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ABSTRACT 

Conventional computation methods generally limit practicing engineers from using complex 
formulations or considering uncertainties in general. A method is needed that can be 
implemented regardless of the uncertainty or linearity of the design parameters and their 
constraints. Methods such as qualitative reasoning provide an effective and sound technique 
for solving complex and uncertain scenarios. Uncertainties in engineering designs can be 
formulated as variables in the application domain and processed by numerical constraint 
reasoning. This paper describes a software platform, built upon numerical constraint 
reasoning for engineering applications. The capability of representing design parameters and 
outcomes in a two-dimensional solution space provides a practical way for engineers to 
leverage their existing knowledge and experience. The software expresses the results of the 
analysis in variable ranges and diagrams showing a two-dimensional design space. 
Qualitative reasoning can assist in the difficult process of making appropriate engineering 
assumptions and judgments, when carrying out complicated analysis procedures. In addition, 
interval constraint analysis can be used to derive controlling parameters and design space, 
therefore giving engineers a good overall understanding of a problem when practical 
experience is not available.  
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INTRODUCTION 

Design engineers often need to avoid detailed analysis, such as finite element methods, due 
to resource constraints. Instead, they utilize simplified design methods specified by codes or 
standards, which generally rely heavily on judgment calls and experience with complex 
problems. In addition to the complexity of the analysis itself, many of the input parameters 
required for a detailed analysis may have a large degree of uncertainty during the design 
stage. Handling this uncertainty requires engineering experience and knowledge. This paper 
describes a software framework referred to as Qualitative Engineering System 2 (QES2). 
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QES2 is capable of analyzing engineering problems where the input with uncertainties is 
expressed in the form of equations, constraints, and design variable intervals, and the results 
are depicted in the form of a solution space. 

COMPUTATIONAL METHODS  

Qualitative reasoning (QR) promises high potential for use in the development of practical 
engineering design tools. Some recent developments show examples of building useful 
engineering tools with QR techniques (Hickey 2001, Kuipers 1994, Rossi 2000); however, 
these examples concentrate mainly on non-numerical problems. In contrast, this paper 
focuses on developing numerical applications of QR, and improving its efficiency by 
adopting new algorithms. 

 

Figure 1: 2D solution space of sin(x2)+sin(y2) < -0.25 

QUALITATIVE REASONING WITH UNCERTAINTIES 

Any engineering design task can usually be decomposed into a set of relationships and 
constraints, which can be easily represented in terms of inequalities. Since application of 
relevant geometric and engineering principles is always carried out within the scope of such 
functional criteria, most important engineering decision-making involves judgments 
regarding inequalities. 

Inequality constraints define solutions in the form of solution spaces. Single point 
solutions are sought in engineering due to the fact that complete solution spaces are too 
difficult to compute and manage. Using solution spaces can be extremely helpful during 
engineering decision-making. Figure 1 shows an example of the 2D solution space of 
sin(x2)+sin(y2) < -0.25 . One can easily see that many non-connected solution spaces are 
possible, and that slight deviation of one parameter value can move the design point from a 
permitted region to a non-permitted region. Complex multi-dimensional solution spaces are 
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more common in real engineering analysis that are even more difficult to understand when 
only single numerical answers are available to the designer. 

Qualitative reasoning is capable of deriving the complete solution space from a set of 
constraints. The key technique used in qualitative reasoning is constraint satisfaction. 
Engineering tasks are well suited to formulation as Constraint Satisfaction Problems (CSP), 
which are defined by a set of variables subject to constraints. The variables correspond to the 
relevant parameters of the design formulas. The constraints express design criteria by 
equalities or inequalities. The CSP approach uses search methods that detect single variable 
assignments that satisfy all the constraints, and then provide a description of solution spaces, 
i.e. the set of the entire solutions.  

Consistency techniques are possible methods used for solving CSPs. They provide filters 
that remove inconsistent values (i.e. values that cannot be part of a solution) from the search 
space, and thus make the search more efficient. Consistency techniques can be used as 
preprocessors in order to simplify a CSP prior to solving. This approach has led to the 
identification of restrictions on the constraint syntax, the topology of the constraint network, 
and the solution space described by constraints. Most techniques for CSPs involve 
decomposing constraints into a tree, with nodes representing variables and branches 
representing constraints. Solving a CSP is a process of reasoning through such a tree. 
Reasoning in the direction from end nodes to tree root is known as backtracking.  

