

1 Ph.D. Candidate, Dept. of Civil and Environmental Engineering. Porter Hall 118D. Carnegie Mellon Univ.

5000 Forbes Ave. Pittsburgh, PA 15213, Phone +1 412/268-6634 hongjunw@andrew.cmu.edu
2 Assist. Professor, Dept. of Civil and Environmental Engineering. Porter Hall 123F. Carnegie Mellon Univ.

5000 Forbes Ave. Pittsburgh, PA 15213, Phone +1 412/268-6218 bakinci@andrew.cmu.edu
3 Professor, Dept. of Civil and Environmental Engineering. Porter Hall 123A. Carnegie Mellon Univ. 5000

Forbes Ave. Pittsburgh, PA 15213 Phone +1 412/268-5647 garrett@andrew.cmu.edu

A SEMI-AUTOMATED SCHEMA MATCHING
APPROACH BASED ON AUTOMATED DECTION OF

VERSION DIFFERENCES

Hongjun Wang1, Burcu Akinci2, and James H. Garrett Jr.3

ABSTRACT
The process of matching data represented in different data models is a long-standing issue in
enabling interoperability between different software systems. The challenges associated with
model matching become even more pronounced when a source or a target model is being
updated frequently. Such situations generate a need for handling the matching process
efficiently. Some prior computer-aided approaches have performed a considerable portion of
the schema matching effort automatically and produced satisfactory results under certain
circumstances. However, determining how to reuse existing matching knowledge has rarely
been studied. In this paper, we present a semi-automated approach to perform efficient
schema matching in a situation, where a data exchange standard is frequently updated. This
approach builds on automated version detection and utilizing existing matching knowledge in
creating the new matching correspondences. A taxonomy is developed to precisely identify
differences between different versions of the same data model. We apply these differences to
update existing matching results between prior versions and generate new matching results
between the new versions of the data models. A set of matching patterns are developed to
define what the new matches should be created based on existing matches and identified
categories of version differences. The approach is validated through matching a domain
specific data model to the recent releases of the Industry Foundation Classes (IFC).

KEY WORDS
Interoperability, Data exchange standard, Model matching, Semi-automated approach

INTRODUCTION
The need for exchanging data between computer applications has existed for decades in the
Architecture, Engineering, and Construction (AEC) industry. Data exchange among
applications involves translating data, which is specific for one application, into data that can
be understood by another application. It requires that the target data model represents the
source data as accurately and completely as possible to minimize data loss during exchange
(Fagin et al., 2003). This requirement arises in cases where various applications are involved
during an AEC project and data sharing is desired between these applications.

June 14-16, 2006 - Montréal, Canada
Joint International Conference on Computing and Decision Making in Civil and Building Engineering

Page 1664

The AEC industry is recognized as a multi-disciplinary and multi-participant industry. It
involves users like owners, designers, contractors and inspectors, who deploy many different
domain-specific applications. Inefficient interoperability can result in a marked impact in the
real world. For example, a recent NIST report indicated that the cost of inadequate
interoperability in the U.S. capital facilities industry is up to $15.8 billion per year (NIST
2004).

To enable interoperability between different software systems in the AEC industry, data
must be smoothly exchanged between multiple users or applications by some public data
exchange standards. Recent development of widely accepted standards includes Industry
Foundation Classes (IFC) (IAI 2005a), ifcXML (IAI 2005b) and CIMsteel (Eureka 2004).
For example, the IFC data exchange standard was initialized in 1995 to achieve a significant
economic benefit from interoperability of software (IAI 2005a). After 10 years of
development and several releases, the IFC data exchange standard is now widely accepted by
a large number of major AEC software packages (e.g., CAD systems) (Steinmann 2004).

There does not exist a single data model that can cover all aspects of all data modeling
requirements to serve all task specific applications. Therefore, the need still exists to match
task-oriented data models to a set of public data exchange standards, such as IFC, without
losing or altering relevant data. This creates a challenge in the matching of the models
because task-specific data models and public data exchange standards often use distinctly
different representational approaches and data structures.

