suitability to
general applications. Consequently, reasoning for binary and discrete variables is neglected
in QES2 to streamline the handling of numerical constraints. In addition, the introduction of

June 14-16, 2006 - Montréal, Canada
Joint International Conference on Computing and Decision Making in Civil and Building Engineering

Page 1790

the high order consistency enhances the stability and efficiency for reasoning over numerical
constraints.

The focal idea of interval arithmetic constraints is to view computing problems as
constraint systems that relate a set of variables or functions in real numbers. The variables
whose values are to be computed are initially unbounded in the model. The goal of the
computation, or reasoning, is to shrink the intervals of the variables in such a way that no
solution to the original system is removed. The shrinking, or variable narrowing, is done
iteratively by applying various contraction operators that typically apply only a subset of the
entire constraint set. The implementation of interval constraints focuses on the development
of contraction operators, which apply a narrowing set of constraints to the variables without
removing any solutions, while also retaining as much efficiency as possible. Consistency
techniques are used to select contraction operators in a sequence that may potentially
accelerate the solution convergence.

Constraint interval arithmetic is a relatively new approach to the problem of deriving
numerical results from algebraic models. Since it is simultaneously a numerical computation
technique and a proof technique, it bypasses the traditional dichotomy between numerical
calculations and symbolic proofs. The combination of proof and calculation is used to handle
practical problems, which neither method can handle alone. The underlying semantic model
is based on the properties of monotone contraction operators on a lattice, an algebraic setting
in which fixed point semantics take a particular sequential form.

COMPUTATION AS PROOF
The other aspect of constraint interval arithmetic that uniquely distinguishes it from

traditional numerical techniques is that the computations represent proofs of the
non-existence of solutions. Interval proofs can be used to refer to real numbers since only
bounded precision constants actually appear in the proofs, and the constraint system itself has
no notion of real numbers in the full mathematical sense. In practical applications, this one-
directional bounding technique is not contradictory to the consistency techniques described
in the preceding text. The absolute consistency is a requirement in strict logical sense, but
one-directional bounding is sufficient in most applications of engineering numerical
calculations.

POTENTIAL PITFALLS
For general constraint networks containing loops, it is very difficult to predict

performance theoretically even for specific problems, just as it is generally difficult to predict
the number of iterations to convergence in conventional fixed-point iterations. It is also
unclear how to formulate a useful complexity measure for constraint interval arithmetic in
general. Since termination is governed by the actual precision being used, a complexity
model must take the precision into account. Worst-case performance for fixed precision in
general has an upper bound that depends exponentially on the number of variables but is
independent of the problem being solved. This bound, which is on the order of the number of
different states of the system, is so large as to be practically useless, and there are some
relatively simple problems that come close to reaching it. For example:

abs(X) � M, abs(Y) � M,

June 14-16, 2006 - Montréal, Canada
Joint International Conference on Computing and Decision Making in Civil and Building Engineering

Page 1791

A×X + B×Y == C
A×X + B×Y == C'
where C and C' are disjoint intervals which differ by some small �. This eventually

results in failure, but effectively does so by counting from -M to +M by steps of size �, which
can be an enormously large number. On the other hand, in practice, industrial sized problems
with hundreds of variables and constraints will in most cases converge to a fixed point in a
reasonable amount of time. If the constraints are inconsistent, failure usually occurs fairly
quickly unless the initial conditions are very near the boundary of the failure region.

CONSISTENCY ENFORCEMENT

Narrowing a system of variables through a set of constraints is the process of consistency
enforcement. These are key techniques to all numerical constraint solvers, including QES2.
They govern the efficiency, stability and generality of a constraint solver.

Research in the last decade shows that interval arithmetic is best applicable in real
number reasoning (Benhamou 1997, Rossi 2000) and has been adopted by the QES2 solver.
Enforcing local consistency through interval arithmetic offers generality to numerical
problems, but if used alone may be slow and plagued by complexity issues described in the
previous section. The efficiency and stability may be potentially improved by applying high-
order and global consistencies. However, most of the latest implementations of high-order
consistency require significant increases in reasoning time that may offset the improvement
in global reasoning stability. None of the current implementations of global consistency
techniques are capable of handling general numerical problems (Sam 1995).