While applications of CSPs usually deal with discrete or binary data, numeric CSPs (also 
known as continuous constraint systems or interval constraint systems) are the primary focus 
of interest for engineering applications. Interval constraints were first introduced by J. G. 
Cleary (Cleary 1987) in the 1980s to address the error of floating-point numerical 
computations in the Prolog programming language. Interval constraint processing combines 
propagation and search techniques developed from artificial intelligence with methods from 
interval analysis, also known as interval propagation. Given a set of constraints C involving 
variables v1 … vn and a set of floating-point intervals V1 … Vn representing the domains of 
possible values, a reasoning procedure isolates a set of regions R1 … Rn approximating the 
constraint system solution. To compute such a set, a search procedure navigates through the 
initial intervals V1 … Vn, alternating pruning and branching steps. The pruning step employs 
a relational form of interval arithmetic developed by R.E. Moore in the 1960s (Moore 1966). 
Given a set of constraints imposed on real numbers, interval arithmetic is used to compute 
local approximations of the solution space for a given constraint. It results in the discarding 
of values from the initial variable domains. These domain modifications are propagated 
through the entire constraint set until reaching a stable state. This is closely related to the 
notion of arc consistency, which is a well-known concept in artificial intelligence.  

A system of constraint interval arithmetic consists of three distinct layers. The top layer is 
concerned with the conversion from the external source language to an internal data structure 
or constraint network. The middle layer handles the interval iteration and relates the 
properties of the primitive operations to that of the constraint network as a whole. The 
bottom layer is the theory for the implementation of primitive functions such as addition, 
subtraction, multiplication, etc. This paper focuses on development of the top layer for the 
application of integrating engineering computations of metal fatigue design, as well as the 
middle layer for the effective implementation of intensive engineering calculations that 
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involve a large number of variables and constraints. A number of computational primitives 
necessary for engineering calculations are also developed for the bottom layer.  

ADVANCEMENT IN NUMERIC QUALITATIVE REASONING 

The advantage of using CSPs is that consistency techniques represent an approximation of 
both input variables and solution spaces instead of single point values. In this context, the 
following methods have been implemented in the research presented here: 

• The approximation of solution spaces is achieved by an improved local consistency 
method for numerical variables providing good results in pruning and execution 
time. This is achieved by using a local consistency operator for numerical 
constraints, which is superior in pruning power to existing methods.  

• A novel search method using local consistency for numerical variables is 
implemented. In contrast to most existing approaches for solving mixed CSPs that 
are based on a cooperation between constraint solvers, this method integrates the 
local consistency methods for numerical variables into the search process, and also 
makes use of the mixed constraints to prune the search space. 

The research described by this paper resulted in the QES2 software framework capable of 
accommodating complexity and uncertainty in engineering calculations by using techniques 
in qualitative reasoning and adaptive graphing. Recent advances in qualitative analysis have 
begun to apply reasoning techniques to continuous domains, but still lack efficiency in 
dealing with large quantities of arbitrary numerical constraints, such as those given in 
engineering problems (Gedig 1995). The contribution towards solving this problem reduces 
such inefficiency by retrofitting existing qualitative methods with interval arithmetic 
reasoning and optimized consistency algorithms. This presents a major step in the direction 
of applying qualitative techniques to everyday engineering.  

Below is a summary of the main areas in which the research makes advances: 

• The techniques of qualitative reasoning, interval arithmetic, and adaptive graphing 
are integrated. This provides advancement over existing tools, which are inefficient 
for handling large numerical problems and are incapable of accommodating 
problems of generic forms with complexities and uncertainties. 

• This paper introduces higher order consistency techniques, as well as additional rule 
sets, to the standard interval-based techniques, which use simultaneous constraints 
over logical and numerical operators to enable stability in solving large numerical 
problems. Common functions in engineering calculations, such as the if() operator, 
are also developed and expand upon standard interval arithmetic libraries. 

ALGORITHMS 

Most constraint reasoning developments have had difficulties in achieving suitability to 
general applications. Consequently, reasoning for binary and discrete variables is neglected 
in QES2 to streamline the handling of numerical constraints. In addition, the introduction of 
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the high order consistency enhances the stability and efficiency for reasoning over numerical 
constraints. 

The focal idea of interval arithmetic constraints is to view computing problems as 
constraint systems that relate a set of variables or functions in real numbers. The variables 
whose values are to be computed are initially unbounded in the model. The goal of the 
computation, or reasoning, is to shrink the intervals of the variables in such a way that no 
solution to the original system is removed. The shrinking, or variable narrowing, is done 
iteratively by applying various contraction operators that typically apply only a subset of the 
entire constraint set. The implementation of interval constraints focuses on the development 
of contraction operators, which apply a narrowing set of constraints to the variables without 
removing any solutions, while also retaining as much efficiency as possible.  Consistency 
techniques are used to select contraction operators in a sequence that may potentially 
accelerate the solution convergence. 

Constraint interval arithmetic is a relatively new approach to the problem of deriving 
numerical results from algebraic models. Since it is simultaneously a numerical computation 
technique and a proof technique, it bypasses the traditional dichotomy between numerical 
calculations and symbolic proofs. The combination of proof and calculation is used to handle 
practical problems, which neither method can handle alone. The underlying semantic model 
is based on the properties of monotone contraction operators on a lattice, an algebraic setting 
in which fixed point semantics take a particular sequential form. 