Traditionally, matching of data models is manually performed. Manual matching of data
models is time-consuming, error-prone and tedious work. Given the rapidly growing number
and scale of data models used in today’s applications, manual matching is becoming a much
harder task. Moreover, this challenge gets much more pronounced when either data model
changes over time. For example, in the last three years, the IFC data exchange standard had
undergone two major updates, Release 2x and 2x2, but a large number of IFC-compatible
commercial software only supports Release 2.0 or even 1.5 (Steinmann 2004).

It has been demonstrated that a computer-enabled process can provide further help in this
matching process. Some prior studies (e.g., Doan et al., 2000, Madhavan et al., 2001, Mitra et
al., 2000, Li and Clifton, 2000) could perform a considerable part of schema matching
automatically and output satisfactory results under certain circumstances. Two generic
computer-aided methods that are widely used by these prior studies are: 1) a linguistic-based
approach that finds matched elements using their names or descriptions (e.g., comments
extracted from specifications); and 2) a constraint-based approach that considers the
similarities of certain constraints, such as data types of an attribute, schema hierarchical
structures and relations between elements (Rahm and Bernstein 2001).

One case that has rarely been studied is how to reuse existing matching results (Rahm
and Bernstein 2001). In a manual matching process, if a domain expert knows how to match
a source schema to a prior version of a data exchange standard, when a new version of the
data exchange standard is issued, s/he will not match the source schema to the new release
tabula rasa. Instead, s/he will certainly try to reuse existing matches wherever possible and
only adjust the matches affected by the upgraded version. This process is an efficient and
time-saving approach, greatly reducing human workload. However, due to the size and
complexity of today’s data schemas, even only finding changes between releases is becoming

June 14-16, 2006 - Montréal, Canada
Joint International Conference on Computing and Decision Making in Civil and Building Engineering

Page 1665

a difficult and challenging task. It takes a large amount of time and effort to find all
differences between an original version and an upgrade of a data model, especially if there is
no document (i.e., a change log) that describes version differences. For example, the IFC
R2x2 introduces significant changes to the IFC R2x (e.g., the numbers of declared entities
and types), however, since there is no official change log published, it took us several days to
identify all modifications manually.

In this paper, we developed an approach to partially address the above issue, improving
the data model matching process by utilizing prior matching results created manually in a
certain AEC domain (i.e., Building Commissioning domain). The proposed approach takes
advantage of an automated version matching process developed and applies differences
between two releases of the same data model to update existing matching results.

PROPOSED SCHEMA MATCHING APPROACH
The approach discussed in this paper is aimed at improving the current data model matching
process by incorporating version differences. A three step procedure is planned in the
approach. The first step is to obtain initial matching results between the source data model
(S) and the target data model (T1). This step can be performed by this research, other
computer-aided matching approaches, or even manual process. When a new version of the
target model (T2) is introduced, the second step will precisely identify the differences
between the new version of the target data model and its prior version (T1). The third and last
step is to merge the identified differences into existing matching results, instead of matching
the two models (i.e., S and T2) directly and tabula rasa.

Figure 1 illustrates the overall procedure through an example, where a task specific data
model that represents some Building Commissioning tasks is involved (referred to as the BC
data model) (Wang et al. 2004). The source class is the BCEvent, which represents an
inspection activity in a commissioning process. In the IFC Release 2.0, it was matched to the
class IfcWorkTask, which is a unit of work. In the IFC Release 2x, the class IfcWorkTask was
renamed to IfcTask, so the class BCEvent was directly matched to IfcTask in the IFC Release
2x. Compared to scanning the entire IFC R2x schema to find the proper IFC classes,
updating prior matching results can potentially save time and effort and achieve better
accuracy.

