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ABSTRACT 

This paper presents an application of an evolutionary optimization algorithm for 
multiobjective analysis for reservoir operations and planning. A multiobjective particle 
swarm optimization (MOPSO) algorithm is used to find nondominated solutions with four 
objectives: (i) maximize annual firm water supply; (ii) maximize annual firm energy 
production; (iii) minimize flood risk; and (iv) maximize the overall reliability of the system.  

The results of this study showed that the MOPSO algorithm was able to find well 
distributed Pareto solutions in the objective space. An interactive graphical method was also 
developed to display nondominated solutions in such way that the best compromise solutions 
can be identified, for different relative importance given to each objective. The method 
allows the decision maker to explore the Pareto set and visualize not only the best 
compromise solution but also sets of solutions that provide similar compromises. 
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INTRODUCTION 

Decision making in water resources planning and management frequently involves multiple 
objectives. As greater attention is being given to the environmental and social aspects of 
water resources allocation and management the need for effective multiobjective 
optimization approaches is increasing. Many of the developments in the area of 
multiobjective analysis in the United States have come from the field of water resources 
(Goicoechea et al. 1982). 

In multiobjective optimization, a set of nondominated solutions is usually produced 
instead of a single recommended solution. According to the concept of nondominance, also 
referred as Pareto optimality, a solution to a multiobjective problem is nondominated, or 
Pareto optimal, if no objective can be improved without worsening at least one other 
objective.  

Traditional multiobjective optimization methods attempt to find the set of nondominated 
solutions using mathematical programming. In the case of nonlinear problems, the weighting 
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method and the ε-constraint method are the most commonly used techniques. Both methods 
transform the multiobjective problem into a single objective problem which can be solved 
using nonlinear optimization. 

With the weighting method, nondominated solutions are obtained if all weights are 
positive but not all Pareto optimal solutions can be found unless all objective functions as 
well as the feasible region are convex. Other disadvantage of this method is that many 
different sets of weights may produce the same solution, compromising the efficiency of the 
method. When the weights reflect the preferences of the Decision Maker (DM), the method 
gives the best-compromise solution, i.e. the solution which produces the highest utility to the 
DM. The ε-constraint method, on the other hand, does not require convexity but only leads to 
nondominated solutions if certain specific conditions are satisfied (Miettinen 2001). 

According to Coello Coello (2001), the first hints on the potential of evolutionary 
algorithms (EA) for multiobjective optimization occurred in the 1960s but this research area 
remained largely unexplored until mid 1980s. This author also highlighted two advantages of 
evolutionary algorithms that make them particularly suitable for multiobjective optimization, 
when compared to traditional mathematical programming techniques: 

• EA work simultanously with a set of possible solutions, the so-called population, and 
several nondominated solutions may be found in a single run of the algorithm; 

• EA are less sensitive to the shape or continuity of the Pareto surface. 

Since the mid 1980s, a growing number of evolutionary multiobjective optimization 
algorithms have been proposed in the literature (Fonseca and Fleming 1995). Although some 
studies have attempted to compare different algorithms (e.g. Zitzler and Thiele 1999, Coello 
Coello et al. 2004), these comparisons are always restricted to the type of functions and 
problems being solved. 

Particle swarm optimization – PSO (Kennedy and Eberhart 1995) is one of the newest 
techniques within the family of evolutionary optimization algorithms. The algorithm is based 
on an analogy with the choreography of flight of a flock of birds. Due to its fast convergence, 
PSO has been advocated to be especially suitable for multiobjective optimization (Coello 
Coello et al. 2004). 

