A NOVEL DIFF AND MERGE APPROACH ON THE
BASIS OF OPERATIVE MODELS

Christian Koch! and Berthold Firmenich?

ABSTRACT

According to the State-of-the-Art building model instances are described by objects and
attributes. Due to the iterative nature of the planning process many versions of a building
instance are created and distributed between the actors involved.

In object oriented environments like planning of buildings existing tools to manage
versions have considerable shortcomings, which are attributed to the fact that private object
attributes have to be compared and merged by tools which are not aware of the semantics of
the differences between the versions.

The solution approach presented is based on a completely different modeling approach
called operative modeling. Unlike the traditional approach, an operative model instance is
described by the applied operations that lead to the respective building instance state. The
applied operations describe the differences between two versions of a model instance.
Appropriate diff and merge tools can be developed on the basis of operative models because
the semantics of differences are explicitly stored.

KEY WORDS

operative modeling, distributed work, versioning, civil engineering.

INTRODUCTION

In the computer-supported planning process building information is described by models that
are instantiated. Due to the iterative and distributed nature of the planning process several
versions m; of the building instance are created and exchanged between the actors involved.

Figure 1: Versions of a building instance with my as the empty version

Research assistant, CAD in der Bauinformatik, Coudraystr. 7, Bauhaus-University Weimar, 99423 Weimar,
Germany, Phone +49 3643/58-4231, FAX +49 3643/58-4216, christian.koch@bauing.uni-weimar.de
Professor, CAD in der Bauinformatik, Coudraystr. 7, Bauhaus-University Weimar, 99423 Weimar,
Germany, Phone +49 3643/58-4230, FAX +49 3643/58-4216, berthold.firmenich @bauing.uni-weimar.de

Page 1355

In order to be able to manage versions it is indispensable to compare and merge revisions
(Fig.1: m;, my) and variants (Fig.1: my, m3) of the building instance during the cooperative
planning process.

Available tools for comparing (diff) and merging (merge) versions have considerable
shortcomings, which are to some extent attributed to how building information is usually
modeled today.

The objective of this contribution is to introduce the operative modeling approach and to
show how new tools for comparing and merging building instance versions can be
advantageously designed and developed on the basis of operative models.

STATE-OF-THE-ART

According to the State-of-the-Art software applications used in the building planning process
create and modify structured object sets called application specific models.

STANDARDIZED OBJECT MODELS

The standardization of object models that describe building information is one attempt to
support the distributed planning process of buildings. An example for this approach is the
introduction of the Industry Foundation Classes (IFC) and the physical exchange format
STEP. In practice, however, the cooperation on the basis of standardized object models
comes along with many problems. Firstly, a common model that covers all the disciplines
tends to be too complex. If it existed, an application would have either to implement the
standardized object model and consequently would have to be newly developed or the
standardized object models and the application specific models would have to be transformed
into one another. The latter is characterized by a cumulative information loss because
standardized object models and application specific models cannot be mapped completely
onto one another [Firmenich 2004].

Assuming that for each state of the building instance the standardized object model is
serialized in a document, a version of the building instance can only be described by a
version of a document.

DOCUMENT MANAGEMENT SYSTEMS

Document management systems (DMSs) are used to manage document versions. For that
reason DMSs are applied in the planning process for managing and distributing versions of
building instances stored in documents.

In DMSs the history of a document and therefore only revisions but not variants of a
building instance can be stored (Fig. 2) [Beer et al. 2006].

- - - - - -
m m m m m m
X 0 1 2 3 4

Figure 2: Versions of a building instance on the basis of document history in DMSs

Furthermore, DMSs cannot support the comparing of versions of a building instance since
the semantics of the document are not known to the DMS in general [Firmenich et al. 2005].

Page 1356

For the addressed reasons standardized object models in conjunction with DMSs have
considerable shortcomings in the iterative and distributed planning process of buildings.

OBJECT VERSION CONTROL SYSTEMS

In the software development process version control systems (VCS) are in use for managing
versions of text-based documents. In contrast, object version control systems allow for
managing object versions. The development of an object version control system called
objectVCS is in the focus of research at Bauhaus University Weimar [Firmenich et al. 2005].

Object version control systems can support the planning process of a building as
described below. While existing software applications have to be enhanced by load and store
functionality, their specific unversioned models remain unchanged. After loading a version
of a building instance as a structured set of object versions the application can reconstruct its
native unversioned object model. Afterwards the unversioned application model has to be
stored in the object version control system that creates a new version of the processed
building instance.

