WIND RESPONSE OF THE SPHERICAL STRUCTURE WITH FILM CLADDING
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ABSTRACT

In this paper we study a response of the rigid spherical structure with a film cladding
subjected to stationary or time-varying wind loads caused by the thunderstorms and
hurricanes. We show that the presence of the film cladding can significantly reduce the
structure response to wind forces. As a result, it might improve the designer’s ability to
estimate wind effects on structures from the points of view both strength and serviceability.
The governing equations of the mathematical model contain coupled axisymmetric
dynamic problems for partial differential equations: Navier-Stokes equations for air flow
with the different angles of attack of the flow velocity and Navier-Stokes equations for the
spherical layer of the film with the constant thickness. We compute wind-induced forces on
structure with and without the film cladding and find values of the parameters for which the
response forces take minimal values under streamlining by air flow. In this case we deduce
the relation between response forces and coefficients of the kinematic viscosity for film and
air, thickness of the film and radius of shell. Also we get the formula for the minimum
volume of the film. Then we obtain the formula for the energy of the response forces by
taking the surface integral of the scalar product of the vectors force and velocity. We develop
the algorithm of the control of the film parameters providing decrease of the response forces
in the structure. The solutions of the governing equations are obtained by analytical and
numerical methods. The numerical results are given for specific values of the parameters.
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INTRODUCTION

In this paper we study a response of a rigid spherical structure with film cladding subjected to
an external air flow caused by the stationary or time-varying wind loads. It is supposed that
the film cladding has the constant thickness and its physical characteristics such as density
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and viscosity are different from the corresponding characteristics of the external flow. We
show that the presence of the film cladding can significantly reduce the structure response to
wind forces.

FORCE EFFECT OF THE STATIONARY WIND LOAD

Consider an external axisymmetric flow of the viscous incompressible fluid over and
along a stationary rigid sphere covered by a film cladding with a constant thickness 4. Let

0., 14, and U = const denote respectively the density, kinematic viscosity and velocity at
infinity of the fluid external flow. The film cladding represents a spherical layer filled in by
the fluid lubrication with a density o, and kinematic viscosity /.

We introduce the spherical system of coordinates (7,¢/, &) with an origin O at the center of the
rigid sphere and choose the axis of symmetry of external flow at the ray/ = 0. We treat a

motion of the lubrication as an internal flow between external flow and a rigid sphere of the
radius »=q with center at the origin O. Then the motion of the both viscous fluids in the
general non-stationary case is described by the system of the equations

v
ot

+ +

V)

r

:—%Dpi +VEAV S OV =0, VE =(V,
o

Here 7 * is a velocity vector, p*is pressure where superscripts (+) and (-) stand for

description of the physical characteristics and unknown variables of the external and internal
flow respectively.
Consider the boundary and interface conditions.
1) The normal and tangential components of the velocity of the lubrication at the surface of
the rigid sphere r =aequal zero, i.e.

V. =0V, =0.

2) The normal and tangential components of the velocity and stresses at the “external fluid —
lubrication” interface »=a+h are equal, i.e.

V, =V Ve =Vy. o =paPe =P
3) The components of the velocity of the external flow at infinity are
U dP, (cos 0)

V. - UP(cosl); V, - — 16

By taking the divergence of the left-hand and right-hand sides of the motion equations and
taking into account that 1/ =0 we obtain the Laplace’s equation for pressure p

Op=0°p =0.

In the spherical coordinates in the case of the axial symmetry this equation has a form
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i(rz a_p) +ﬂa_p+az_p:0
or or° sin@ 08 967

With p(r,6) = R(r)T(6)the separation of variables and use of the Legendre polynomials
P (cos6) leads to solution

p(r,0) = z (Clnr” +C,, r " )Pn (cosB)
n=0
WesetC,, =C,, C,, =C,, C,, =B,, C,, = A, and get the last expression in the form
p=Cy+Cr™ + Z[Bn’”” + Anr_(””)]Pn (cos®)
n=1

