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ABSTRACT 
Though some 3D models have been emerging and becoming much more powerful than ever 
for the three dimensional simulation, the well-known depth-averaged models are still very 
important methods in most open channel flow modeling. However, one of the advantages of 
the depth-averaged models is that they cannot supply detailed information for the vertical 
distributions of velocities or pressure.  

Multilayer models improve the depth-averaged and moment equations to supply more 
detailed information while not increasing much computation and complexity. These 
multilayer models can use explicit or implicit layer dividing method. The governing 
equations can simply use the basic Reynolds equations in each layer, or the layer averaged 
equations. Then the simulation is carried out repeatedly from the top layer to the bottom layer 
until the flow reaches the steady condition. The efficiency of this method is validated by one 
application case. 
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INTRODUCTION  
The depth-averaged models usually can be successfully used for the simulation of open 
channel flows. The governing equations are obtained by integrating the Reynolds equations 
over the flow depth based on the assumptions of negligible vertical acceleration, hydrostatic 
pressure and uniform longitudinal velocity (Chaudhry 1993). These assumptions simplify the 
computation but limiting the models’ capacity to consider more vertical details.  

There is no doubt that 3D models have the strongest capacity to extract the information in 
vertical direction, whereas they need much more computation effects than most depth-
averaged models. This disadvantage of 3D models is being overcome with the emergence of 
more powerful computers.  

Besides depth-averaged models and 3D models, there are some other models that can 
extract information in vertical direction while limiting the added computation of 3D models. 
Among them are Boussinesq models (Hagger and Hutter 1985; Matthew 1991; Chaudhry 
1993), depth-averaged and moment equations (Steffler and Jin 1993), potential flow models 
(Montes 1995), Dressler curvilinear coordinates models (Dressler 1978; Sivakuaran et al. 
1983) and multilayer models (Lai and Yen 1993; Chio 1998; Zarrati and Jin 2004; Lynett and 
Liu 2004; Xia and Jin 2005a, b). 

In multilayer models, the flow is divided into a series of non-overlapping flow layers, and 
the simulation of flow is carried out over each layer. Layer dividing can be considered as one 
way for vertical discretization of the research domain. The governing equations can be the 
basic Reynolds equations as in most conventional 3D models with structured vertical grids 
(Lai and Yen 1993), or layer-averaged equations (Chio 1998; Zarrati and Jin 2004; Xia and 
Jin 2005 a, b). Layer-averaged equations allow for vertical detailed information while taking 
advantage of the depth averaged equations of shallow water (Lynett and Liu 2004). 
Multilayer models can potentially evaluate the velocity and pressure profiles with required 
accuracy using a proper number of flow layers. They also have high flexibility for complex 
flow patterns.  

GOVERNING EQUATIONS  

LAYER DIVIDING 
In multilayer models, the layers as shown in figure 1 are non-overlapping, and can be 
indexed from top to bottom as k =1, …, n. The interfaces are similarly indexed from top to 
bottom, and the free surface and channel bed are taken as special interfaces, k =0, 1, …, n. 
The interfaces for layer dividing can be very different in locations and shapes, and they can 
be carried out by the explicit or implicit methods (Xia and Jin 2005a, b). 

In explicit method, the layer dividing interfaces are determined artificially based on 
individual experience and the research problems. For example, Reggio (1993) and Wai et al. 
(1996) used horizontal interfaces. Lai and Yen (1993) forced all layers except the top one to 
be parallel. The layer-dividing has large randomness and does not account for the flow 
conditions. In addition, the interface exchanges of mass, energy and moment, make the 
governing equations much more complicated than classical depth equations.  
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The implicit method for layer-dividing tries to take into account of the flow conditions 
and to define the layer interfaces in equation to avoid any randomness, 

! 

w =
"#k

"t
+ u

"#k

"x
 (1) 

 

z

x

w

u

1st Layer

2nd Layer

n-th Layer

(k-1)-th Layer

k-th Layer

(k+1)-th Layer

(k-1)-th Interface 

k-th Interface 

n-th Interface 

1st Interface 

2nd Interface 

0th Interface 

(k+1)-th Interface 

 

Figure 1: Definition of coordinates and layer index 

APPROXIMATE VERTICAL PROFILES OF DEPENDENT VARIABLES 
The nodal points are placed along each vertical column. They can be placed at the mid-points 
of the flow layers or at the interfaces, or both. The number of nodes directly relates to the 
number of equations available. 