June 14-16, 2006 - Montréal, Canada
Joint International Conference on Computing and Decision Making in Civil and Building Engineering

Page 1666

First, we developed an approach that detects differences between different versions of the

same data schema. Since a new version of a schema usually builds upon its prior version and
shares common content, it is reasonable to assume that differences between releases will not
be significant and a computer-aided approach can potentially achieve higher accuracy in
version matching problem than comparing two schemas tabula rasa. A recent research
project performed version matching on different subsequent versions of the IFC data
exchange standard and demonstrated the possibility of identifying version differences in an
automated way (Amor and Ge 2002). However, this prior approach has several limitations.
For example, it can only indicate whether or not there is a difference between two classes,
without precisely pinpointing the location of the difference and what type of change has
occurred. Without such a precise description of version differences, it is hard to build on
version matching for semi-automated model matching purposes. In addition, it obtains
version differences by only comparing texts of two elements without considering what these
texts are standing for, so that it cannot achieve good accuracy when there are significant
differences between versions (e.g., IFC R2x2 greatly changed the IFC R2x in terms of the
numbers of objects and their contents). We built our approach upon this prior study and
addressed its limitations stated above to improve accuracy and generality in versions
matching so that it can be utilized for model-matching purposes. We created a taxonomy of
version differences to exactly identify which part of an element (i.e., class or attribute) is
modified, and then developed a semi-automated version matching approach that applies both
linguistic-based and constraint-based schema matching algorithms to detect version
differences based on the classifications.

After the version matching step, we integrated the version differences with existing
matching results that map the source schema to the previous version of the target schema so
as to deduce new matching results. We created a list of patterns, each of which will combine
a particular kind of existing matching result and a particular type of version difference to
generate a new matching result.

Direct Matching obtained
from domain knowledge (BC
event is an inspection activity
which represents a task in
IFC.)

Source Model: BC Data Model Target Model: IFC Release 2.0 New version of the Target Model:
IFC Release 2x

BCEvent

 IfcWorkTask

IfcTask

Version difference (Renamed) is
obtained from version matching
through comparing their names and
structures

Deduce this matching correspondence
by reasoning with the existing direct
matching and the version difference

S

T1

T2

Figure 1 Example of Deducing New Matching Result

June 14-16, 2006 - Montréal, Canada
Joint International Conference on Computing and Decision Making in Civil and Building Engineering

Page 1667

We validated the approach discussed in this paper using real world test cases and
compared it to other schema matching approaches and the manual process. Test cases
demonstrated that in a situation where a schema is being updated frequently, the approach
presented in this paper can perform the matching efficiently and achieve accuracy that is
similar to the results obtained when manual matching is performed.

DETECTION OF VERSION DIFFERENCES
A major problem, which hampers reusing existing matching results, is to detect similarities
and differences between schemas and determining which part can be reused (Rahm and
Bernstein 2001). However, in the version matching case, this problem is relatively less
challenging since a new version is likely to build on the previous and utilize most of the same
concepts. We developed a classification for identification of version differences between two
data models. This classification is developed by considering models that are constructed in an
object-oriented manner (e.g., the IFC). The following classification can be utilized to identify
similarities and differences at either the class or the attribute levels of two subsequent
schemas.

1) Identical: An element in the new release is the same as an existing element in the prior
release. This means that they have exactly the same names, attributes and inheritances.

2) Modified: An existing element is changed in the new release. Under this category, a
number of sub-categories are defined to describe changes in name, attributes, constraints or
inheritance. These subcategories constitute special cases of modified category and indicate
where a change has occurred. A change will be classified as one of these special types if it
only contains single associated type of change, or as Modified category if more than one
modification happens.

3) Added: A new element is inserted in a new release. In addition, the Added category has
one special case, Merged, which means multiple old elements are replaced by a single
element in the new release.

4) Removed: An existing element is deleted in a new release. Similar to the Merged case in
the Added category, the Removed category contains the Decomposition special case, which
means that an element is split into (i.e., replaced by) several elements in the new release. For
example, the IFC R2x uses a single class IfcPump to represent pump device, while the IFC
R2x2 uses two classes instead to implement the same function; IfcPumpType that manages
common properties for a specific type of pump and IfcFlowMovingDevice that represents an
occurrence of a piece of equipment including pump.