Then one might write the formulas for pressure in the fluid for the both flows

p+=C0++C1 {Bf o4 }P(cos@) +ZA P (cos @) , rO(a+h,)
r

n=2
p =C, +C—1 +> B, r"P,(cos@)+> A, r"VP (cos§), rU(a,a+h).
r n=1 n=1
We substitute formula for p* into equation of motion of an external flow to obtain
* +
o', _1 C1+1P(cos6')[—B +2A+l}+lzn 1
at ,0 r ,0 n=2
277+ 277+ + + +
iy v, +i6 88 +i0V . +2V . +ctg90V c |
o’ P g r or r r* 06
Here p=p" and v =v". Continuity equation in spherical coordinates has a form
ov: 1ov, 2V’ N Vyctgf

r r

or r 06 r r

=0.

Hence we obtain

d 19
—(sin@V,))=———(@V'
sngogmdVe) =15 (V)

Next we find the normal and tangential components of velocity for both external and internal
flows. In the stationary case we have

or”* or *
— =0, =0.
ot at
We seek 7," in the form¥," = P,(cos6)F." () and substitute ¥,* into equation of motion to
obtain
: A4°1_ D"
V,” =P(cosb) AL 13 +D, |, D(a+h 00)
My v 3r
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We note that B," =0, since the velocity is restricted as r — 0.
We seek V" in the form V,” = P(cos@)F, (r) and substitute it into the corresponding
equation of motion to get
A1 D~ B~ 2
V™ =P(cost) ———-—_+D +—_ | rO(a,a+h).
r 1 M, r 3,3 ¢ 10

Now we derive the formulas for 7,*. From continuity equation we have

B*»5. A* D* 2B* 2 24* ,D* G4
|-l 4+ L 4op*t+ L - 4+ L = 1 \Pcost)=——2 -V ctg(6)=
M 10 urt 0 Ho100 pr 303 ! o8 ¢
1
=2F€+ ()P, (cos )
+ . + dPI +
We seek V,” in the form V,” = ﬁFH (r) and deduce the formulas
av,” N d*P,(cosb) _ . dpP,(cos8) .
2 +V, ctgl =TF9 (r)+ctg6’1d—9)F9 (r)=
£ () d’Rcost) odP(cosO)|_ . “(+)~2P, (cos 6))
6 16 g 10 6 1
B” A* D" dP (cosd A” D”
Froy=p 4t O VI _ AR (cosf) prea L 17
o 0 5 u H 2r 6 .3 6 do 0 U 2r 6 .3
1 1 1
By analogy we get
_ dPl(COSQ) .\ Al_ 1 .\ 1 Dl_ .\ 1 Bl_ 5
= — = —r
g do 0 H, 2r 6 3 S H,

Using formulas

s aVV _IulaVr+0Vg _E
p,=7pTH or Pre r 08 or r
we find
5 D1+ 3A1+ dP (cos6) | D1+
T==C "+ P(cosb)| 2 - , T = - ,
prr 0 1( ) 'ul I"4 rz er 'ul dé 3 I"4
D~ 34~ 3
p ~=—C ~ +P(cosO)| 2u ——-——-=B"r|,
rr 0 1 2 I"4 rz 5
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__ dP(cos@)| 1D~ 3 Br
Pro =M N +— .
dé 3,4 10 u,

r

We use the boundary conditions to obtain the system of linear algebraic equations for
unknown constants:

(Cf—ﬂ_) D -D*
1 1

- —ﬂ’(a+h)2 2D " =-2U
(@+h) 3 (4+n) 5 0

2 D"

D_+a_lg_+la_—l 1L =0
T R R R
2 D~

D‘+a_ﬁ‘+ia‘+l L)
. 0 5 2a 6 .3

1 2 2 + ). 3 - _
B 5 s U 2 5 27T
. (a+h) (a+h) [IUD D )+5(a+h)/1,6’ ’
A" A~ B~
_I:Q'J" 1 = _’ _L —p-
H H, 2

By substituting the constants obtained into the formulas for
Vr ’Vr ’VH ’VH ’prr :prr ’ prG :pr€
we find the components of the stress tensor. Using the formula

W= ]'T(cosﬁp,, —sin¢9p,6)2ra2 sinfd@ (1)
0

we calculate the forces on the interface “film — external viscous flow” and on the surface of
the rigid sphere:

2 34" 2uD, ) 4 D’ .
W =2 h)? =) -—2 Lt By — =47 h
a + )L[ (a+h)2+(a+h)4J+3'ul[ J] 1 WHETE
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2 _ 2
_ 3, M a(a+h) _’B_—,U2a(a+h)[(a+h) a}z_SU’ua 1 .
2 plathy+(u,-p)a 4 plath)y+(4, —H)a 22 a [H
1+ —2-1

a+th H,

1 a a Y

1- Ua\u_ - -
”2[ (a+h)2] b ”1)“”'”1[”1 (’J]

4 _ 6 >
H H 3 5
PRSI /-11((‘11 - _i('uz 1)( a j a1 a _ilulz —y
,Ul ath 15 ,1.11 a+th 3(a+h)3 30 (a+h)5 15

Vz%'ul’uz +%'uz(’uz _'ul)aih _%'ul((uz _'ul)aih

We might rewrite this formula in the form

| ) et

S:(l_y)%[lij —%(1—;/)(1;}6 _%(1:ATJ_%_%V_%V(V_I)L-:/I}_

H . . . .
where A =ﬁ, y=—2. These quantities depend on the dynamic viscosity, thickness of the
a

1

film, and the radius of sphere. When p, - u, we get Stokes’ formula W - W, = 677,le Ua.

Using computations we examine how W is changed for different values of the parameters

A and y . We introduce the dimensionless response W= W /W,. Then we have

W =

=;—1[1— 1 Jz(l—y)/(lu)(%j(l—y)[ L _2dimy)

1+V‘j 6l (1+4) 301+ A)° 151+ A)°  3(1+A)°
+

S22 Lyr=h 3 =l
15 5775 144 101+/1m 4
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We consider two cases: 0.1<)y<0.9 and 1.1<y<2. The calculations and formulas show that

if y<1 the response achieves the minimum value W =0.358 for y=0.9, 1=0.1. Also the
calculations show that for y>1 response is increased with increasing y and A. The
dimensionless expenditure is determined by the formula

@) —a)
q i iy
3
For example, g=0.331 if y=0.9and A =0.1.
The coefficient of the sphere response describes streamlining of sphere and its response to
this streamlining. The greater response of body the more energy is spent on its motion.

Coefficient of sphere response covered by the lubricant is determined by the formula

2
1 1 1 y+A 11 2 1-y 1
- {1 1=y 1+A[—J 1=y - - -
1+1V‘j 6[ (1+/1)2J {( )1”' {( )[30(1”)5 I5a+2° 301+
+

20, 1y0) 3 vy, ke
15 5 5 1+ 101+ A4

Coefficient of the body response is calculated by the formulaC, :%, where F- is a

maximum area of the cross section. The response approaches 0 as) — 0. The response
becomes extremely large as y — o
Consider the ratio of C, to the Stokes’ response coefficient C;=3/Re:

c 3
Z2 = AF(Ay), C,=——yFy).
C (A, 9) re” (A, 9)

N
Hence we obtain 1) y<1: if y=0.9 and A=0.1 then coefficient of the response is
decreased by 2.6 times; 2) y>1: if y=1.1 and A=0.1 then coefficient of the response is

increased by1.007 times.
Now we find energy which is spent by a flow in the case of the motion of the body in the
viscous fluid. By using the formula
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+3? + +2 + + 2
2 o7, +2 laVe +L +2 L+Victg3 +
. or r 06 r r r

E:ﬂl + + +\2
+(16K Lo _ng

)

r 00 or r

we deduce the formula for an energy of flow streamlining sphere covered by film of the
thickness of /:
E=3y %

1 2
L, )
Lyl +A . _ 1 _2(1_)_ 1 _2__(_1)_3(_1)
T {6[11:/1](1 /])[(1 y)(3o(1+/1)5 15(1+j1/)6 3(1+/1)3J 15 % J75/(:/+/1) 10(1y+/1)B

(1+)