There are many variants of the single objective PSO but in most of them the movement of 
the particles towards the optimum is governed by equations similar to the following:  
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Where w is an inertia coefficient that has an important role balancing global (a large value of 
w) and local search (a small value of w), c1 and c2 are constants (usually c1 = c2 = 2), r1 and r2 
are uniform random numbers in [0,1], Pi is the best position vector of particle i so far, Pg is 
the best position vector of all particles so far, xi(t) is the current position vector of particle i, 
and vi(t) is the current “velocity” of particle i. Mendes et al. (2004) suggests an inertia 
coefficient w of less than 1, while other authors recommend to start with larger values and 
decrease with time, for example from a value of 1.4 to 0.5 (e.g. Elbeltagi et al. 2005, Jung 
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and Karney 2006). Coello Coello et al. (2004) highlighted the sensitivity of the standard PSO 
algorithm to the value of w and proposed the introduction of a mutation operator that assures 
an adequate global search while keeping a small value of w (suggested 0.4) which favors a 
refined local search. 

Several applications with evolutionary multiobjective optimization have been recently 
reported in the water resources literature (e.g. Liong et al. 2001, Muleta and Nicklow 2005, 
Suen et al. 2005, Tang and Reed 2005, Kapelan et al. 2005). None of these applications, 
however, used multiobjective PSO. Jung and Karney (2006) compared the performances of 
single-objective Genetic Algorithm and PSO approaches to optimize the selection, sizing, 
and placement of hydraulic devices for transient protection. The authors studied six different 
cases and concluded that both algorithms produced very similar results in most cases but the 
PSO found better solutions when the same population size and number of iterations were 
applied. 

In this paper, we use a modified version of the multiobjective PSO (MOPSO) proposed 
by Coello Coello et al. (2004) with an application to reservoir operations and planning. We 
also propose a graphical procedure to incorporate the DM’s preferences, further exploring the 
set of nondominated solutions and displaying the best-compromise solution as well as 
families of solutions with similar compromises. 

MULTIOBJECTIVE PARTICLE SWARM OPTIMIZATION 

In the MOPSO algorithm (Coello Coello et al. 2004), the performances of different particles 
are always compared in terms of their dominance relations. The main characteristic of this 
algorithm is the use of an external repository which stores nondominated solutions. The 
algorithm starts generating an initial population. All the particles of this population are 
compared to each other and the nondominated particles are stored in the repository. The 
particles’ positions will be subsequently updated using the following: 

 
( ) ( ) ( ) ( )( ) ( ) ( )( )txtRrctxtPrctvwtv ihiiii
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Where Rh is a solution selected from the external repository in each iteration t, and the other 
terms have already been defined, with w = 0.4. 

The best position vector of particle i, Pi, is initially set equal to the initial position of 
particle i. In the subsequent iterations, the best position vector is updated in the following 
way: if the current Pi(t) dominates the new position xi(t+1) then Pi(t+1) = Pi(t), if the new 
position xi(t+1) dominates Pi(t) then Pi(t+1) = xi(t+1), if no one dominates the other then one 
of them is randomly selected to be the Pi(t+1). 

In MOPSO there is no such thing as the best position vector (Pg) as in the standard PSO. 
There are several equally good nondominated solutions stored in the external repository. To 
update the velocity of each particle using Equation (3), the algorithm has to select one of the 
position vectors stored in the repository. This selection is made in such a way that 
nondominated solutions located in regions more densely populated in the objective space 
have lower probabilities of being selected, therefore leading to better distributions of points 
in the Pareto front.  Instead of using the adaptive grid proposed in Coello Coello et al. (2004), 
the approach followed in this study simply calculates, in the objective space, the density of 
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points around each solution stored in the repository and performs  a roulette wheel selection 
such that the probability of choosing one point is inversely related to its associated density.  

In every iteration t, the new positions of all particles are compared among themselves and 
the nondominated ones are then compared with all solutions stored in the repository. The 
repository is then updated, adding new nondominated solutions and eliminating old solutions 
that are now dominated. The size of the repository is an important parameter to be set. Once 
the repository is full and a new nondominated solution is found, then this new solution takes 
the place of another nondominated solution in the repository which is selected randomly 
using a similar procedure based on density as described above but now assigning higher 
probabilities of being selected to solutions located in denser regions of the objective space. 
The algorithm runs until the maximum number of iterations (cycles) is reached. 