We developed a semi-automated version matching approach (referred as VMA) to detect
the above-listed version differences and created a prototype to validate VMA. A framework
was designed in VMA to incorporate multiple matching algorithms (e.g., linguistic-based or
constraint-based algorithms) that are targeting to detect changes between two releases of any
Object-Oriented schema regardless of the language in which it is written (e.g., EXPRESS
(ISO 1994)).

The VMA was tested by recent releases of the IFC data exchange standard (i.e., IFC
R1.5, R2.0, R2x and R2x2) because there are a large number of changes happened between

June 14-16, 2006 - Montréal, Canada
Joint International Conference on Computing and Decision Making in Civil and Building Engineering

Page 1668

these releases. The tests showed that VMA could generate matches comparable to manual
results in terms of accuracy. In addition, these comparable results are generated in a few
seconds, compared to weeks of effort by a manual matching approach. Users only need to
review the matching results to confirm and based on the accuracy testing, it is expected that
only a few corrections will be required from the users. Therefore, VMA saves significant
time when matching two versions of the same model.

Table 1 shows the numbers of classes identified for each type of change in the test case
that compares the IFC R2x to the IFC R2x2. Since there is no official change log document
for the IFC R2x2, manual matching had to be performed during this research, which took
about two weeks to complete the identification of version differences. By contrast, VMA
only used less than 10 seconds to achieve similar results. In terms of accuracy, VMA’s
accuracy is close to 97% at the class level and 99% at the attribute level, which are also much
higher than those of prior study (Amor & Ge 2002) whose accuracy is less than 40% at the
class level in this case. In addition, VMA can even find a few pairs of related entities that are
hard to discover by the manual matching approach because the change is deeply hidden in
the schema. For example, the VMA identifies that IfcConstraintUsage in the IFC R2x relates
to IfcRelAssociatesConstraint in the IFC R2x2. Although these two classes have different
names and different parent classes, their attributes not only have similar names, but also refer
to similar types.

Table 1 Matching Results for classes of IFC R2x – IFC R2x2

 Identical Renamed Modified Related
Added
in IFC
R2x2

Removed
from IFC
R2x

VMA 136 0 157 8 322 69

Manual matching
performed during the
research representing
ground truth

133 0 161 12 317 64

UPDATING EXISTING MATCHING RESULTS

Based on the detected version matching results, we could develop a list of patterns that can
be used to update existing matching results with associated version differences. The update
patterns are organized in three groups for: 1) 1:1 matching case refers to a situation where an
existing matching result involves one source element and one target element; 2) 1:N case
refers to a situation where an existing matching result involves one source element and
multiple target elements; and 3) N:M (including N:1) matching case refers to a situation
where an existing matching result involves multiple source elements and target elements. Our
research so far has mainly focused on the 1:1 and 1:N cases, but we are also making some
progress on handling the N:M case.

The 1:1 matching is the most fundamental case, in which a source object (i.e., class or
attribute) is represented by a single object in the target schema. Based on the experiences of
matching real world data schemas (e.g., theBC data model and the IFC), there are 17

June 14-16, 2006 - Montréal, Canada
Joint International Conference on Computing and Decision Making in Civil and Building Engineering

Page 1669

upgrade patterns for this 1:1 matching case at the class level and another 14 patterns at the
attribute level. These patterns are based on the version difference classifications and cover all
the possible changes for a target element (i.e., class or attribute) described in the previous
section. For example, for the example illustrated in Figure 1, a Renamed pattern is defined. .

The 1:N matching is a more complicated case, where multiple associated target classes
are involved. The upgrade pattern for this case is a composition of individual patterns defined
for 1:1 case. Each target class will be updated individually and connections between the
existing target classes will be rebuilt if possible.

N:1 and N:M matching are hard problems in the schema matching field (Rahm and
Bernstein 2001). In this approach, the N:1 matching uses the same update pattern defined for
1:1 matching, with the N source classes treated as a whole. If there is a case of N:M
matching, it is converted into N times 1:M matching, each of which could be processed by an
individual pattern discussed above.