COMPUTATION AS PROOF 
The other aspect of constraint interval arithmetic that uniquely distinguishes it from 

traditional numerical techniques is that the computations represent proofs of the 
non-existence of solutions.  Interval proofs can be used to refer to real numbers since only 
bounded precision constants actually appear in the proofs, and the constraint system itself has 
no notion of real numbers in the full mathematical sense. In practical applications, this one-
directional bounding technique is not contradictory to the consistency techniques described 
in the preceding text. The absolute consistency is a requirement in strict logical sense, but 
one-directional bounding is sufficient in most applications of engineering numerical 
calculations.   

POTENTIAL PITFALLS 
For general constraint networks containing loops, it is very difficult to predict 

performance theoretically even for specific problems, just as it is generally difficult to predict 
the number of iterations to convergence in conventional fixed-point iterations. It is also 
unclear how to formulate a useful complexity measure for constraint interval arithmetic in 
general. Since termination is governed by the actual precision being used, a complexity 
model must take the precision into account. Worst-case performance for fixed precision in 
general has an upper bound that depends exponentially on the number of variables but is 
independent of the problem being solved. This bound, which is on the order of the number of 
different states of the system, is so large as to be practically useless, and there are some 
relatively simple problems that come close to reaching it. For example:  

abs(X) � M, abs(Y) � M,  
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A×X + B×Y == C  
A×X + B×Y == C'  
where C and C' are disjoint intervals which differ by some small �. This eventually 

results in failure, but effectively does so by counting from -M to +M by steps of size �, which 
can be an enormously large number. On the other hand, in practice, industrial sized problems 
with hundreds of variables and constraints will in most cases converge to a fixed point in a 
reasonable amount of time. If the constraints are inconsistent, failure usually occurs fairly 
quickly unless the initial conditions are very near the boundary of the failure region. 

CONSISTENCY ENFORCEMENT 

Narrowing a system of variables through a set of constraints is the process of consistency 
enforcement. These are key techniques to all numerical constraint solvers, including QES2. 
They govern the efficiency, stability and generality of a constraint solver. 

Research in the last decade shows that interval arithmetic is best applicable in real 
number reasoning (Benhamou 1997, Rossi 2000) and has been adopted by the QES2 solver. 
Enforcing local consistency through interval arithmetic offers generality to numerical 
problems, but if used alone may be slow and plagued by complexity issues described in the 
previous section. The efficiency and stability may be potentially improved by applying high-
order and global consistencies. However, most of the latest implementations of high-order 
consistency require significant increases in reasoning time that may offset the improvement 
in global reasoning stability. None of the current implementations of global consistency 
techniques are capable of handling general numerical problems (Sam 1995).  

In the reasoning solver of QES2, local consistency is enforced by recursive iterations 
through a binary tree of converted constraints, similar to hull consistency in many other 
numerical constraint solvers. In contrast to other solvers, QES2 discards consistency 
manipulators in binary and discrete domains, consequently increasing the efficiency by 
preserving only interval arithmetic manipulators. To support global efficiency and avoid 
complexities, QES2 uses adaptive 2nd-order consistency enforcement, as well as a direct 
partial enforcement on global consistency. Apart from being compatible with all reasoning 
scenarios targeted by other developments on consistency techniques, the introduction of these 
two methods yields dramatic improvements on global efficiency and stability for most 
numerical engineering problems. Such improvements are the result of sacrificing 
absoluteness in strict logic applicability, while focusing on numerical solving by the same 
methodology as finite element structural analysis, as described in the next section. 

The QES2 solver always starts a reasoning process by converting the constraint set into a 
binary tree, in which the enforcement of first-order consistency, or hull consistency, can 
proceed. A narrowing iteration consists of a series of recursive requests calling the root node, 
propagated down to the end nodes, and then backtracked with narrowing functions that finish 
at the root node. The narrowing functions are first supported by interval arithmetic 
operations, composing the enforcement of 1st-order local consistency. The second step of a 
narrowing function is an adaptive 2nd-order local consistency check, which is realized by 
evaluating the level of further narrowing provided by the upper level consistency against a 
preset parameter nr, defined as: 
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Figure 2: Adaptive 2nd-order and partial global consistency enforcement  
With conventional interval constraint reasoning, the only means to accomplish global 

consistency is by enforcing local consistencies over all constraints. Since converged 
approximation of variables is well accepted in engineering calculations, QES2 implements 
the enforcement of global consistency at all instances on narrowing over the 1st-order 
consistency. Figure 2 illustrates such a process. While narrowing on the consistency between 
node c and d, the current table of variables is substituted into the global constraint set for a 
consistency check. The normal narrowing process continues when the consistency exists. For 
the case that the global consistency is not achieved, bisection is called in the current 
narrowing step before proceeding to the next local consistency level. The outer bounds of the 
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precision level used with the reasoning solver are the global consistency check to ensure 
logical soundness. In order to avoid potentially excessive computation associated with the 
iterative global-local consistency interaction, the process of global consistency checking is a 
one-way process, i.e. a maximum of a single iteration is allowed. While the enforcement over 
partial global consistency works on the assumption of approximation, it does eliminate the 
complexity issues of local consistencies acting alone. 