The nodes of horizontal velocity are placed at both mid-thickness point and interfaces, 
and the vertical distribution as in the Figure 2 can be approximated by simply connecting 
them linearly, 

! 

u = ub(1" #) + us # + 2uc " us " ub( ) 0.5" | 0.5 " # |( )  (2) 

where u = horizontal velocity; hzz
b
/)( !=" ; h = the layer vertical thickness, 

! 

h = zs " zb; z 
= elevation; subscripts “s” and “b” refer to quantities at the top and bottom surface of the 
layer, respectively; and subscripts “c” refer to quantities at the mid-thickness of the layer.  

Another set of coefficients, which may yield a brief form of expressions for equations 
later, can be defined as, 

! 

u0 = (us + ub + 2uc ) /4 ; 

! 

u1 = us " ub( ) /2; 

! 

u2 = uc " (us + ub) /2  (3 a, b, c) 

where subscript “0” represents the vertically averaged quantities of corresponding variables 
for each layer; subscript “1” represents half of the quantity difference at top and bottom face 
for each layer; and subscript “2” represents the quantities at the mid-thickness of layer in 
excess of arithmetic average of upper and lower surfaces. 
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The nodes of vertical velocity and pressure are placed only at the interfaces and are 
connected simply using straight-lines. The approximate profiles can be mathematically 
expressed as (Figure 2),  

! 

w = wb(1" #) + ws#  (4) 

! 

p = pb(1" #) + ps#  (5) 

and 

! 

w0 = (ws + wb) /2 ;   

! 

w1 = ws " wb( ) /2 ;    

! 

w2 = 0   (6 a, b, c) 

! 

p0 = (ps + pb) /2;   

! 

p1 = ps " pb( ) /2;    

! 

p2 = 0  (7 a, b, c) 

where w = vertical velocity; p = pressure. 
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Figure 2: Distribution of velocities and pressure in each layer 

LAYER AVERAGED EQUATIONS 
Based on the approximate vertical profiles of these parameters, and the requirement of 
consistence between variables and equations, we obtain the following equations (Xia and Jin 
2005a, b), 

Continuity equation 
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x-Moment Equation 
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z-Momentum Equation 
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where x = horizontal coordinate; t = time; g = gravitational acceleration; 

! 

"= the fluid 
density. Fx and Fz are two composite terms of stresses at interfaces, 
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where τxz = τzx = sheer stress, the first subscript refers to the normal direction of  the acting 
face, the second subscript refers to the direction of acting force ; 

! 

" x and 

! 

" z  = normal 
stresses, the subscript refers to the direction of acting force.  

The vertically averaged stresses of each layer are evaluated based on Boussinesq’s 
turbulent stress formula (Versteeg and Malalasekera 1995), 
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where
t
í is the vertically averaged turbulent exchange coefficient or eddy viscosity (Nezu and 

Rodi 1986), 

! 

vt ="
1

#
(1$#)u*ht  (17) 

where к is von Kármán constant (≈0.41); and 

! 

" = (z # zch ) /ht  (18) 

where ht the whole depth of flow; zch is the elevation of local channel bed; 
*
u is the shear 

velocity. 
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Similarly, the stresses at the k-th interface are evaluated, 
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For open channel flows, the assumption of pure shear stress applies to the channel bed 
(Steffler and Jin 1993). Then at channel bed, Eqs. (12 b) and (13b) reduce to, 

! 

Fxb = "b ; 

! 

Fzb = "b
#zch

#x
 (22a, b) 

and the bed shear stress, τb, can be evaluated using Chezy formula, 

! 
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2
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 (23) 

where ut and wt are the depth-averaged horizontal and vertical velocities over the total water 
depth; and 

! 

C* is the non-dimensional Chezy coefficient. 

NUMERICAL SCHEME 

EQUATIONS CLOSURE 
In this paper, the flow is divided implicitly. Both the layer thickness and interface 

elevation are unknown. However, the elevation of each layer interface can then be located 
after the determination of layer thickness, 

! 

zs = zb + h    (24) 
where zb is known as the elevation of the n-th interface. Therefore, only the layer thickness is 
independent. 

There are (n+1) unknown vertical velocities, wk, at the layer interfaces. They correspond 
to the (n+1) interface equations, i.e., Eq. (1). 