By means of an object version control system in conjunction with existing planning
applications a version of a building instance can be described by a structured set of object
versions (Fig. 3).

Figure 3: Versions of a building instance on the basis of object version control systems

Comparing and merging versions of a building instance tend to be very complicated. The
reasons for this assumption are as follows: Firstly, the stored structured set of object versions
might be very complex due to deeply nested model structures and can be hardly compared.
For decision making reasons the user should be involved in the merging process.
Unfortunately, the user is not aware of the semantics of private attributes that have to be
synchronized.

Comparing and merging two versions of the building instance always causes the same
effort, independently of considering revisions or variants.

The mentioned problems show that a structured set of object versions is inappropriate for
comparing and merging versions of building instances.

Page 1357

SOLUTION APPROACH

OPERATIVE MODELING

In the traditional approach a model instance is represented by objects and attributes. In
contrast, an operative model instance is described by the operations applied in the design
process. These operations finally lead to the respective building state. While an object model
is evaluated, an operative model is unevaluated [Firmenich 2004].

In order to exemplify the concept of operative building modeling a comparison with solid
modeling can be drawn. While a BRep model instance describes the topology and geometry
of a solid boundary in an evaluated form, a CSG model instance stores an unevaluated
description of a solid. The building shown in Fig. 4 shall be abstracted as a solid model
instance.

wl

Figure 4: An abstracted building model instance

Using the Scheme language of the ACIS solid modeler [Corney et al. 2001] the operations for
defining an unevaluated CSG model instance can be formulated in just four lines of code:

1: (define wl(solid:block 00 0 10 0.5 5))
2: (define w2(solid:block 8 309 0 3.5))
3: (define d(solid:block 2 0 0 4 0.5 3))

4: (solid:subtract(solid:unite w1l w2)d)

In contrast, using the BRep modeling approach the evaluated description of the building’s
solid results in a SAT file (Standard ACIS Text) containing almost 300 lines of code:

1: 700010

2: 22 ACIS/Scheme AIDE - 7.0 11 ACIS 7.0 NT 24 Thu May 27 09:50:57 2004
3: 1 9.9999999999999995¢ -007 1e —010

4: body $-1-1$-1$51$-152#

285: straight-curve $-1-1$-14-1.75-250-1011#
286: point $-1 -1 $-14-0.25-2.5 #

287: point $-1 -1 $-14-3.25-2.5#

288: End-of-ACIS-data

This example demonstrates that an operative descriptions (1) is compact and (2) can be
interpreted by users — not only by applications.

Page 1358

DISTRIBUTED WORKFLOW

A prerequisite for the use of operative models in the planning process is the definition of
standard operations. Once defined, the standard operations can be used to exchange the
building information.

Additionally, existing applications need to be slightly adapted. While the evaluated
application building model remains unchanged the application itself has to be extended by
journaling functionality. A journaling mechanism is responsible for recognizing changes in
the model instance and describing these changes by the standardized operations. The
operations are serialized in a journal file as a d change.

A sequence of journal files represents a version of a building instance. Consequently,
building information is exchanged by journal files. Contrary to the traditional data exchange
of evaluated models the proposed approach has the advantage of a non-accumulating
information loss since the exchanged changes dremain unchanged [Firmenich 2004].

Besides the journaling mechanism an application has to be extended by an interpreter that
applies the operations of the journal file on the application specific building model instance.

Figure 5 illustrates the workflow between planner A and planner B on the basis of
operative building models. Planer A starts designing and creates his native application model
instance Moa. The journaling mechanism records the applied operations in the journal file Ay
that represents the first version of the operative building instance. Planner B receives the
journal file Ay from planner A and generates the native building instance Mog by applying
these changes. While processing the building instance Mg the changes are recorded in the
journal file Ay;. The next version of the operative building instance can now be described by
the sequence of changes stored in the files 4y and 4y;.

Planner 4 Planner B

% edit . ginterpret . edit .

Figure 5: Workflow on the basis of exchanging journal files

MATHEMATICAL DESCRIPTION

Formally, the operative building instance is described by a sequence of applied operations
that are contained in one of the sets A, S, C or R with

A= {ai | a; is an operation that adds an object}
S = {si | s; is an operation that selects or unselects objects}
C:= {ci | ¢, is an operation that modifies selected objects}

R = {rl. | 7, is an operation that removes selected objects}.