We have tested the capability of our approach in identifying schema matching between a
model developed for a building commissioning domain (BC data model) and various
versions of IFCs. In the test case of matching the BC data model to the releases of the IFC
data exchange standard, the initial matching between BC data model and IFC R2.0 was
performed manually, which took about two days to match all 19 BC classes to the 11
corresponding classes in IFC R2.0, contains 290 classes totally. Then, VMA detected
differences between IFC R2.0 and IFC R2x, identifying 3 fully identical classes, 1 renamed
class, 221 modified classes, 65 deleted classes and 145 added classes. Finally, the updated
match results were achieved by applying the upgrade patterns. Although most of matches
involved 1:N cases, 10 of the 11 involved IFC R2.0 classes were successfully updated. Only
one class was not updated correctly, but the matching was close to the expected result. At the
attribute level, although manual work was required to find matched target attributes for a few
source attributes, the overall accuracy of the automatically generated results was close to
96% in this case.

Figure 2 illustrates an example of updating matches for the CentrifugalFanContext class
in the BC data model. The upper part lists the manually created prior matching results (i.e.,
required IFC R2.0 classes) and the lower part shows the automatically updated matching
results. In this case, three out of six IFC R2.0 classes (i.e., IfcActor, IfcOrganization and
IfcPropertySet) are identical between the two versions and the other three classes (i.e.,
IfcWorkTask, IfcRelActsUpon and IfcRelAssignsProperties) are modified in the IFC R2x, in
terms of names, attributes and/or inheritances.

Compared to the manual approach, our approach is more efficient and can achieve
comparable accuracy. Compared to other computer-aided approaches that compare two
schemas tabula rasa, our schema matching approach has following features:

1) It builds on a version matching process, making it possible to use a computer-aided
approach to identify version differences quickly and accurately.

2) It treats existing matching results as repositories of human knowledge and assume they
haven already been proven correct and could be reused if the new target schema is similar to
the prior target schema (i.e., two versions of the same schema). Therefore, the approach
discussed in this paper can reuse existing human knowledge to process some hard problems

June 14-16, 2006 - Montréal, Canada
Joint International Conference on Computing and Decision Making in Civil and Building Engineering

Page 1670

(e.g., 1:N matching), because a problem like 1:N matching might also be existing in the
matching between prior versions and have already been solved by other computer-aided
approaches or manual work.

3) Additionally, although the version matching is already a simpler problem, the overall
accuracy could possibly be further improved because not all of the detected version
differences are related to the existing matching results. For example, IFC R2x brings more
than 400 changes (e.g., modified, added or deleted) to IFC R2.0, however, in the above test
case, only less than 40 changes actually relate to the initial 11 classes represented in IFC
R2.0 and are used by the upgrade patterns to update the existing matching results. Hence,
even if a version difference is not detected correctly, or not disclosed at all, it may not impact
the upgrade process that follows because the update patterns probably do not require this
specific difference.

Figure 2 Example of existing matching result and updated results

Manually created match between
CentrifugalFanContext and IFC R2.0
classes

Automated generated match between
CentrifugalFanContext and IFC R2x
classes

June 14-16, 2006 - Montréal, Canada
Joint International Conference on Computing and Decision Making in Civil and Building Engineering

Page 1671

Therefore, it is reasonable to expect that the schema matching approach discussed in this
paper can achieve a higher accuracy than other computer-aided approaches that compare
schemas tabula rasa, in the cases where either the source schema or the target schema is
changed frequently. In addition, the approach does not apply any knowledge specific for a
domain (e.g., the building commissioning), so that the generality of this approach is also
improved to process other object-oriented data schemas as long as the initial matching
between two corresponding schema exists.

CONCLUSION
Performing matching of two data models efficiently is challenging and yet critical in
enabling interoperability between different software systems. In this paper, we presented a
semi-automated approach that addresses this challenge in a specific domain, where the
source or the target data model is being upgraded frequently. We tried to apply existing
matching results to help the schema matching process, which is rarely studied in previous
research studies.