The algorithm handles constraints in a very simple and efficient way. When comparing 
two different solutions, with at least one infeasible, the algorithm does the following: (i) one 
feasible solution dominates other which is infeasible; (ii) with two infeasible solutions the 
one with smaller violation of the constraints dominates the other. To implement that when 
several constraints are imposed, an index is calculated to reflect the aggregated degree of 
constraint violation. 

AN APPLICATION TO RESERVOIR OPERATIONS AND PLANNING 

MOPSO is applied to find nondominated solutions for the operation of a single reservoir with 
up to four of the following objectives: (i) maximize annual firm water supply, (ii) maximize 
annual firm energy production, (iii) minimize flood risk, and (iv) maximize the overall 
reliability of the system. The model was implemented in a spreadsheet format using 
Microsoft Excel© and Visual Basic for Applications. 

RESERVOIR SIMULATION MODEL 

The reservoir model (Fontane 2002) performs the mass balance in a monthly time step for a 
sequence of five years of monthly inflows. In this example, 34 years of monthly flow data 
were used which allows the user to select 30 different sequences of five years to be 
simulated. The flow data is taken from McMahon and Mein (1986, p. 347). The following 
parameters must be provided: 

• Monthly water use coefficients 

• Monthly energy use coefficients 

• Parameters a and b of the area-volume relation as follows 

( ) ( )[ ]btVatArea ⋅=  

• Monthly average evaporation depths in meters 

• Parameters c, d, and e for head calculations as follows 

( ) ( )[ ] etVctHead d +⋅=  

• Maximum flow through turbines and minimum required head 
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The monthly water and energy use coefficients are used to convert annual demands to the 
monthly time scale. The required water releases to meet the monthly energy demands are 
then calculated and the mass balance of the reservoir is performed as follows:  

( ) ( ) ( ) ( ) ( )tltEvaptInflowtVtV Re1 −−+=+    (4) 

( ) ( )tAreamthEtEvap ⋅=     (5) 

( ) ( ) ( )}{ tEreltWreltl ,maxRe =     (6) 

Where V is volume, mthE are monthly evaporation depths, Wrel and Erel are the required 
releases to meet water and energy monthly demands, respectively. 

The user can evaluate the performance of the reservoir system for different values of 
annual water demand, annual energy demand, and active volume. A nonlinear optimization 
tool using Excel Solver is also included allowing the calculation of: (a) annual firm water for 
fixed values of active volume and annual energy supply; or (b) annual firm energy for fixed 
values of active volume and annual water supply. In either case (a) or (b) the annual demand 
(water or energy) is the objective function (to be maximized) and also the decision variable. 
The optimization is subject to the following constraints: (i) no water shortages in any month; 
(ii) no energy shortages in any month; and (iii) ending volume equal to the active volume. 
The model also assumes the starting volume to be equal to the active volume. Using these 
optimization tools, an ε-constraint approach can be implemented to find the trade-off curve 
between annual firm water and annual firm energy, for selected inflow sequences and active 
volumes. Figure 1 presents such a curve for an active volume of 800 million cubic meters, 
using the driest inflow sequence. 
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Figure 1: Annual Firm Water vs Annual Firm Energy Trade-off using ε-Constraint Method 
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MULTIOBJECTIVE OPTIMIZATION PROBLEM 

The MOPSO was coded in VBA. The model includes an interface which allows the user to 
set all MOPSO parameters and choose what objectives should be optimized. If any of the 
four aforementioned objectives is not selected, the user can specify a fixed value for that 
objective and this is included as a constraint in the optimization of the remaining selected 
objectives. If only one objective is selected the MOPSO works as a standard PSO. 

Figure 2 presents the water-energy trade-off curve using MOPSO with 100 particles, 
repository size of 50 solutions, and 50 iterations. The processing time was 40 seconds in a PC 
AMD Athlon™ 64, 2.2 GHz. 

The flood control objective is introduced by minimizing the active volume within a 
specified interval, [400,800] in this example. In this case, the active volume becomes also a 
decision variable. Figure 3 presents a 3-d plot of the interpolated Pareto surface and the 
Pareto solutions obtained by MOPSO with 150 particles, 150 solutions in the repository, and 
150 iterations. The processing time was 325 seconds in the same computer. This problem 
involves a 3-dimensional search space and a 3-dimensional objective space. 