In the reasoning solver of QES2, local consistency is enforced by recursive iterations
through a binary tree of converted constraints, similar to hull consistency in many other
numerical constraint solvers. In contrast to other solvers, QES2 discards consistency
manipulators in binary and discrete domains, consequently increasing the efficiency by
preserving only interval arithmetic manipulators. To support global efficiency and avoid
complexities, QES2 uses adaptive 2nd-order consistency enforcement, as well as a direct
partial enforcement on global consistency. Apart from being compatible with all reasoning
scenarios targeted by other developments on consistency techniques, the introduction of these
two methods yields dramatic improvements on global efficiency and stability for most
numerical engineering problems. Such improvements are the result of sacrificing
absoluteness in strict logic applicability, while focusing on numerical solving by the same
methodology as finite element structural analysis, as described in the next section.

The QES2 solver always starts a reasoning process by converting the constraint set into a
binary tree, in which the enforcement of first-order consistency, or hull consistency, can
proceed. A narrowing iteration consists of a series of recursive requests calling the root node,
propagated down to the end nodes, and then backtracked with narrowing functions that finish
at the root node. The narrowing functions are first supported by interval arithmetic
operations, composing the enforcement of 1st-order local consistency. The second step of a
narrowing function is an adaptive 2nd-order local consistency check, which is realized by
evaluating the level of further narrowing provided by the upper level consistency against a
preset parameter nr, defined as:

June 14-16, 2006 - Montréal, Canada
Joint International Conference on Computing and Decision Making in Civil and Building Engineering

Page 1792

Figure 2: Adaptive 2nd-order and partial global consistency enforcement
With conventional interval constraint reasoning, the only means to accomplish global

consistency is by enforcing local consistencies over all constraints. Since converged
approximation of variables is well accepted in engineering calculations, QES2 implements
the enforcement of global consistency at all instances on narrowing over the 1st-order
consistency. Figure 2 illustrates such a process. While narrowing on the consistency between
node c and d, the current table of variables is substituted into the global constraint set for a
consistency check. The normal narrowing process continues when the consistency exists. For
the case that the global consistency is not achieved, bisection is called in the current
narrowing step before proceeding to the next local consistency level. The outer bounds of the

a

b

d

c
Adaptive backtracking v

1 [v
1, i , v 1, j]

v
2 [v

2, i , v 2, j]

v
3 [v

3, i , v 3, j]

... ...

v n [v n, i , v n, j]

c 1 (v 1 , v 2 , v 3 , ... , v n) = 0
c

2 (v 1 , v 2 , v 3 , ... , v n) = 0

…..
c

n (v 1 , v 2 , v 3 , ... , v n) = 0

Variables

Global Constraints

Partial Global Consistency

Root node End node

1 st order local
consistency

Partial 2 nd order
consistency

Partial global
consistency

June 14-16, 2006 - Montréal, Canada
Joint International Conference on Computing and Decision Making in Civil and Building Engineering

Page 1793

precision level used with the reasoning solver are the global consistency check to ensure
logical soundness. In order to avoid potentially excessive computation associated with the
iterative global-local consistency interaction, the process of global consistency checking is a
one-way process, i.e. a maximum of a single iteration is allowed. While the enforcement over
partial global consistency works on the assumption of approximation, it does eliminate the
complexity issues of local consistencies acting alone.

ANALYSIS WITH QES2

QES2 is a software implementation of the theories and algorithms described in the preceding
sections. QES2 enables an engineering design or analysis to account for uncertainties in the
form of ranges of input design parameters, and illustrate analysis results in the form of plots
of solution spaces. QES2 is based upon the techniques of numerical constraint reasoning,
interval arithmetic and adaptive plotting.

QES2 calls for the following requirements when modelling an engineering problem:

• The problem must be described, explicitly or implicitly, by equations that define the
relationships between the design variables. The components of the equation system,
or the equation system as a whole, can be linear or nonlinear, determinate or
indeterminate.

• All design variables can be described numerically, in the form of a single real
number, or as an interval between two real numbers.

By solving the given problem with numerical constraint reasoning, QES2 produces sound
solutions, where the highest achievable numerical accuracy is limited only by the hosting
software and hardware platforms. Upon completion of a successful analysis, QES2 presents
the results in the following forms:

• The design variable results are expressed as intervals between two real numbers. If
an interval of a design variable is too narrow to be physically meaningful, the value
of the variable may be considered to be a single value; otherwise, the variable is
valid inside of the interval.

• A 2-D graph with specified resolutions can be plotted between two design variables.
Provided that the variables are valid as intervals, instead of as a single real number,
the plot will be an area, or solution space, instead of a line. The 2-D graph further
improves the representation of the output by including discontinuous solution spaces.

• Multiple sets of solution spaces can be plotted on the same graph, showing the
relationships between a pair of variables under different sets of constraints.

During the solving process, QES2 may fail to derive a solution due to numerical
reasoning difficulties, although this is rarely encountered. All engineering problems are
physically meaningful and can provide additional constraints to overcome reasoning
difficulties.