REE Y +(l_(1+1/l)2j2(1_y)* y

1+ A y-1 S 1+ A
8 L+ 1 ( ) 6
1+A
where
S:6(l+y—_lJ(1+A)
1+ A

N 1 20-y) 1 ) 2 y yly-1) 3 (y-1)
((1 y)(so(lu)S 15(1+i1/)" 3(1+/\)3J 15 % }E/(ly+A) E({u)J

If the cladding film is absent the formula for energy spent by the external flow has a form
E= Uzﬂj— 60a*r* +28a°r* +4a’r* —18a%r° —6a’r’ +4a°r +9a*r* +124*r* - 12ar° -

In
-84 1 +4r® =8¢ +4a® +4r® + 4130 +24r%a -12r"a +36azr6)/8r10

oU * iy

the case of the sphere of the radius » =a an energy of the streamlined flow is E = ”
a

FORCE EFFECT OF THE NONSTATIONARY WIND LOAD

Consider an external axisymmetric flow of the viscous incompressible fluid over and along a
stationary rigid sphere covered by a film cladding with a constant thickness . Let p,, 4,
and U = U (¢) denote respectively the density, kinematic viscosity and given velocity at
infinity of the fluid external flow. The film cladding represents a spherical layer filled in by
the fluid lubrication with a density o, and kinematic viscosity £/,. Then the motion of the
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both viscous fluids in the general non-stationary case is described by the system of the
equations

O L optevial® diviit =0, 7* =07 0,%).
ot Yoii
Here 7 * is a velocity vector, p*is pressure where superscripts (+) and (-) stand for
description of the physical characteristics and unknown variables of the external and internal
flow respectively.
Consider the boundary and interface conditions.
1) The normal and tangential components of the velocity of the lubrication at the surface of
the rigid sphere r =aequal zero, i.e.
V. =0V, =0.
2) The normal and tangential components of the velocity and stresses at the “external fluid —
lubrication” interface »=a+h are equal, i.e.

V., =V Ve =Vy. o =pnPe =P
3) The velocities of the external flow at infinity are

V. > U@)P(cos®); V, - _U(t)dp+;se) |

By taking the divergence of the left-hand and right-hand sides of the motion equations and
taking into account that 1/ =0 we obtain the Laplace’s equation for pressure p

Op=0°p=0.

Using the Laplace transform to equations of motion we deduce the formulas for pressure in
an internal region r[J (a, a+ h) and an external region » [ (a +h, 00) respectively

(ﬁn Tt ALHJPH (cos8)
r

(A#JPH (cos 49) .

20 r

Now we find the Laplace Transform of the normal and tangential components of the
velocity for the external and internal flows.

We use the boundary conditions to obtain and solve the system of linear algebraic
equations for unknown constants. We substitute these constants into the formulas for

Me

p = [éo_ + CTIJPO (cos @) + [Dl_r + Ii—lz]Pl (cos6) +

3
I
[

Me

Pt =[6‘0+ +C71]P0(0059)+(ﬁ1+r +A;—12]Pl (cos @) +

n

D, p,,+, Do > p,; , take the Laplace transform for each component of the stress tensor and

solve the system of the linear equations obtained. Then we apply inverse Laplace transform
to get the normal and tangential components of the velocity for the external flow.
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V@:@mﬁw@*
(r=a)?

2 - % [_ 4vr ] r—a 1%
—a” Dirac\r)+3v —1+1/—ex r+erfc —awf— a
( ) ar P f[zq/wJ JIT

* Dirac(r) + 3 dr
r

Vole)= [ ule)sinie)*
* (— 2Dirac(T) +

4w] 2 -
(r—a)exp r 2. vV r—a v [ 4vr
-aD r)-3 1{—+3|/ = |1 |+3,/—
a zrac( ) a - [elfc[zrj ] - exp

Jndvr?

3
al =
2

3
[

Using the formula (1) we evaluate the force response on the interface “film — viscous
external flow”. Using the formula (2) we find the energy spent by the nonstationary flow in
the case of streamlining of the body covered by the film. This expression provides the
formula for energy spent by the nonstationary fluid flow in the case of streamlining of the
sphere without film cladding as the thickness of the film approaches to zero and kinematic
viscosity of an external fluid approaches to the kinematic viscosity of an internal fluid.
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