Current research results have already demonstrated that reusing existing matching results
will significantly reduce human workload on model matching and achieve comparable
accuracy. In the test case presented in this paper, the approach can automatically detect
version differences, much faster than the manual process with an accuracy of more than 95%.
When updating existing matching results, the developed approach can complete the process
within a few seconds and the accuracy is more than 90% at the class level and 96% at the
attribute level. Compared to other computer-aided approaches that match two schemas tabula
rasa, the approach discussed in this paper produces better outputs and handles some hard
matching problems (e.g., 1:N and N:1 matching) more efficiently.

ACKNOWLEDGMENTS
This research is based upon work supported by the National Institute for Standards and
Technology under Grants No.60NANB2D0158 and No.70NANB3D1114. We are also
grateful for the support from Professor Robert W. Amor.

REFERENCES
Amor, A.W., Ge, C.W. (2002) Mapping IFC Versions. In: Proc of the EC-PPM Conference
on eWork and eBusiness in AEC, Portoroz, Slovenia, 9-11 September, pp.373-377

Doan AH., Domingos P., Halevy A. (2001) Reconciling schemas of disparate data sources: a
machine-learning approach. In: Proc ACM SIGMOD Conf. pp.509-520

Eureka CIMsteel Project (2004). CIMsteel Integration Standards. Last accessed Nov 2004.
http://www.cae.civil.leeds.ac.uk/past/cimsteel/cimsteel.htm

Fagin, R., Kolaitis P.G. and Popa, L. (2003) Data Exchange: Getting to the Core.
Proceedings of the 22nd ACM SIGMOD-SIGACT-SIGART symposium on Principles of
database systems, pp90-101, San Diego, California

June 14-16, 2006 - Montréal, Canada
Joint International Conference on Computing and Decision Making in Civil and Building Engineering

Page 1672

International Alliance for Interoperability (2003) Industry Foundation Classes, Last accessed
Nov 2004. http://www.iai-international.org

International Alliance for Interoperability (2003) ifcXML Project. Last accessed Nov 2004.
http://www.iai-na.org/

International Standard Organization (1994) ISO 10303-11:1994: Industrial automation
systems and integration -- Product data representation and exchange -- Part 11: Description
methods: The EXPRESS language reference manual.

Li, W., Clifton, C. (2000) SemInt: A tool for identifying attribute correspondences in
heterogeneous databases using neural network. Data Knowledge Engineering 33(1):49-84

Madhavan, J., Bernstein, P.A. and Rahm, E. (2001) Generic Schema Matching with Cupid.
In: Proc the 27th VLDB Conference, Roma, Italy, 2001

Mitra P., Wiederhold G. and Kersten M. (2000) A graph-oriented model for articulation of
ontology interdependencies. In: Proc Extending Database Technologies, Lecture Notes in
Computer Science, vol. 1777. Springer, Berlin Heidelberg New York, 2000, pp. 86-100

National Institute of Standards and Technology (2004) Cost Analysis of Inadequate
Interoperability in the U.S. Capital Facilities Industry. Last accessed Nov 2004.
http://www.bfrl.nist.gov/oae/publications/gcrs/04867.pdf

Rahm, E. and Bernstein P. A. (2001) A survey of approaches to automatic schema matching.
The VLDB Journal, 10, 334-350

Steinmann, R. (2004) International Overview of IFC-Implementation Activities. Last
accessed Nov 2004. http://www.iai.fhm.edu/ImplementationOverview.htm.

Wang, H., Akinci, B. Garrett, J. H. et al. (2004) Towards Domain-Oriented Semi-Automated
Model Matching for Supporting Data Exchange. In Proc: The 10th International Conference
on Computing in Civil and Building Engineering, Weimar, Germany.

June 14-16, 2006 - Montréal, Canada
Joint International Conference on Computing and Decision Making in Civil and Building Engineering

Page 1673