We placed the pressure at the (n+1) interfaces, and the pressure at the free surface is 
known as zero. Therefore there are only n unknown parameters for pressures. They 
correspond to the n vertical momentum equation, i.e., Eq (11). 

The nodal points for horizontal velocity are located at both the layers’ mid-thickness 
points and the interfaces, totally (2n+1) points. They correspond to the horizontal momentum 
and moment equations. However, there are only 2n such equations. To make them closure, 
we can simply assume that the horizontal velocity profile for the first layer is straight line. 
Then there are only 2n independent horizontal variables being consistent with the equations. 

According to the characteristics of these unknowns and the equation forms, all of them 
can be categorized into two groups. The first group of the unknown variables includes the 
layer thickness h and horizontal velocity variables u0 and u1. The second group constitutes 
the parameters for vertical velocities, wk, and pressure, pb.  
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These unknown variables can be solved using different methods, such as finite element 
method, or finite difference method. Due to the rapid variation of channel bed, some 
oscillations of these variables will occur in the rapid varied segments. This oscillations can 
be dampened using artificial viscosity methods (Jameson et al. 1981; Chaudhry 1983).  

SOLUTION STEPS 
The steps are suggested as follows, 

• Boundary conditions are imposed according to the basic principles and the specific 
cases; 

• Predict the layer thickness and velocity with “predictor” for each layer from top to 
bottom; 

• Evaluate the vertical velocity and pressure based on the predicted layer thickness and 
horizontal velocity for each layer interface from top to bottom; 

• Correct the layer thickness and velocity with “corrector” or each layer from top to 
bottom; 

• Evaluate the vertical velocity and pressure based on the predicted layer thickness and 
velocity for each layer interface from top to bottom; 

• Dampen the oscillation of  the dependent variables;  
• Repeat from the second to the fifth steps till steady flows are approached. 

APPLICATION 
Sivakumaran et al (1983) performed a series of experiments for flows over symmetric and 
asymmetric bedforms. These experiments were in a 915 cm long, 65 cm high and 30 cm wide 
horizontal flume, which is made of a steel frame with glass windows on both vertical sides. 
The bed of 1.5cm thick plywood was elevated 10 cm above the base of the flume, to house 
the plastic tubes connecting the piezometer tapping along the centerline of the curved-bed 
model and piezometers. The inflow to the inlet box through a 15.24 cm diameter cast-iron 
pipe was controlled by a gate valve. 

This paper selects the experimental flow over a symmetric bedform. The symmetric 
profile of the 120 cm is described by the normal distribution, 

! 

y = 20exp["
1

2
(
1

24
x)
2
] (25) 

where x, y =horizontal and vertical coordinates in cm.  
The leading edge of the profile was placed 366 cm downstream the inlet box. The 

upstream undisturbed depth was measured at 16 cm from the leading edge of the profile, and 
is used as an upstream boundary condition for the models. The symmetric profile was shaped 
according to a normal distribution and was 20 cm high and 120 cm long. The experiments 
only include the free surface profile and bed pressure, and experimental inflows are q =0.036 
m3/s/m and q = 0.112 m3/s/m. 
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The results are shown in Figures 3 and 4. For both cases, their surface profiles are 
simulated very well. Their bed pressure profiles are also well simulated.  

Though the mathematical model provides vertical distribution information for velocities 
and pressure in addition to the profiles of the free surface and bed pressure, the comparison 
for velocity and pressure distribution are not performed due to the lack of experimental 
results. 
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Figure 3: Flow over symmetric Bedform (q = 0.036 m3/s/m) 

(a) Free surface and intefaces (b) Bed Pressure 
 

CONCLUSIONS 
Comparing to the other methods, the multilayer models can supply much more vertical detail 
while limiting the added computation. In the models, the layer dividing interfaces can use 
explicit or implicit method; and the governing equations can become the basic depth-
averaged equations. 

In this paper, the layer dividing is carried out by implicit method, by which the governing 
equations are simplified; it could adjust to the flow conditions. The simulation is carried out 
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in each layer, and it is repeated layer by layer, from the top to the bottom. The model is used 
in the simulation of flows of two different discharges over a symmetric bedform. It includes. 
The results demonstrated that the model can simulate the free surface profile, bed pressure 
profile well. 
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Figure 4: Flow over symmetric Bedform (q = 0.112 m3/s/m) 

(a) Free surface and intefaces (b) Bed Pressure 
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