The set O of all operations applied is defined as

Page 1359

O=AuSUCUR.
It is assumed that a change d; is a sequence of operations 0 € O
8 = <00’01’02"“’0n—1>

and can be represented as an edge (m;, m;) in the version graph. The version graph is a rooted
tree with m, as its root node (Fig. 6). It should be noted that in this approach the tree structure
is preserved, even in the case of merges.

Figure 6: Version graph as a rooted tree

A model instance version m; is a node in the version graph and can be formulated as a root
path starting at the root node my. A path is denoted either by a sequence of n edges or a
sequence of n+1 nodes.

rootpath(mj):: <5x0, 01,-~~,5l.j> :<mx,m0,ml,~-,mi,mj>

For example, the version m, of the model instance in figure 6 is described by the root path
rootpath(m,) = (8.4, 0y, 015) = (m,,my,my,m,) .

COMPARING AND MERGING

The diff and merge approach is based on a general version tree as shown in figure 6.
Comparing and joining different versions results in comparing and joining root paths to the
respective version nodes. The presented procedure operates on the version tree and is based
on graph theory and relational algebra [Pahl and Damrath 2000]. The two versions m; and m;
are to be compared and merged:

a) The first task is to find the common parent version node Mommon that leads to the
common sub-path

rOOtpath(mCOle()n) = <m)C PR mcommon> *

The common sub-path does not have to be considered in the subsequent procedure,
because we are interested in the difference and not in the commonness of versions.

b) The next step is to find the differing sub-paths diffpath(m;) and diffpath(m)) that start
at the common version node m.,mmon and end at the respective version nodes.

diffpath(mi) = <mcommon 57T mi> ’ dlffpa[h(mj) = <mcommon 57T mj > :
The differing sub-paths describe the differences between the considered versions.

Page 1360

c) At this stage, the differing sub-paths diffpath(m;) and diffpath(m;) have to be
compared. This leads to a semantic comparison of two sequences of operations.

d) Merging the differing sub-paths diffpath(m;) and diffpath(m;) results in a new instance
Version m,,,. Therefore, a new edge 0., with

§new := (mcommon > mnew)
has to be created. The change J,., describes a sequence of operations that are based
on the operations stored in the differing sub-paths. The resulting version my,,, of the

model instance can be described as
rootpath(m,,,)= <mx o m mnew> .

4 common

Revision example

It is assumed that the version myg and its revision my (Fig. 8) have to be compared and
merged. The proposed procedure yields the following results:

a) Considering the root paths to the version nodes my and m, the common parent node
and the common sub-path are

m =my , rootpath(m,)= (m,,my)={(8).

common

b) The differing sub-paths diffpath(mg) and diffpath(m.) correspondingly yield
diffpath(my) =), diffpath(m,)=(my,m,m,)=(8y,,6,,).

¢) Comparing the differing sub-paths results in the fact, that the difference between the
empty path diffpath(my) and the sub-path diffpath(m,) is explicitly described in the
sequence of changes stored in the sub-path diffpath(m,). Considering the operations
that are described in the sub-path’s changes it can be found out which objects have
been added, modified or removed. Even the modifications can be described by the
applied operations.

d) Merging the differing sub-paths results in joining the empty path diffpath(mg) and the
sub-path diffpath(m;). That means the change d,.,, to be created can only be based on
the sub-path diffpath(m,). It is assumed that the new instance version is my, its root

path can be described as

rootpath(my) = (m,,my,m,) = <5x0,5024> with &y, =3, = (my.m,).

Figure 8: Merging revisions

Page 1361

Variant example

It is assumed that the variants m, and m3 (Fig. 9) have to be compared and merged. The
proposed procedure yields:

a)

b)

c)

d)

Considering the root paths to the version nodes m, and m3 the common parent node
and the common sub-path are

common — My » rootpath(mo) = <mx’ m0> = <§x > .

The differing sub-paths diffpath(m,) and diffpath(ms) correspondingly yield
dWPath(mz) = <m0,m1,m2> = <501’ 512>
diﬁ‘path(mﬁ = <m0,m3> = <503>-

Comparing the differing sub-paths results in a semantic comparison of the changes
stored in the respective sub-paths. Therefore, the difference between the variants is
the difference between the sequences of operations stored in the changes. These
operations reveal the objects added to, modified in or removed from specific versions.