The reliability objective is implemented by evaluating each solution for 30 different five-
year inflow sequences. The number of sequences with failures (water shortage, energy 
shortage, or an ending volume less than the full active volume) is counted and a reliability 
index is calculated by Equation 7 to follow. No dimension is added in the search space, 
which is still defined by firm water, firm energy, and active volume decision variables. The 
Pareto front is defined in a 4-dimensional objective space, however. 

30
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Figure 2: Water-Energy Trade-off Curve by ε-Constraint and MOPSO 
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Figure 3: Water-Energy-Flood Trade-off Surface  

PROCEDURE TO VISUALIZE AND EXPLORE THE PARETO SET 

A procedure was developed to incorporate the preferences of the DM as well as to visualize 
and explore the Pareto set. First, all Pareto solutions are normalized using a compromise 
programming approach with a Euclidian norm (L-2 norm). All objectives are placed as 
vertices equally spaced in a circumference of diameter 1. Let N be the number of objectives. 
The first objective is arbitrarily assigned to coordinates [0.5,1.0]. The x and y coordinates of 
the following objectives are given by the following: 

2

2






 −

=
N
π

π
θ      (8) 

( ) ( ) ( ) 



 ⋅−⋅−⋅+

−
⋅+−= θπ

π
θ 32

2
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( ) ( ) ( ) 



 ⋅−⋅−⋅+

−
⋅+−= θπ

π
θ 32

2
sincos1 kkkyky obob   (10) 

Where N is the number of objectives and k = 2..N.  
The normalized metrics are calculated for each objective as follows: 
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−

−
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Where CP(i,k) is the [0,1] normalized metric of particle i for objective k, and R(i,k) is the 
value of objective k of particle i in the repository. 

The normalized metric for each objective are then used to calculate a new coordinate 
measured in the diameter corresponding to that objective. The new coordinates are given by: 

( ) ( ) ( ) ( ) 



 ⋅−⋅−⋅+⋅+= θπ
π

22
2
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( ) ( ) ( ) ( ) 
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
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π

22
2
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Each particle in the repository has now a (x,y) coordinate for each of the N objectives. The 
particle is them plotted in the centroid defined by these N points. A weighted average of the 
normalized metrics is then calculated based on weights given by the DM. The DM can 
change the weights and automatically see the best-compromise Pareto solution, as well as 
other Pareto solutions with similar compromise. Figure 4 presents the water-energy-flood 
trade-off graph for two sets of weights, one with equal weights and other with higher 
importance given to firm water supply. Figure 5 presents the water-energy-flood-reliability 
trade-off for two sets of weights, one set with higher weights for water and energy, and other 
with higher weight to reliability. 

 

 

Figure 4: Water-Energy-Flood Trade-off Graphs for Two Sets of Weights 
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Figure 5: Water-Energy-Flood-Reliability Trade-off Graphs for Two sets of Weights3 

CONCLUSIONS 

A multiobjective particle swarm optimization algorithm was applied in a model for reservoir 
operations and planning. The algorithm proved to be able to find well-distributed 
nondominated solutions in the objective space. For the case of two objectives, water supply 
and energy production, the algorithm was compared to an ε-constraint approach using the 
Excel Solver. Both methods found the same Pareto front but MOPSO was much faster and 
did not present any convergence problems.  There were convergence problems  with the 
nonlinear optimization using Solver. The Pareto solutions for the cases of three and four 
objectives were tested individually to see if any objective could be improved without 
worsening the others. These tests showed that many of the obtained Pareto solutions could 
still be improved but the average possible improvement was relatively small and, as 
expected, it decreased with the number of iterations. For three objectives, when the number 
of iterations was at least 100, the average improvements where about 5%, indicating that the 
solutions obtained were already very close to the real Pareto front. 

The graphical procedure proposed in this paper can help decision makers to explore 
Pareto sets when three or more objectives are considered. The best-compromise solution may 
be identified as well as subsets of the Pareto set that provide similar compromises. 
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