ANALYSIS WITH QES2 

QES2 is a software implementation of the theories and algorithms described in the preceding 
sections. QES2 enables an engineering design or analysis to account for uncertainties in the 
form of ranges of input design parameters, and illustrate analysis results in the form of plots 
of solution spaces. QES2 is based upon the techniques of numerical constraint reasoning, 
interval arithmetic and adaptive plotting. 

QES2 calls for the following requirements when modelling an engineering problem: 

• The problem must be described, explicitly or implicitly, by equations that define the 
relationships between the design variables. The components of the equation system, 
or the equation system as a whole, can be linear or nonlinear, determinate or 
indeterminate. 

• All design variables can be described numerically, in the form of a single real 
number, or as an interval between two real numbers. 

By solving the given problem with numerical constraint reasoning, QES2 produces sound 
solutions, where the highest achievable numerical accuracy is limited only by the hosting 
software and hardware platforms. Upon completion of a successful analysis, QES2 presents 
the results in the following forms: 

• The design variable results are expressed as intervals between two real numbers. If 
an interval of a design variable is too narrow to be physically meaningful, the value 
of the variable may be considered to be a single value; otherwise, the variable is 
valid inside of the interval. 

• A 2-D graph with specified resolutions can be plotted between two design variables. 
Provided that the variables are valid as intervals, instead of as a single real number, 
the plot will be an area, or solution space, instead of a line. The 2-D graph further 
improves the representation of the output by including discontinuous solution spaces.  

• Multiple sets of solution spaces can be plotted on the same graph, showing the 
relationships between a pair of variables under different sets of constraints. 

During the solving process, QES2 may fail to derive a solution due to numerical 
reasoning difficulties, although this is rarely encountered. All engineering problems are 
physically meaningful and can provide additional constraints to overcome reasoning 
difficulties.  
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EXAMPLES 

Engineering calculations often involve solving and understanding multi-variable equations.   
Complex nonlinear equations are difficult or impossible to solve, and even more difficult to 
interpret. The following formulation is a three-variable equation set for solving the 
force/displacement relationship of a simple truss, including an arbitrarily introduced 
nonlinearity. QES2 allows interpretation of nonlinear solutions with parameter variations by 
plotting a solution space (Figure 3).  

29.5×106/600× (A11×X1+A12×sin(X2)+A13*X3) = P1; 
29.5×106/600× (A21×X1+A22× X22+A23*X3) = P2; 
29.5×106/600× (A31×X1+A32×X23+A33*X3) = P3; 

 

Figure 3: QES2 solution space plot of a multi-variable, nonlinear equation set 
 

CONCLUSIONS  

The QES2 computer software framework applies the latest developments in qualitative 
constraint reasoning to practical engineering problems.  Using these techniques, QES2 is free 
of the constraints that limit conventional approaches, with the capability of solving complex 
engineering problems regardless of their formulations, explicitness or linearity. 

Qualitative reasoning techniques are effective in solving problems that can be expressed 
with constraints. Constraints are able to account for uncertainty in engineering design by 
using numerical intervals for input parameters. Being a proving process, qualitative 
reasoning also possesses the following characteristics that are beneficial for engineering 
applications: 

Solution Space 
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• Faithfulness to the mathematical model. Qualitative reasoning regards numerical 
computations as computer-generated proofs that true real numbers are contained 
within a certain pair of computer floating-point numbers.  

•  Soundness of results. The reasoning operations result in intervals that contain all 
values that are logically possible from arithmetic operations.  

• No restriction on forms of formulations.  

• Accommodation of uncertainties. Engineers are able to take into account 
uncertainties by specifying interval bounds for the design parameters. 

This paper approached the reasoning techniques in a way that is analogous to the 
approximation of finite element modelling used in structural analysis; with proper modelling, 
the finite element method is able to approximate the true solution with increased accuracy as 
element size decreases. The reasoning process in QES2 generates solution spaces of design 
variables through adaptive plotting. This allows a logical, rather than analytical, treatment of 
continuous solution space, thereby avoiding the speed limitations of reasoning with 
singularities and other analytical anomalies. The accuracy in the resulting solution space plot 
is limited by the resolution of the presentation media, such as the computer monitor, and the 
accuracy is guaranteed by the nature of logical reasoning.  
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