Merging the differing sub-paths results in joining the paths diffpath(m,) and
diffpath(ms). Thus the change 9., to be created is based on the sequence of changes
stored in both sub-paths. If the new instance version is denoted as ms then its
respective root path can be described as

rootpath(ms) = (m,,my,ms) = <5x0,5§5’3> with 853 =6, = (my.ms).

new

Figure 9: Merging variants

The user has to be involved in the process of merging two model instance versions. The
versions are described by operations. Therefore, the user has to indicate the operations to be
applied for achieving the new version. At the user’s option operations of differing sub-paths
can be used or skipped. Also completely new operations can be executed. A tool that
supports the merging process has to take care of several specific situations. If operations in a
sub-path are skipped the merge procedure has to be aware of the fact that the related
subsequent operations might be invalid or even not executable. For example, skipping an
operation that adds an object results in not being able to select or modify the considered
object afterwards.

Page 1362

EXAMPLE FROM 2D-CAD

Considering a 2D-CAD application a simplified set O of standardized operations looks like
the following:

0= {addline, select,unselect,transform, remove}.

The scenario described below tries to clarify the diff and the merge approach on the basis of
operative modeling. Figure 10 illustrates the versions of the model instance containing
primitive lines only.

Figure 10: Versions of a 2D-CAD model instance

The changes & used to describe the versions of the operative model instance are assumed as
follows:

(addline0,0,1,0,0bj0; addline 0,0,0,1,0bj1; addline 0,111, 0bj2; addline1,0,1,1,0b;3)
select[obj2];transform[1,0,0,1,0.5,0.5];unselect[obj2];

ol <addline0,0,0,—1,obj4;addlinel,O,l,—l,objS >

8y, =(select[obj4,0bj5];transform[1,0,0,1,0.5,0];unselect[0bj4,0bj5])

83 = (select[obj2]; remove; addline1,0,2,0,0bj6;addline 2,0,2.1,0b57).

5x0:
On, =

The proposed procedure for comparing and merging the versions m, and ms3 results in:

a) An investigating of the root paths of the version nodes m; and mj3 yields the common
parent node and the common sub-path:

m,,, — =my, rootpath(m,)= <mx, m0> = <§x0>.
b) The differing sub-paths diffpath(m,) and diffpath(ms) correspondingly yield
dl'ﬁ”l?afh(mz) = <m0,ml,m2> = <501’ 512> J diﬁpath(m3) = <m0,m3> = <§03 >
¢) A semantic comparison of the changes stored in the sub-paths diffpath(m;) and
diffpath(ms) yields:

e version my,: obj2 modified; obj4 and obj5 added and modified
® version ms: obj2 removed; obj6 and obj7 added

Page 1363

d) Joining the sub-paths diffpath(m.) and diffpath(ms) results in creating the change 50243
on the basis of the sequences of operations stored in the sub-paths. The user’s
decision is described as

e use(dp3); use(dy3); skip(do1); ...; use(do3); use(dp3); unselect [obj4,0bj5];
Thus, the resulting change &;; is the sequence of operations
select[obj2]; remove;addline 0,0,0,—1,0bj4; addline1,0,1,—1,0bj5;
Ooi =| select[obj4,0bj5);transform[1,0,0,1,0.5,0]; addline1,0,2,0, 0bj6;
addline2,0,2,1,0bj7;unselect[0bj4,0bj5]

CONCLUSIONS

Existing building information modeling approaches have considerable shortcomings in the
context of comparing and merging versions of the building instance. As a contribution to
these problems our paper describes a novel diff and merge procedure on the basis of
unevaluated operative models. However, a lot of research topics remain open — for instance a
practicable user interface for the comparing and merging procedure.

ACKNOWLEDGMENT

The authors gratefully acknowledge the support of this project by the German Research
Foundation (DFG).

REFERENCES

Beer, D. G., Firmenich, B., Beucke, K. (2006). “A System Architecture for Net-distributed
Applications in Civil Engineering”. Proceedings of the Joint International Conference on
Computing and Decision Making in Civil and Building Engineering, Montreal, Canada —
accepted paper

Corney, J., Lim, T. (2001). 3D modeling with ACIS. Saxe-Coburg. Stirling

Firmenich, B., Koch, C., Richter, T. and Beer, D. G. (2005). “Versioning structured object
sets using text based Version Control Systems”. Proceedings of the 22" CIB-W78.
Institute of Construction Informatics, Dresden, 105 pp.

Firmenich, B. (2004). “A Novel Modelling Approach for the Exchange of CAD Information
in Civil Engineering”. Proceedings of the 5" ECPPM. A.A. Balkema, Leiden, London,
New York, 77 pp.

Pahl, P. J., Damrath, R. (2000). Mathematische Grundlagen der Ingenieurinformatik.
Springer, Berlin, Heidelberg, New York.

Page 1364