June 14-16, 2006 - Montréal, Canada
Joint International Conference on Computing and Decision Making in Civil and Building Engineering

Page 1794

EXAMPLES

Engineering calculations often involve solving and understanding multi-variable equations.
Complex nonlinear equations are difficult or impossible to solve, and even more difficult to
interpret. The following formulation is a three-variable equation set for solving the
force/displacement relationship of a simple truss, including an arbitrarily introduced
nonlinearity. QES2 allows interpretation of nonlinear solutions with parameter variations by
plotting a solution space (Figure 3).

29.5×106/600× (A11×X1+A12×sin(X2)+A13*X3) = P1;
29.5×106/600× (A21×X1+A22× X22+A23*X3) = P2;
29.5×106/600× (A31×X1+A32×X23+A33*X3) = P3;

Figure 3: QES2 solution space plot of a multi-variable, nonlinear equation set

CONCLUSIONS

The QES2 computer software framework applies the latest developments in qualitative
constraint reasoning to practical engineering problems. Using these techniques, QES2 is free
of the constraints that limit conventional approaches, with the capability of solving complex
engineering problems regardless of their formulations, explicitness or linearity.

Qualitative reasoning techniques are effective in solving problems that can be expressed
with constraints. Constraints are able to account for uncertainty in engineering design by
using numerical intervals for input parameters. Being a proving process, qualitative
reasoning also possesses the following characteristics that are beneficial for engineering
applications:

Solution Space

June 14-16, 2006 - Montréal, Canada
Joint International Conference on Computing and Decision Making in Civil and Building Engineering

Page 1795

• Faithfulness to the mathematical model. Qualitative reasoning regards numerical
computations as computer-generated proofs that true real numbers are contained
within a certain pair of computer floating-point numbers.

• Soundness of results. The reasoning operations result in intervals that contain all
values that are logically possible from arithmetic operations.

• No restriction on forms of formulations.

• Accommodation of uncertainties. Engineers are able to take into account
uncertainties by specifying interval bounds for the design parameters.

This paper approached the reasoning techniques in a way that is analogous to the
approximation of finite element modelling used in structural analysis; with proper modelling,
the finite element method is able to approximate the true solution with increased accuracy as
element size decreases. The reasoning process in QES2 generates solution spaces of design
variables through adaptive plotting. This allows a logical, rather than analytical, treatment of
continuous solution space, thereby avoiding the speed limitations of reasoning with
singularities and other analytical anomalies. The accuracy in the resulting solution space plot
is limited by the resolution of the presentation media, such as the computer monitor, and the
accuracy is guaranteed by the nature of logical reasoning.

REFERENCES

Benhamou, F. and Older, W.J. (1997) “Applying interval arithmetic to real, integer, and
Boolean constraints.” Journal of Logic Programming, 32:1-24.

Cleary, J.G. (1987) “Logical arithmetic.” Future Computing Systems, 2(2) 1987.
Gedig, M.H. (1995) A Framework for Qualitative and Semi-Quantitative Analysis in

Engineering Design and Evaluation. Masters Thesis, University of British Columbia.
Hickey, T. (2001) “Metalevel Interval Arithmetic and Verifiable Constraint Solving.”

Journal of Functional and Logic Programming, Vol. 2001, no 7, Oct. European
Association for Programming Languages and Systems.

Krawczyk, R. (1986) “A class of interval-Newton operators.” Computing, 37. Springer-
Verlag. 1986

Kuipers, B.J. (1994) Qualitative Reasoning: Modeling and Simulation with Incomplete
Knowledge. MIT Press, Cambridge, MA.

Lhomme, O. (1993) “Consistency techniques for numeric CSPs.” Proc. Thirteenth Joint
Conference on Artificial Intelligence, IJCAII 1993, Morgan Kaufmann, San Mateo, CA.
232-238.

Moore, R.E. (1966) Interval Analysis. Prentice-Hall, Inc., Englewood Cliffs, NJ.
Rossi, F. (2000) Constraint (Logic) Programming: A Survey on Research and Applications.”

New Trends in Constraints. Springer-Verlag (Berlin) 2000
Sam, J. (1995) Constraint Consistency Techniques for Continuous Domains. Thesis No.

1423, Ecole Polytechnique Federale de Lausanne (Lausanne).
Zhou, Y. (2003) Engineering Qualitative Analysis and its Application on Fatigue Design of

Steel Structures. Ph.D. Thesis, University of British Columbia.

June 14-16, 2006 - Montréal, Canada
Joint International Conference on Computing and Decision Making in Civil and Building Engineering

Page 1796

